首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Detailed field work at Okushiri Island and along the southwest coast of Hokkaido has revealed quantitatively (1) the advancing direction of tsunami on land, (2) the true tsunami height (i.e., height of tsunami, excluding its splashes, as measured from the ground) and (3) the flow velocity of tsunami on land, in heavily damaged areas. When a Japanese wooden house is swept away by tsunami, bolts that tie the house to its concrete foundation resist until the last moment and become bent towards the direction of the house being carried away. The orientations of more than 850 of those bent bolts and iron pipes (all that can be measured, mostly at Okushiri Island) and fell-down direction of about 400 trees clearly display how tsunami behaved on land and caused serious damage at various places. The true tsunami height was estimated by using several indicators, such as broken tree twigs and a window pane. The flow velocity of tsunami on land was determined by estimating the hydrodynamic force exerted on a bent handrail and a bent-down guardrail by the tsunami throughin situ strength tests.Contrary to the wide-spread recognition after the tsunami hazard, our results clearly indicate that only a few residential areas (i.e., Monai, eastern Hamatsumae, and a small portion at northern Aonae, all on Okushiri Island) were hit by a huge tsunami, with true heights reaching 10 m. Southern Aonae was completely swept away by tsunami that came directly from the focal region immediately to the west. The true tsunami height over the western sea wall of southern Aonae was estimated as 3 to 4 m. Northern Aonae also suffered severe damage due to tsunami that invaded from the corner zone of the sand dune (8 m high) and tide embankment at the northern end of the Aonae Harbor. This corner apparently acted as a tsunami amplifier, and tide embankment or breakwater can be quite dangerous when tsunami advances towards the corner it makes with the coast. The nearly complete devastation of Inaho at the northern end of Okushiri Island underscored the danger of tsunami whose propagation direction is parallel to the coast, since such tsunami waves tend to be amplified and tide embankment or breakwater is constructed low towards the coast at many harbors or fishing ports. Tsunami waves mostly of 2 to 4 m in true height swept away Hamatsumae on the southeast site of Okushiri Island where there were no coastal structures. Coastal structures were effective in reducing tsunami hazard at many sites. The maximum flow velocity at northern Aonae was estimated as 10 to 18 m/s (Tsutsumi et al., 1994), and such a high on-land velocity of tsunami near shore is probably due to the rapid shallowing of the deep sea near the epicentral region towards Okushiri Island. If the advancing direction, true height, and flow velocity of tsunami can be predicted by future analyses of tsunami generation and progagation, the analyses will be a powerful tool for future assessment of tsunami disasters, including the identification of blind spots in the tsunami hazard reduction.  相似文献   

2.
The stratigraphy of tsunami deposits along the Japan Sea, southwest Hokkaido, northern Japan, reveals tsunami recurrences in this particular area. Sandy tsunami deposits are preserved in small valley plains, whereas gravelly deposits of possible tsunami origin are identified in surficial soils covering a Holocene marine terrace and a slope talus. At least five horizons of tsunami events can be defined in the Okushiri Island, the youngest of which immediately overlies the Ko‐d tephra layer (1640 AD) and was likely formed by the historical Oshima‐Ohshima tsunami in 1741 AD. The four older tsunami deposits, dated using accelerator mass spectrometry 14C, were formed at around the 12th century, 1.5–1.6, 2.4–2.6, and 2.8–3.1 ka, respectively. Tsunami sand beds of the 1741 AD and circa 12th century events are recognized in the Hiyama District of Hokkaido Island, but the older tsunami deposits are missing. The deposits of these two tsunamis are found together at the same sites and distributed in regions where wave heights of the 1993 tsunami (Hokkaido Nansei‐oki earthquake, Mw = 7.7) were less than 3 m. Thus, the 12th century tsunami waves were possibly generated near the south of Okushiri Island, whereas the 1993 tsunami was generated towards the north of the island. The estimated recurrence intervals of paleotsunamis, 200–1100 years with an average of 500 years, likely represents the recurrence interval of large earthquakes which would have occurred along several active faults offshore of southwest Hokkaido.  相似文献   

3.
The southwest Hokkaido tsunami of July 12th, 1993, left continuous onshore sand deposits along the west coast of Oshima Peninsuka, Hokkaido, northern Japan. We investigated spatial distribution and lithofacies of the new tsunami deposits for its identification of ancient tsunami deposits. An eyewitness acount and bent plants helped our interpretation of the onshore tsunami behavior. We regard the following properties as typical of the coastal tsunami sand deposits: (1) The deposits cover the surface almost continuously on gentle topography. (2) Deposit thicknesses and mean grain sizes descrease with distance from the sea. (3) Deposit thicknesses and lithofacies vary greatly across local surface undulation. (4) Graded bedding reflecting tsunami runup and backwash is present in thick deposits. (5) The deposits are widely distributed along the coast and extend inland several tens of meters to 100 m. We examined a candidate for the paleo-tsunami deposits associated with the 1640 Komagatake eruption, and confirmed that the similar patterns are typical of ancient tsunami deposits.  相似文献   

4.
2003年日本北海道8.0级地震次声波特征研究   总被引:1,自引:0,他引:1  
邵长金  唐炼  李相方 《地震》2005,25(1):74-80
利用在北京昌平安装的次声三点阵, 记录了2003年9月26日日本北海道地震的前兆次声波和震后次声波。 实际记录的P-t曲线及波速波向图, 经快速傅立叶变换得到其三维动态频谱。 结果表明: ① 强震前2~7天能测到振幅很强、 方向可测的地震前兆次声波。 其频谱特点是: 振幅由弱(10~15 Pa)逐渐加强到(50~80 Pa)或更大; 先为短周期波(10~30 min), 紧跟着长周期波(30~50 min), 然后又出现更长的周期波, 最后长短周期的波一起出现连成一片(2~62 min); ② 地震前兆次声波的产生和记录较容易, 而当地次声波和震中次声波记录和识别比较困难; ③ 若两地的三点阵波向相交, 可预测震中位置。 故地震前兆次声波的测量研究, 有可能发展成为临震预报中一种有效的新方法  相似文献   

5.
日本海-鄂霍次克海深震带地震活动与中国大陆地震有一定的相关性,尤其是其地震迁移规律与中国大陆展布方向相同的地震带的迁移规律一致,因此,所得结果不仅对预测中国大陆地震大形势有意义,而且也找到了两者力学上的联系。  相似文献   

6.
The Neogene marine sedimentary rock area in the eastern marginal region of the Japan Sea is an area with some of the highest landslide densities in Japan. Some of the landslides in this area have been known to involve saline groundwater, which can be the cause of these landslides. In order to demonstrate the relationships between landslides and saline water, topographic, geological, groundwater, and electromagnetic surveys were performed in the eastern marginal region of the Japan Sea. Many landslides and gravitational slope deformations with linear depressions and small scarps were recognized in the study area. The resistivity profile obtained by an electromagnetic survey suggests that there is a wide zonal distribution of saline water with salt concentrations equivalent to seawater at depths of 50–100 m or more and that the groundwater shallower than 50 m has an electrical conductivity of less than 100 mS/m. The shallow resistive groundwater is inferred to be meteoric water that replaced the saline groundwater, which likely weakened the bedrock, resulting in landslides. A ridge of competent tuff overlying mudstone has many linear depressions from gravitational slope deformation and low‐resistivity water to a depth of 600 m, which suggests that the mudstone was weakened by water replacement and deformed under the tuff caprock. The saline groundwater is inferred to be fossil seawater trapped in pores during sediment deposition, which is brought near the ground surface along with rocks by tectonic movement in the hills. Thus, the saline water and its fresh water replacement are among the important basic causes of the landslides. The oil well data obtained in the eastern marginal region of the Japan Sea suggest that such saline water replacement has occurred widely and that replacement is likely one of the predispositions for the frequent landslides there.  相似文献   

7.
北京时间2011年3月11日13时46分(05:46 UTC)日本东北部近海(38.3°N,142.4°E)发生Mw9.0级特大地震,此次地震的强度为日本近1200a来最强.随后环太平洋的数十个国家和地区的验潮站和海啸监测浮标均监测到了强震引发的越洋海啸,海啸奔袭23 h到达南美洲的智利沿岸;此次海啸除了对近场的日本东北部沿岸地区造成了巨大灾害,还对太平洋东岸的部分国家和地区造成了一定程度的影响.地震发生4 h后海啸波到达我国台湾东部沿海,6~8 h海啸波到达我国大陆东南沿海,受此影响我国发布了第一份海啸蓝色警报.本文利用海啸数值模型对此次地震海啸的产生、越洋传播过程进行了数值模拟,给出了海啸波能量在我国近海及泛太平洋区域分布特征;同时重点模拟分析了海啸波在日本及中国近海传播的波动特征,模拟结果与观测数据吻合良好.最后通过对数值模拟结果的分析,阐述了此次海啸对中国的影响,给出了潜在的日本地震海啸对中国的风险估计.  相似文献   

8.
北京时间2011年3月11日13时46分(05:46 UTC)日本东北部近海(38.3°N,142.4°E)发生Mw9.0级特大地震,此次地震的强度为日本近1200a来最强.随后环太平洋的数十个国家和地区的验潮站和海啸监测浮标均监测到了强震引发的越洋海啸,海啸奔袭23 h到达南美洲的智利沿岸;此次海啸除了对近场的日本东北部沿岸地区造成了巨大灾害,还对太平洋东岸的部分国家和地区造成了一定程度的影响.地震发生4 h后海啸波到达我国台湾东部沿海,6~8 h海啸波到达我国大陆东南沿海,受此影响我国发布了第一份海啸蓝色警报.本文利用海啸数值模型对此次地震海啸的产生、越洋传播过程进行了数值模拟,给出了海啸波能量在我国近海及泛太平洋区域分布特征;同时重点模拟分析了海啸波在日本及中国近海传播的波动特征,模拟结果与观测数据吻合良好.最后通过对数值模拟结果的分析,阐述了此次海啸对中国的影响,给出了潜在的日本地震海啸对中国的风险估计.  相似文献   

9.
Ritsuo Nomura 《Island Arc》2021,30(1):e12421
The lower part of the Josoji Formation, Shimane Peninsula, contains clues for figuring out changes in deep-water characteristics during the opening of the Japan Sea. The foraminiferal assemblage includes early to middle Miocene biostratigraphic index taxa such as planktonic foraminiferal Globorotalia zealandica and Globorotaloides suteri. The occurrence of these two species, together with the absence of praeorbulinids, suggests that the lower part of the Josoji Formation is assigned to the top of planktonic foraminiferal Zone N7/M4 (16.39 Ma). The benthic foraminiferal assemblage, which is characterized by Cyclammina cancellata and Martinottiella communis, clearly suggests that the lower Josoji Formation was deposited at bathyal depths, and that it developed in association with the abrupt appearance of deep-sea calcareous forms. Such bathyal taxa are the main constituents of the Spirosigmoilinella compressa–Globobulimina auriculata Zone of the Josoji Formation and also of the Gyrodina–Gyroidinoides Zone at Ocean Drilling Program Site 797 in the Japan Sea. The base of these benthic foraminiferal zones can be correlated with the base of the nannofossil Sphenolithus heteromorphus Base Zone (= CNM6/CN3); thus, its estimated age is 17.65 Ma. This biostratigraphic information suggests that the lower Josoji Formation was deposited from shortly before 17.65–16.39 Ma in upper limit age. Evidence that fresh to brackish and shallow-water basins formed in the rifting interval of 20–18 Ma in the Japan Sea borderland suggests that the abrupt appearance of deep-sea calcareous foraminifera occurred about 1 my earlier in this area than in other sedimentary basins and suggests that a significant paleoceanographic change occurred in the proto-Japan Sea at 17.65 Ma.  相似文献   

10.
Once a mafic intrusive rock has become altered, it is generally difficult to obtain a reliable intrusion age using conventional isotopic dating methods. To overcome this problem, this study used zircon fission track (ZFT) thermochronometry to determine the timing of crystallization of altered mafic intrusions. ZFT dating was carried out on samples of baked granite country rock adjacent to dolerite dikes (5–10 m thick) in the Takato area of central Japan. Three granite samples collected within 8 mm of a dike contact yielded consistent ZFT ages of 17–16 Ma, with confined track lengths indicative of the complete annealing of pre‐existing tracks by reheating due to dike intrusion. An older ZFT age was obtained for one granite sample collected within 20 mm of the contact, but confined track length measurements indicate that this is an incompletely reset age that lies between the ZFT age of the unbaked granitic country rocks (ca. 55 Ma) and the emplacement age of the dike. Petrographic examinations suggest that post‐intrusion hydrothermal activity did not influence the ZFT ages. We conclude that the 17–16 Ma ZFT age represents the emplacement age of the dikes. Our results show that ZFT dating of baked country rock is an effective tool for dating altered mafic intrusions, for which other dating techniques are not applicable. In the eastern part of Southwest Japan, dispersed volcanic activity occurred in the late Early to early Middle Miocene (18–15 Ma), and the volcanic belt extended into the forearc. This pulse of activity was possibly related to the injection of asthenospheric material into the trench‐side mantle wedge beneath the Japan arc. We also present young apatite fission track ages (ca. 4 Ma) that may reflect a Middle Miocene or later thermal event associated with local magmatic activity near the Takato area.  相似文献   

11.
U–Pb geochronology and trace element chemistry of zircons in a microscale analysis were applied to the Ishizuchi caldera in the Outer Zone of Southwest Japan in order to estimate the timescale of the magma process, in particular, the magma differentiation. This caldera is composed mainly of ring fault complexes, major pyroclastic flow deposits, and felsic intrusion including central plutons. Using SHRIMP‐IIe, our new U–Pb zircon ages obtained from the major pyroclastic flow deposits (Tengudake pyroclastic flow deposits), granitic rocks from central plutons (Soushikei granodiorite and Teppoishigawa quartz monzonite), and rhyolite from the outer ring dike (Tenchuseki rhyolite) and the inner ring dike (Bansyodani rhyolite) are 14.80 ±0.11 Ma, 14.56 ±0.10 Ma, 14.53 ±0.12 Ma, 14.55 ±0.11 Ma and 14.21 ±0.19 Ma, respectively. Based on the U–Pb ages, the Hf contents and the REE patterns of the zircons, three stages are recognized in the evolutionary history of the magma chamber beneath the Ishizuchi caldera: (i) climactic Tengudake pyroclastic flow eruption; (ii) Tenchuseki rhyolite intrusion into the outer ring dike and central pluton intrusion; and (iii) Bansyodani rhyolite intrusion in the inner ring dike. These results indicate a magma evolution history of the Ishizuchi caldera system which took at least ca 600 kyr from the climatic caldera‐forming eruption to the post‐caldera intrusions. Our new geochronological data suggest that the Ishizuchi caldera formed as part of the voluminous and episodic magmatism that occurred in the wide zone along the Miocene forearc basin of Southwest Japan during the inception of the young Philippine Sea Plate subduction.  相似文献   

12.
Since the beginning of the anomalous vertical crustal movement in the Izu peninsul, Honshu, Japan, many repeated precise levellings have been carried out by the Geographical Survey Institute. Trilaterations covering the entire Izu peninsula have also been carried out by the Geographical Survey Institute. A new technique is developed to adjust the results of levellings, because they had been carried out for different epochs along each levelling route and because of rapid vertical crustal movements. In conventional least-squares adjustment of levelling network, only corrections to the approximate height are assumed to be unknown, while in the present analysis a special model in which rates of vertical deformation at any bench marks are also assumed to be unknown, is adopted. In addition, tidal stations along the coast of the Izu peninsula yield the rate of vertical crustal movement from analysis of tidal data independent of levelling data. We select several special bench marks in which rates of vertical movement are determined by tidal analysis, thereafter special adjustment is applied according to the type of network.The results show that the peninsula is inclined to the south-west. Uplift in the northeastern part of the peninsula is accompanied by remarkable subsidence in the southwest. The rate of contemporary inclination is many times higher than the rate during the period from 1929 to 1972.The deformation is concentrated in the area whereNakamura (1979, 1980) pointed out the bending of the Philippine Sea plate. The mode and rate of the detected crustal deformation suggest the accelerated bending of the peninsula. There are some local uplift that deviate from the general pattern of deformation. The most remarkable land uplift was observed near Ito, a city within the peninsula, and the focus of this uplift migrated with time. The accelerated plate bending will produce an extension at the earth's surface and contraction in the deeper part of the subcrustal layer, additionally it triggered the intrusion of magma from the deeper part to the shallower. Moreover, the accelerated plate bending also triggered seismic swarms and destructive, earthquakes in and around the peninsula.  相似文献   

13.
The origin of active faults in the Inner zone of the western part of Southwest Japan was explained by a decrease of the minimum principal stress and reactivation of ancient geologic structures. Although the E–W maximum principal stress in Southwest Japan due to the collision of the Southwest and Northeast Japan arcs along the Itoigawa–Shizuoka Tectonic Line is assumed to decrease westward, the density of active strike‐slip faults increases in the western margin of the Southwest Japan Arc (western Chugoku and northern Kyushu) where the subducting Philippine Sea Plate dips steeply. The E–W maximum compressional stress is predominant throughout Southwest Japan, while the N–S minimum principal stress that is presumably caused by coupling between Southwest Japan arc and Philippine Sea Plate decreases due to the weak plate coupling as the plate inclination increases under the western margin of Southwest Japan. The increase of the fault density in the western margin of the arc is attributed to a decrease of the minimum principal stress and consequent increase of shear stress. Low slip rates of the active faults in this region support the view that the westward increase of fault density is not a response to increasing maximum stress. These faults of onshore and offshore lie in three distinct domains defined on the basis of fault strike. They are defined domains I, II, and III which are composed of active faults striking ENE–WSW, NW–SE, and NE–SW, respectively. Faulting in domains I, II, and III is related to Miocene rift basins, Eocene normal faults, and Mesozoic strike‐slip faults, respectively. Although these active faults are strike‐slip faults due to E–W maximum stress, it is unclear whether their fault planes are the same as those of pre‐Quaternary dip‐slip faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号