首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Atlantis Fracture Zone (30° N) is one of the smallest transform faults along the Mid-Atlantic Ridge with a spatial offset of 70 km and an age offset of ~ 6 Ma. The morphology of the Atlantis Fracture Zone is typical of that of slow-slipping transforms. The transform valley is 15–20 km wide and 2–4 km deep. The locus of strike-slip deformation is confined to a narrow band a few kilometers wide. Terrain created at the outside corners of the transform is characterized by ridges which curve toward the ridge-transform intersections and depressions which resemble nodal basins. Hooked ridges are not observed on the transform side of the ridge-transform intersections. Results of the three-dimensional inversion of the surface magnetic field over our survey area suggest that accretionary processes are sufficiently organized within 3–4 km of the transform fault to produce lineated magnetic anomalies. The magnetization solution further documents a 15-km, westward relocation of the axis of accretion immediately south of the transform about 0.25 Ma ago. The Atlantis Transform is associated with a band of high mantle Bouguer anomalies, suggesting the presence of high densities in the crust and/or mantle along the transform, or anomalously thin crust beneath the transform. Assuming that all the mantle Bouguer anomalies are due to crustal thickness variations, we calculate that the crust may be 2–3 km thinner than a reference 6-km thickness beneath the transform valley, and 2–3 km thicker beneath the mid-points of the spreading segments which bound the transform. Our results indicate that crustal thinning is not uniform along the strike of the fracture zone. Based on studies of the state of compensation of the transform, we conclude that the depth anomaly associated with the fracture zone valley is not compensated everywhere by thin crust. Instead, the regional relationship between bathymetry and gravity is best explained by compensation with an elastic plate with an effective thickness of ~ 4 km or greater. However, the remaining isostatic anomalies indicate that there are large variations away from this simple model which are likely due to variations in crustal thickness and density near the transform.  相似文献   

2.
The first high resolution multichannel seismic data from the Mendeleev and Alpha Ridges in the Arctic Ocean have been used to investigate the depositional history, and compare acoustic stratigraphies of the three main sub-marine ridges (Mendeleev, Alpha and Lomonosov) in the polar ocean. Acoustic basement on the Mendeleev Ridge is covered by a ~0.6–0.8 s thick sediment drape over highs and up to 1.8 s within grabens. A pronounced angular discordance at 0.18–0.23 s below the seafloor along the middle to upper slopes divides the succession into an upper, undisturbed, uniformly thick, hemipelagic drape (Unit M1) and a partially truncated lower unit (Unit M2) characterized by strong reflection bands. Unit M2 is thicker in intra-ridge grabens and includes three sub-units with abundant debris flows in the uppermost subunit (M2a). The discordance between Units M1 and M2 most likely relates to instability along the middle to upper slopes and mass wasting, triggered by tectonic activity. The scars were further smoothed by bottom current erosion. We observe comparable acoustic stratigraphy and discordant relationships on the investigated northwestern part of Alpha Ridge. Similarly, on the central Lomonosov Ridge, Paleocene and younger sediments sampled by scientific drilling include an uppermost ~0.2 s thick drape overlying, highly reflective deposits with an angular unconformity confined to the upper slope on both sides of the ridge. Sediment instability on the three main ridges was most likely generated by a brief phase of tectonic activity (~14.5–22 Ma), coinciding with enhanced bottom circulation. These events are coeval with the initial opening of the Fram Strait. The age of the oldest sediments above acoustic basement on the Mendeleev- and west-central Alpha Ridges is estimated to be 70–75 Ma.  相似文献   

3.
We compute the radially symmetric coherence between multibeam bathymetry and satellite gravity grids in 25 areas distributed around the world. In contrast to previous studies employing one-dimensional analysis of data along profiles, our results cannot be biased by unseen off-track topography. The mean coherence averaged over the 20?C160?km waveband, and the shortest wavelength at which coherence is above 0.5, vary with tectonic setting. Seamounts and slow spreading ridges have high (>0.7) mean coherence down to ~20?km wavelength, other spreading ridges and trenches have intermediate (0.5?C0.7) coherence down to ~20?C30?km wavelength, and continental shelves have low (<0.5) coherence at all wavelengths. In the areas with highest mean coherence, the shortest wavelength at which coherence is above 0.5 decreases as mean depth decreases. The filter employed in the bathymetric prediction method of Smith and Sandwell (J Geophys Res 99(B11):21803?C21824, 1994) selects the most coherent parts of the bathymetry and gravity spectrum.  相似文献   

4.
The Gakkel Ridge in the Arctic Ocean with its adjacent Nansen and Amundsen Basins is a key region for the study of mantle melting and crustal generation at ultraslow spreading rates. We use free-air gravity anomalies in combination with seismic reflection and wide-angle data to compute 2-D crustal models for the Nansen and Amundsen Basins in the Arctic Ocean. Despite the permanent pack-ice cover two geophysical transects cross both entire basins. This means that the complete basin geometry of the world’s slowest spreading system can be analysed in detail for the first time. Applying standard densities for the sediments and oceanic crystalline crust, the gravity models reveal an unexpected heterogeneous mantle with densities of 3.30 × 103, 3.20 × 103 and 3.10 × 103 kg/m3 near the Gakkel Ridge. We interpret that the upper mantle heterogeneity mainly results from serpentinisation and thermal effects. The thickness of the oceanic crust is highly variable throughout both transects. Crustal thickness of less than 1 km dominates in the oldest parts of both basins, increasing to a maximum value of 6 km near the Gakkel Ridge. Along-axis heat flow is highly variable and heat flow amplitudes resemble those observed at fast or intermediate spreading ridges. Unexpectedly, high heat flow along the Amundsen transect exceeds predicted values from global cooling curves by more than 100%.  相似文献   

5.
High-temperature hydrothermal activity occurs in all ocean basins and along ridge crests of all spreading rates. While it has long been recognized that the fluxes associated with such venting are large, precise quantification of their impact on ocean biogeochemistry has proved elusive. Here, we report a comprehensive study of heat, fluid and chemical fluxes from a single submarine hydrothermal field. To achieve this, we have exploited the integrating nature of the non-buoyant plume dispersing above the Rainbow hydrothermal field, a long-lived and tectonically hosted high-temperature vent site on the Mid-Atlantic Ridge. Our calculations yield heat and volume fluxes for high-temperature fluids exiting the seafloor of ~0.5 GW and 450 L s?1, together with accompanying chemical fluxes, for Fe, Mn and CH4 of ~10, ~1 and ~1 mol s?1, respectively. Accompanying fluxes for 25 additional chemical species that are associated with Fe-rich plume particles have also been calculated as they are transported away from the Rainbow vent site before settling to the seabed. High-temperature venting has been found to recur at least once every ~100 km along all slow-spreading ridges investigated to-date, with half of all known sites on the Mid-Atlantic Ridge occurring as long-lived and tectonically hosted systems. If these patterns persist along all slow- and ultraslow-spreading ridges, high-temperature venting of the kind reported here could account for ~50% of the on-axis hydrothermal heat flux along ~30,000 km of the ~55,000 km global ridge crest.  相似文献   

6.
SeaMARC II and Sea Beam bathymetric data are combined to create a chart of the East Pacific Rise (EPR) from 8°N to 18°N reaching at least 1 Ma onto the rise flanks in most places. Based on these data as well as SeaMARC II side scan sonar mosaics we offer the following observations and conclusions. The EPR is segmented by ridge axis discontinuities such that the average segment lengths in the area are 360 km for first-order segments, 140 km for second-order segments, 52 km for third-order segments, and 13 km for fourth-order segments. All three first-order discontinuities are transform faults. Where the rise axis is a bathymetric high, second-order discontinuities are overlapping spreading centers (OSCs), usually with a distinctive 3:1 overlap to offset ratio. The off-axis discordant zones created by the OSCs are V-shaped in plan view indicating along axis migration at rates of 40–100 mm yr–1. The discordant zones consist of discrete abandoned ridge tips and overlap basins within a broad wake of anomalously deep bathymetry and high crustal magnetization. The discordant zones indicate that OSCs have commenced at different times and have migrated in different directions. This rules out any linkage between OSCs and a hot spot reference frame. The spacing of abandoned ridges indicates a recurrence interval for ridge abandonment of 20,000–200,000 yrs for OSCs with an average interval of approximately 100,000 yrs. Where the rise axis is a bathymetric low, the only second-order discontinuity mapped is a right-stepping jog in the axial rift valley. The discordant zone consists of a V-shaped wake of elongated deeps and interlocking ridges, similar to the wakes of second-order discontinuities on slow-spreading ridges. At the second-order segment level, long segments tend to lengthen at the expense of neighboring shorter segments. This can be understood if segments can be approximated by cracks, because the propagation force at a crack tip is directly proportional to crack length.There has been a counter-clockwise change in the direction of spreading on the EPR between 8 and 18° N during the last 1 Ma. The cumulative change has been 3°–6°, producing opening across the Orozco and Siqueiros transform faults and closing across the Clipperton transform. The instantaneous present-day Cocos-Pacific pole is located at approximately 38.4° N, 109.5° W with an angular rotation rate of 2.10° m.y.–1 This change in spreading direction explains the predominance of right-stepping discontinuities of orders 2–4 along the Siqueiros-Clipperton and Orozco-Rivera segments, but does not explain other aspects of segmentation which are thought to be linked to patterns of melt supply to the ridge axis.There are 23 significant seamount chains in the mapped area and most are created very near the spreading axis. Nearly all of the seamount chains have trends which fall between the absolute and relative plate motion vectors.  相似文献   

7.
Multiple stages of large-scale shelf sand ridges, including the shoreface-attached and the offshore types, have developed in the Miocene successions on the mid-shelf region of the Pear River Mouth Basin, northern South China Sea. Utilizing a high-quality 3D seismic data set, accompanying 2D seismic profiles and well logs, the morphology, architecture and genesis of these shelf sand ridges have been systematically investigated in this study. The ridges are of very large scale, with the largest one having a maximum height of 64 m, a width of more than 20 km and a length of 37 km within the 3D survey area. Being mound-shaped, they also display obvious asymmetry character, with the ridge crest preferentially located on the SE side. Three main internal components, including the ridge front, central ridge and the ridge tail, have been recognized through careful anatomy analysis of the two most well-imaged ridges, each displaying distinct expressions on seismic amplitudes and geometries. In the plan view, most of the shelf sand ridges are generally NE–SW oriented and widening to the SW direction. Scouring features can also be clearly observed along the SW direction, including scour depressions and linear sandy remnants. On well logs, the shelf sand ridges are represented by an overall coarsening-upward pattern. Intervals with blocky sandstones are preferentially present on higher locations due to a differential winnowing process controlled by shelf topography.Plenty of evidence indicates that these ridges were primarily formed by the reworking of forced regressive or lowstand deltaic deposits under a persistent southwesterly flowing current during the subsequent transgression. This very current is a composite one, which is speculated to consist of winter oceanic current, SCSBK (South China Sea Branch of Kuroshio) intrusion onto the shelf and internal waves propagating from the Luzon Strait. Tidal currents might have contributed to the SE growth of the ridge. In response to the reglaciation of Antarctic ice-sheet and the closure of Pacific-Indian ocean seaway in the middle Miocene, the intensification of the North Pacific western boundary current was considered to have potential links to the initiation of the shelf sand ridges at ∼12 Ma. The development of shelf ridges was terminated and replaced by rapid deltaic progradation at ∼5.5 Ma.  相似文献   

8.
Incorporating new altimeter data from CryoSat-2 (30 months), Envisat (18 months), and Jason-1 (7 months) satellites into an updated marine gravity field yields significant reduction in noise and improved resolution. Compared to an older gravity field that did not include the new altimeter data, incoherent power is reduced globally by approximately 2.9 dB at 15 km, 1.6 dB at 20 km, and 1.0 dB at 25 km wavelengths. Coherence analyses between the updated gravity and recent multibeam surveys distributed throughout the world’s oceans shows an average increase of ~0.023 in mean coherence in the 20–160 km waveband, with the biggest increase (>0.08) over fast spreading ridges and smallest (<0.02) over slow spreading ridges and continental shelves. The shortest wavelength at which coherence is above 0.5 decreased globally by ~2 km wavelength, with the biggest decrease (>3.5 km) over fast spreading ridges and smallest (<1.5 km) over slow spreading ridges and continental shelves. In the Clipperton fracture zone area these improvements result in seamounts that are more accurately located, the detection of smaller seamounts, and the expression of north–south trending abyssal hill fabric. As more altimeter data from the ongoing satellite missions are incorporated into future gravity field updates, finer-scale details of the seafloor will continue to emerge.  相似文献   

9.
Kveithola Trough, an E–W trending glacial trough in the NW Barents Sea, was surveyed for the first time during the EGLACOM cruise of R/V OGS-Explora in summer 2008. Swath bathymetry shows that the seafloor is characterized by E–W trending mega-scale glacial lineations (MSGL) that record a fast flowing ice stream draining the Svalbard/Barents Sea Ice Sheet (SBIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase axial profile of the trough. Such transverse ridges are interpreted to be grounding-zone wedges (GZWs) formed by deposition of subglacial till during episodic ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that the present-day morphology is largely inherited from the palaeo-seafloor topography at the time of deposition of the transverse ridges, overlain by a draping glaciomarine unit which in places is over 15 m thick. Our data allow the reconstruction of depositional processes which accompanied deglaciation of the Spitsbergen Bank area. The sedimentary drape deposited on top of the GZWs is suggested to have accumulated at a very high rate, (on average in the order of 1–1.5 m ka?1) and therefore may potentially preserve a high-resolution palaeoclimatic record of deglaciation and post-glacial conditions in this sector of the Barents Sea.  相似文献   

10.
In this paper we focused on understanding the isostatic compensation of the Ninetyeast Ridge in the overall context of the Bay of Bengal oceanic lithosphere and the interaction of the ridge system with the north Andaman subduction zone from north of 7–18°N. This region is characterized by the initial interaction of the Kerguelen hotspot with the Bay of Bengal oceanic lithosphere. We used satellite altimeter-derived marine geoid, as it should comprehensively reflect the compensations caused by large spatial wavelength dominated deeper anomaly sources in a hotspot affected lithospheric load like the Ninetyeast Ridge. Our analyses of the geoid-to-topography ratio (GTR), residual geoid, gravity-to-topographic kernel and upward continuation of anomalies show the existence of two different types of source compensation bodies beneath the northern (12–18°N) and southern (7–12°N) Ninetyeast Ridge. In the northern region, the geoid to topography ratio varies from 0.63 ± 0.05 to 0.44 ± 0.03, while in the southern region it ranges from 1.34 ± 0.09 to 1.31 ± 0.07 which resulted in a north to south increase in the apparent compensation depth from ~9 to 28 km. The presence of a shallow Moho, low GTR, broader gravity to topography kernel and the absence of a ridge anomaly from the mantle density dominated upward continued anomaly at z = 300 km indicates that at the northern segment the underplated low density crustal melt is the dominant isostatic compensating body. However, at the southern ridge segment the high GTR, strong gravity-to-topography kernel and the subsistence of the anomaly at long wavelengths, even at z = 300 km represents the existence of large volumes of hotspot related underplated dense material as the source of compensation. The proximity of the dense source compensating body of the southern Ninetyeast Ridge to the Andaman subduction zone affected the regional mantle driven density gradient flow, as observed from the z = 300 km continued gravity anomaly. The existence of a southern Ninetyeast Ridge in such a transpressional regime has caused the formation of a forearc sliver at its eastern flank, which is a major crustal deformational structure developed as a result of ridge-trench collision.  相似文献   

11.
Recent hydrographic measurements within the eastern South Pacific (1999–2001) were combined with vertically high-resolution data from the World Ocean Circulation Experiment, high-resolution profiles and bottle casts from the World Ocean Database 2001, and the World Ocean Atlas 2001 in order to evaluate the vertical and horizontal extension of the oxygen minimum zone (<20 μmol kg−1). These new calculations estimate the total area and volume of the oxygen minimum zone to be 9.82±3.60×106 km2 and 2.18±0.66×106 km3, respectively. The oxygen minimum zone is thickest (>600 m) off Peru between 5 and 13°S and to about 1000 km offshore. Its upper boundary is shallowest (<150 m) off Peru, shoaling towards the coast and extending well into the euphotic zone in some places. Offshore, the thickness and meridional extent of the oxygen minimum zone decrease until it finally vanishes at 140°W between 2° and 8°S. Moving southward along the coast of South America, the zonal extension of the oxygen minimum zone gradually diminishes from 3000 km (15°S) to 1200 km (20°S) and then to 25 km (30°S); only a thin band is detected at ∼37°S off Concepción, Chile. Simultaneously, the oxygen minimum zone's maximum thickness decreases from 300 m (20°S) to less than 50 m (south of 30°S). The spatial distribution of Ekman suction velocity and oxygen minimum zone thickness correlate well, especially in the core. Off Chile, the eastern South Pacific Intermediate Water mass introduces increased vertical stability into the upper water column, complicating ventilation of the oxygen minimum zone from above. In addition, oxygen-enriched Antarctic Intermediate Water clashes with the oxygen minimum zone at around 30°S, causing a pronounced sub-surface oxygen front. The new estimates of vertical and horizontal oxygen minimum zone distribution in the eastern South Pacific complement the global quantification of naturally hypoxic continental margins by Helly and Levin [2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research I 51, 1159–1168] and provide new baseline data useful for studies on the role of oxygen in the degradation of organic matter in the water column and the related implications for biogeochemical cycles. Coastal upwelling zones along the eastern Pacific combine with general circulation to provide a mechanism that allows renewal of upper Pacific Deep Water, the most oxygen-poor and oldest water mass of the world oceans.  相似文献   

12.
The South Pandora and the Tripartite Ridges are active spreading centers located in the northern part of the North Fiji Basin. These spreading centers were surveyed over a distance of 750 km during the NOFI cruise of R/V L'Atalante (August–September 1994) which was conducted in the frame of the french-japanese Newstarmer cooperation project. SIMRAD EM12-dual full coverage swath bathymetric and imagery data as well as airgun 6-channel seismic, magnetics and gravity profiles were recorded along and offaxis from 170°40 E to 178° E. Dredging and piston coring were also performed along and off-axis. The axial domain of the South Pandora Ridge is divided into 5 first-order segments characterized by contrasted morphologies. The average width of the active domain is 20 km and corresponds either to bathymetric highs or to deep elongated grabens. The bathymetric highs are volcanic constructions, locally faulted and rifted, which can obstruct totally the axial valley. The grabens show the typical morphology of slow spreading axes, with two steep walls flanking a deep axial valley. Elongated lateral ridges may be present on both sides of the grabens. Numerous volcanoes, up to several kilometers in diameter, occur on both flanks of the South Pandora Ridge. The Tripartite Ridge consists of three main segments showing a sigmoid shape. Major changes in the direction of the active zones are observed at the segment discontinuities. These discontinuities show various geometrical patterns which suggest complex transform relay zones. Preliminary analysis of seismic reflection profiles suggest that the Tripartite Ridge is a very young feature which propagates into an older oceanic domain characterized by a significant sedimentary cover. By contrast, a very thin to absent sedimentary cover is observed about 100 km on both flanks of the South Pandora Ridge active axis. The magnetic anomaly profiles give evidence of long and continuous lineations, parallel to the South Pandora Ridge spreading axis. According to our preliminary interpretation, the spreading rate would have been very low (8 km/m.y. half rate) during the last 7 Ma. The South Pandora and Tripartite Ridges exhibit characteristics typical of active oceanic ridges: (1) a segmented pattern, with segments ranging from 80 to 100 km in length; (2) an axial tectonic and volcanic zone, 10 to 20 km wide; (3) well-organized magnetic lineations, parallel to the active axis; (4) clear signature on the free-air gravity anomaly map. However, no typical transform fault is observed; instead, complex relay zones are separating first-order segments.  相似文献   

13.
A combined ocean bottom seismometer, multichannel seismic reflection and gravity study has been carried out along the spreading direction of the Knipovich Ridge over a topographic high that defines a segment center. The youngest parts of the crust in the immediate vicinity of the ridge reveal fractured Oceanic Layer 2 and thermally expanded and possibly serpentinized Oceanic Layer 3. The mature part of the crust has normal thickness and seismic velocities with no significant crustal thickness and seismic velocity variations. Mature Oceanic Layer 2 is in addition broken into several rotated fault blocks. Comparison with a profile acquired ~40 km north of the segment center reveals significant differences. Along this profile, reported earlier, periods of slower spreading led to generation of thin crust with a high P-wave velocity (Vp), composed of a mixture of gabbro and serpentinized mantle, while periods of faster spreading led to generation of more normal gabbroic crust. For the profile across the segment center no clear relation exists between spreading rate and crustal thickness and seismic velocity. In this study we have found that higher magmatism may lead to generation of oceanic crust with normal thickness even at ultra-slow spreading rates.  相似文献   

14.
Based on Olex single-beam sounder data, multibeam sonar surveys, and sparse seismic reflection profiles, we recognize a large area of anomalous bathymetry on the Northeast Newfoundland Shelf as having formed as a result of mass-transport processes. Transported masses include (1) an arcuate ridge of deformed material with an area of 430 km2, which has moved distances of ~20 km; (2) a 70-km2 mass of deformed material displaced 50 km along a nearly horizontal track flanked by 90-m-high berms. The movement of these and other sediment bodies has created a 150-m-high headwall escarpment extending 110 km along the north flank of the Notre Dame glacial trough. In addition, a 35-km2 block of undeformed material has moved 5 km to the southeast, away from the headwall, creating a gap of the same dimensions, while a smaller block of material originating in this vicinity has been displaced 24 km in the opposite direction, creating a 20-m-deep groove on the seafloor. There is evidence for mass transport and headwall formation elsewhere on the Northeast Newfoundland Shelf. Analysis of seismic reflection data indicates that the transported material most likely consists of stacked Quaternary till sheets that overlie Cenozoic, Mesozoic and older sedimentary rocks. Given the very low gradients involved, glaciotectonism is the most likely process to account for transport and deformation of the large sediment masses. However, some mass transport may have resulted from submarine sliding away from the headwalls that were created by the glacial transport.  相似文献   

15.
We have calculated cross-sectional areas for the ridges bounding the Easter and Juan Fernandez microplates, 22°–28°S and 31°–35°S, obtaining accurate results where complete bathymetric data exist and estimates in other regions with partial bathymetric coverage and predicted bathymetry. We consider the reliability and usefulness of global predicted bathymetry in these calculations and the possible application of this dataset in other localities. The spreading rates on ridges bounding these microplates span the range from slow to superfast, allowing an investigation of ridge axis inflation over most of the rates active on Earth today. The across-axis areas of the Easter microplate ridge axes range from –29 km2 to 7 km2, while the Juan Fernandez ridge axis areas range from –27 km2 to 8 km2. Positive values correlate with regions usually interpreted as magmatically robust. Negative values arise from calculations in areas of propagating rift tips and deep grabens, such as Pito and Endeavor Deeps. Geochemical trends of Easter microplate axial basalts show decreasing MgO toward propagating rift tips and slight positive correlations between variables such as MgO vs. cross-sectional area, Na8.0 vs. axial depth, and Na8.0 vs. cross-sectional area. We document the decrease in the axial area approaching segment ends and propagating rift tips along both the West and East ridges of the microplates. On the Easter microplate both East and West ridge systems undergo large variations in spreading rate from >130 km Myr–1 to <50 km Myr–1. Inflation on these ridge segments is highly variable and only weakly correlated with spreading rate. On the Juan Fernandez microplate, West ridge spreading rates vary only between 115–140 km Myr–1 and are systematically faster than on the East ridge, where rates vary between 10–35 km Myr–1. Cross axis areas are systematically greater and significantly less variable on the faster spreading West ridge. Overall, compared to oceanic spreading centers bounding major plates with similar spreading rates, the axial areas are smaller on the microplate ridge systems, possibly because their rapidly changing configurations create a lag in the mantle response to the rigid plate boundary.  相似文献   

16.
The Northland Plateau and the Vening Meinesz “Fracture” Zone (VMFZ), separating southwest Pacific backarc basins from New Zealand Mesozoic crust, are investigated with new data. The 12–16 km thick Plateau comprises a volcanic outer plateau and an inner plateau sedimentary basin. The outer plateau has a positive magnetic anomaly like that of the Three Kings Ridge. A rift margin was found between the Three Kings Ridge and the South Fiji Basin. Beneath the inner plateau basin, is a thin body interpreted as allochthon and parautochthon, which probably includes basalt. The basin appears to have been created by Early Miocene mainly transtensive faulting, which closely followed obduction of the allochthon and was coeval with arc volcanism. VMFZ faulting was eventually concentrated along the edge of the continental shelf and upper slope. Consequently arc volcanoes in a chain dividing the inner and outer plateau are undeformed whereas volcanoes, in various stages of burial, within the basin and along the base of the upper slope are generally faulted. Deformed and flat-lying Lower Miocene volcanogenic sedimentary rocks are intimately associated with the volcanoes and the top of the allochthon; Middle Miocene to Recent units are, respectively, mildly deformed to flat-lying, calcareous and turbiditic. Many parts of the inner plateau basin were at or above sea level in the Early Miocene, apparently as isolated highs that later subsided differentially to 500–2,000 m below sea level. A mild, Middle Miocene compressive phase might correlate with events of the Reinga and Wanganella ridges to the west. Our results agree with both arc collision and arc unzipping regional kinematic models. We present a continental margin model that begins at the end of the obduction phase. Eastward rifting of the Norfolk Basin, orthogonal to the strike of the Norfolk and Three Kings ridges, caused the Northland Plateau to tear obliquely from the Reinga Ridge portion of the margin, initiating the inner plateau basin and the Cavalli core complex. Subsequent N115° extension and spreading parallel with the Cook Fracture Zone completed the southeastward translation of the Three Kings Ridge and Northland Plateau and further opened the inner plateau basin, leaving a complex dextral transform volcanic margin.  相似文献   

17.
As part of the multidisciplinary programme BIOZAIRE devoted to studying deep-sea benthic ecosystems in the Gulf of Guinea, particulate input and its relationship with near-bottom hydrodynamics were monitored using long-term moorings from 2000 to early 2005. Particular attention was given to material input through the Congo (ex-Zaïre) submarine channel that extends 760 km from the Congo River mouth to the abyssal plain (>5100 m) near 6°S. Due to its direct connection to the Congo River, the Congo canyon and channel system are characterised by particularly active recent sediment transport. During this first in situ long-term monitoring along the channel, an energetic turbidity event was observed in January 2004 at three locations along the channel from 3420 to 4790 m in depth. This event tilted and displaced the moorings installed at 3420 m (site ZR′) and 4070 m (site ZD′), and resulted in high sediment deposition at all three mooring sites. The event moved at an average velocity of 3.5 m s−1 along the numerous channel meanders between 3420 and 4070 m, then at 0.7 m s−1 between 4070 m and the end of the channel at 4790 m. The particle cloud rose above the top of the valley at 4070 m (site ZD′), but not at 3420 m (site ZR′) where the channel was too deep. Lastly, the mooring line broke at site ZD′ in October 2004 probably due to a strong event like that of 2001 previously described by Khripounoff et al. [Khripounoff, A., Vangriesheim, A., Babonneau, N., Crassous, P., Denniellou, B., Savoye, B., 2003. Direct observation of intense turbidity activity in the Zaire submarine valley at 4000 m water depth. Marine Geology (194), 151–158]. Between these strong events, several peaks of high turbidity and particle flux occurred, but without noticeable current increases. These events were probably due to local sliding of sediment accumulated on the walls or terraces on the side of the channel. The area near 4000 m depth and the lobe appear to be the main depocentres of particulate input rich in organic matter derived from the Congo River.  相似文献   

18.
Three mooring arrays were deployed in the Palamós Canyon axis with sediment traps, current meters and turbidimeters installed near the bottom and in intermediate waters. Frequent sharp and fast turbidity peaks along with current speed increases were recorded, particularly at 1200 m depth in spring and summer. During these events, near-bottom water turbidity increased by up to more than one order of magnitude, current velocity by two to four times and horizontal sediment fluxes by one to three orders of magnitude. When these events occurred, 9–11 days integrated downward particle fluxes collected by the near-bottom sediment trap increased by two to three times. These events were identified as sediment gravity flows triggered by trawling activities along the northern canyon wall. Sediment eroded by the trawling nets at 400–750 m depth on this wall seems to be channeled through a gully and transported downslope towards the canyon axis, where the 1200 m mooring was located. The sediment gravity flows recorded at the 1200 m site were not detected at deeper instrumented sites along the canyon axis, suggesting that they affect local areas of the canyon without traveling long distances downcanyon. These observations indicate that trawling can generate frequent sediment gravity flows and increase sediment fluxes locally in submarine canyons. Furthermore, in addition to the various natural processes currently causing sediment gravity flows and other sediment transport events, human activities such as trawling must be taken into account in modern submarine canyon sediment dynamics studies.  相似文献   

19.
The pleated ascidian Styela plicata (Lesueur, 1823) is a solitary species commonly found in ports and marinas around the world. It has been recorded in the Mediterranean region since the mid‐19th century. In the present work, the species’ genetic diversity was analysed, employing a 613‐bp portion of the mitochondrial cytochrome c oxidase subunit I (COI) gene from 149 individuals collected in 14 ports along Italian coasts at spatial scales ranging from 1 to approximately 2200 km. Haplotype and nucleotide diversity values were = 0–0.933 (total = 0.789) and π = 0–0.145 (total π = 0.0094), respectively. A general southward trend of increasing within‐population genetic diversity was observed. Analysis of molecular variance revealed significant genetic structuring but no significant differences were detected among basins, and no isolation by distance was found. Our data were integrated with the COI sequences available from previous studies and re‐analysed in order to investigate the possible routes of introduction of this ascidian into the Mediterranean Sea. The presence of the two COI haplogroups detected in previous molecular investigations on S. plicata at intercontinental spatial scale was confirmed in the Mediterranean Sea. The results revealed multiple introductions of S. plicata, although some locations appear to have experienced rapid expansion from few founding individuals with reduced genetic diversity. However, continuous introductions would confound the pattern deriving from single founder events and make it difficult to estimate the time needed for gene diffusion into established populations. This mixing of effects creates difficulties in understanding the past and current dynamics of this introduction, and managing this alien invasive ascidian whose genetic structure is continuously shuffled by vessel‐mediated transport.  相似文献   

20.
A transect of CTD profiles crossing the North Atlantic Current (NAC) along WOCE line ACM6 near 42.5°N during August 1–7, 1993, provides geostrophic shear velocity profiles, which were absolutely referenced using simultaneous POGO transport float measurements and velocity measurements from a ship-mounted acoustic doppler current profiler (ADCP). The NAC absolute transport was 112±23×106 m3 s−1, which includes a portion of the transport of the Mann Eddy, a large permanent anticyclonic eddy commonly adjacent to the NAC. The NAC transport estimated relative to a level of no motion at the bottom would have underestimated the true total absolute transport by 20%. A surprisingly large 58×106 m3 s−1 flowed southward just inshore of the NAC. This flow, centered near 1500 dbars about 200 km offshore of the shelf-break, was fairly barotropic with a peak velocity of greater than 20 cm s−1, and the water mass characteristics were of Labrador Sea Water. These absolute transport observations suggest southward recirculation inshore of the NAC at 42.5°N and a stronger NAC than has previously been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号