首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Previous studies have shown that the Kapoeta howardite, as well as several other meteorites, contains excess concentrations of cosmogenic Ne in the darkened, solar-irradiated phase compared to the light, non-irradiated phase. The two explanations offered for the nuclear production of these Ne excesses in the parent body regolith are either from galactic cosmic-ray proton (GCR) irradiation or from a greatly enhanced flux of energetic solar “cosmic-ray” protons (SCR), as compared to the recent solar flux. Combining new isotopic data we obtained on acid-etched, separated feldspar from Kapoeta light and dark phases with literature data, we show that the cosmogenic 21Ne/22Ne ratio of light phase feldspar (0.80) is consistent with only GCR irradiation in space for ~3 Ma. However, the 21Ne/22Ne ratio (0.68) derived for irradiation of dark phase feldspar in the Kapoeta regolith indicates that cosmogenic Ne was produced in roughly equal proportions from galactic and solar protons. Considering a simple model of an immature Kapoeta parent body regolith, the duration of this early galactic exposure was only ~3–6 Ma, which would be an upper limit to the solar exposure time of individual grains. Concentrations of cosmogenic 21Ne in pyroxene separates and of cosmogenic 126Xe in both feldspar and pyroxene are consistent with this interpretation. The near-surface irradiation time of individual grains in the Kapoeta regolith probably varied considerably due to regolith mixing to an average GCR irradiation depth of ~10 cm. Because of the very different depth scales for production of solar ~Fe tracks, SCR Ne, and GCR Ne, the actual regolith exposure times for average grains probably differed correspondingly. However, both the SCR 21Ne and solar track ages appear to be longer because of enhanced production by early solar activity. The SCR/GCR production ratio of 21Ne inferred from the Kapoeta data is larger by a at least a factor of 10 and possibly as much as a factor of ~50 compared to recent solar particle fluxes. Thus, this study indicates that our early Sun was much more active and emitted a substantially higher flux of energetic (>10 MeV/nucleon) protons.  相似文献   

2.
Based on our analysis of the data fromthe global network of neutronmonitors for several events, we have found the times of the first increases in count rate at individual stations that precede the main solar cosmic-ray enhancement. The onset time of proton acceleration at the Sun has been determined from the appearance of a broad gamma-ray line with its maximum near 70 MeV that is generated during the decay of neutral pions, which, in turn, are produced when protons with energies above 300 MeV interact with the solar atmosphere. The time of the first recording of energetic protons at the Earth is delayed relative to the time at which these protons appeared at the Sun by 60–300 s, i.e., by a value comparable to the difference between the direct photon and particle propagation times. At least two conclusions follow from the existence of such “precursors”. First, the protons begin to escape from the solar atmosphere into interplanetary space immediately after their acceleration. Second, some of the protons traverse a path shorter than the nominal length of interplanetary magnetic field lines.  相似文献   

3.
Times for accumulation of chemically significant dosages on icy surfaces of Centaur, Kuiper Belt, and Oort Cloud objects from plasma and energetic ions depend on irradiation position within or outside the heliosphere. Principal irradiation components include solar wind plasma ions, pickup ions from solar UV ionization of interstellar neutral gas, energetic ions accelerated by solar and interplanetary shocks, including the putative solar wind termination shock, and galactic cosmic ray ions from the Local Interstellar Medium (LISM). We present model flux spectra derived from spacecraft data and models for eV to GeV protons at 40 AU, a termination shock position at 85 AU, and in the LISM. Times in years to accumulate dosages ~100 eV per molecule are computed from the spectra as functions of sensible surface depth less than one centimeter at unit density.The collisional resurfacing model of Luu and Jewitt is reconsidered in thecontext of depth-dependent dosage rates from plasma, suprathermal,and higher energy protons, and global exposure, by micrometeoroiddust grain impacts, of moderately irradiated red material below athin crust of heavily irradiated neutral material. This material should be more visible on dynamically `cold’ objects in the ~40 AU region.  相似文献   

4.
In this paper we present quantitative results of observations of energetic neutral atoms (ENAs) originating from the lunar surface. These ENAs, which are hydrogen atoms, are the result of the solar wind protons being reflected from and neutralised at the surface of the Moon. These measurements were made with IBEX-Lo on NASA's IBEX satellite. From these measurements we derive the energy spectrum of the ENAs, their flux, and the lunar albedo for ENAs (i.e., the ratio of ENAs to the incoming solar wind protons). The energy spectra of the ENAs clearly show that their origin is directly from the solar wind via backscattering, and that they are not sputtered atoms. From several observation periods we derived an average global albedo of AH=0.09±0.05. From the observed energy spectra we derive a generic spectrum for unshielded bodies in the solar wind.  相似文献   

5.
Das et al. (2012) claim that in several cases nominal cosmic ray exposure ages derived from concentrations of cosmogenic Ne in individual olivine grains separated from chondrules substantially exceed exposure ages of matrix samples. Some grains were also reported to show larger apparent exposure ages than other grains from the same chondrule. The authors conclude that the excesses were caused by an exposure of chondrules to high fluences of solar energetic particles and suggest that their data provide direct evidence for a highly active phase of the early Sun, similar to what is observed in X‐ray emissions of recent naked T‐Tauri stars. Here, we show that the production rates of cosmogenic Ne used by Das et al. (2012) to derive nominal cosmic ray exposure ages of their olivine grains are often much too low, as the reported major element concentrations in many cases sum up to considerably less than 100% even if converted to oxides. In contrast, adopted element concentrations for matrix samples are basically self‐consistent. A precompaction exposure of chondrules to a very high flux of solar energetic particles is thus not supported by the data presented by Das et al. (2012). Das et al. (2012) claim that in several cases nominal cosmic ray exposure ages derived from concentrations of cosmogenic Ne in individual olivine grains separated from chondrules substantially exceed exposure ages of matrix samples. Some grains were also reported to show larger apparent exposure ages than other grains from the same chondrule. The authors conclude that the excesses were caused by an exposure of chondrules to high fluences of solar energetic particles and suggest that their data provide direct evidence for a highly active phase of the early Sun, similar to what is observed in X‐ray emissions of recent naked T‐Tauri stars. Here, we show that the production rates of cosmogenic Ne used by Das et al. (2012) to derive nominal cosmic ray exposure ages of their olivine grains are often much too low, as the reported major element concentrations in many cases sum up to considerably less than 100% even if converted to oxides. In contrast, adopted element concentrations for matrix samples are basically self‐consistent. A precompaction exposure of chondrules to a very high flux of solar energetic particles is thus not supported by the data presented by Das et al. (2012).  相似文献   

6.
A Complete Catalogue of High-Speed Solar Wind Streams during Solar Cycle 23   总被引:1,自引:0,他引:1  
High-speed solar wind streams (HSSWSs) are ejected from the Sun and travel into the interplanetary space. Because of their high speed, they carry out energetic particles such as protons and heavy ions, which leads to an increase in the mean interplanetary magnetic field (IMF). Since the Earth is in the path of those streams, Earth’s magnetosphere interacts with the disturbed magnetic field, leading to a significant radiation-induced degradation of technological systems. These interactions provide an enhanced energy transfer from the solar wind/IMF system into the Earth’s magnetosphere and initiate geomagnetic disturbances that may have a possible impact on human health. Solar cycle 23 was a particularly unusual cycle with many energetic phenomena during its descending phase and also had an extended minimum. We have identified and catalogued the HSSWSs of this cycle and determined their characteristics, such as their maximum velocity, beginning and ending time, duration, and possible sources. We identified 710 HSSWSs and compared them with the corresponding characteristics of the streams of previous solar cycles. For first time, we used the CME data to study the stream sources, which led to useful results for the monitoring and forecasting of space weather effects.  相似文献   

7.
Valdés-Galicia  J. F.  Alexander  P. 《Solar physics》1997,176(2):327-354
A recent model of solar energetic particle propagation suggests that large fluxes of protons may produce their own turbulence. To verify this theoretical prediction it becomes essential to find out whether these fluxes cause appreciable changes in the interplanetary magnetic field (IMF) fluctuation regime. It is also important to check if the suggested optimum conditions for wave production are consistent with observational evidence. In the present work we perform a study of directional power and magnetic helicity spectra of the IMF fluctuations from a few hours before to a few hours after the maximum flux of 4–13 MeV protons observed on board the two Helios spacecraft during eight solar events. The time evolution of the directional power and helicity spectra show increases which may be associated with the solar energetic proton (SEP) flux in two of the analysed events. In one event, we present a decrease of turbulence and helicity coincident with the maximum flux of SEP may also admit an interpretation in terms of self-generated waves. The existence of solar wind phenomena such as sector boundaries or interplanetary shocks obscure possible signatures of proton self-generated waves in two events. One event with a low level of turbulence previous to the arrival of particles shows no turbulence increase which might be associated with them. The remaining two events show no evidence of particle-generated turbulence, but the conditions on which these were observed do not fulfil some assumptions of the model.  相似文献   

8.
Ten to 100 meV protons from the solar flare of March 24, 1966 were observed on the University of California scintillation counter on OGO-I. The short rise and decay times observed in the count rates of the 32 channels of pulse-height analysis show that scattering of the protons by the interplanetary field was much less important in this event than in previously observed proton flares. A diffusion theory in which D = M r is found to be inadequate to account for the time behavior of the count rates of this event. Small fluctuations of the otherwise smooth decay phase may be due to flare protons reflected from the back of a shock front, which passed the earth on March 23.  相似文献   

9.
Abstract– We analyzed cosmogenic He and Ne in more than 60 individual chondrules separated from small chips from the carbonaceous chondrites Allende and Murchison. The goal of this work is to search for evidence of an exposure of chondrules to energetic particles—either solar or galactic—prior to final compaction of their host chondrites and prior to the exposure of the meteoroids to galactic cosmic rays (GCR) on their way to Earth. Production rates of GCR‐produced He and Ne are calculated for each chondrule based on major element composition and a physical model of cosmogenic nuclide production in carbonaceous chondrites ( Leya and Masarik 2009 ). All studied chondrules in Allende show nominal exposure ages identical to each other within uncertainties of a few hundred thousand years. Allende chondrules therefore show no signs of a precompaction exposure. The majority of the Murchison chondrules (the “normal” chondrules) also have nominal exposure ages identical within a few hundred thousand years. However, roughly 20% of the studied Murchison chondrules (the “pre‐exposed” chondrules) contain considerably or even much higher concentrations of cosmogenic noble gases than the normal chondrules, equivalent to exposure ages to GCR at present‐day fluxes in a 4π irradiation of up to about 30 Myr. The data do not allow to firmly conclude whether these excesses were acquired by an exposure of the pre‐exposed chondrules to an early intense flux of solar energetic particles (solar cosmic rays) or rather by an exposure to GCR in the regolith of the Murchison parent asteroid. However, we prefer the latter explanation. Two major reasons are the GCR‐like isotopic composition of the excess Ne and the distribution of solar flare tracks in Murchison samples.  相似文献   

10.
Chollet  E. E.  Mewaldt  R. A. 《Solar physics》2012,281(1):449-459

We report on new simulations of the transport of energetic protons originating from the decay of energetic neutrons produced in solar flares. Because the neutrons are fast-moving but insensitive to the solar wind magnetic field, the decay protons are produced over a wide region of space, and they should be detectable by current instruments over a broad range of longitudes for many hours after a sufficiently large gamma-ray flare. Spacecraft closer to the Sun are expected to see orders-of-magnitude higher intensities than those at the Earth-Sun distance. The current solar cycle should present an excellent opportunity to observe neutron-decay protons with multiple spacecraft over different heliographic longitudes and distances from the Sun.

  相似文献   

11.
Measurements by balloon-borne instruments, data from the satellites Explorer 41 and 43 and riometer recordings were used to investigate the influence of magnetospheric processes on the precipitation of energetic solar protons related to the occurrence of two ssc's on 8–9 August 1972. The high-energy protons (Ep ? 30 MeV) had direct access to auroral-zone latitudes. The flux variations of low-energy (some MeV) protons in interplanetary space and the magnetosphere were different from those of the protons precipitated in the auroral zone. These low-energy protons were precipitated mainly during and after the ssc's. The importance of direct proton access, radial diffusion, pitch angle scattering and proton acceleration for the explanation of the low-energy proton behaviour is discussed.  相似文献   

12.
Based on cosmic ray data obtained by neutron monitors at the Earth's surface, and data on near-relativistic electrons measured by the WIND satellite, as well as on solar X-ray and radio burst data, the solar energetic particle (SEP) event of 2005 January 20 is studied. The results show that this event is a mixed event where the flare is dominant in the acceleration of the SEPs, the interplanetary shock accelerates mainly solar protons with energies below 130 MeV, while the relativistic protons are only accelerated by the solar flare. The interplanetary shock had an obvious acceleration effect on relativistic electrons with energies greater than 2 MeV. It was found that the solar release time for the relativistic protons was about 06:41 UT, while that for the near-relativistic electrons was about 06:39 UT. The latter turned out to be about 2 min later than the onset time of the interplanetary type III burst.  相似文献   

13.

Crossings of the heliospheric current sheet (HCS) at the Earth’s orbit are often associated with observations of anisotropic beams of energetic protons accelerated to energies from hundreds of keV to several MeV and above. A connection between this phenomenon and the occurrence of small-scale magnetic islands (SMIs) near reconnecting current sheets has recently been found. This study shows how pre-accelerated protons can be energized additionally due to oscillations of multiple SMIs inside the ripple of the reconnecting HCS. A model of the electromagnetic field of an oscillating 3D SMI with a characteristic size of ~0.001 AU is developed. A SMI is supposed to be bombarded by protons accelerated by magnetic reconnection at the HCS to energies from ~1keV to tens of keV. Numerical simulations have demonstrated that the resulting longitudinal inductive electric fields can additionally reaccelerate protons injected into a SMI. It is shown that there is a local “acceleration” region within the island in which particles gain energy most effectively. As a result, their average escape energies range from hundreds of keV to 2 MeV and above. There is almost no particle acceleration outside the region. It is shown that energies gained by protons significantly depend on the initial phase and the place of their entry into a SMI but weakly depend on the initial energy. Therefore, low-energy particles can be accelerated more efficiently than high-energy particles, and all particles can reach the total energy limit upon their escape from a SMI. It is also found that the escape velocity possesses a strong directional anisotropy. The results are consistent with observations in the solar wind plasma.

  相似文献   

14.
We present the finalized catalog of solar energetic proton events detected by the Wind/EPACT instrument over the period 1996?–?2016. Onset times, peak times, peak proton intensity and onset-to-peak proton fluence are evaluated for the two available energy channels, at about 25 and 50 MeV. We describe the procedure utilized to identify the proton events and to relate them to their solar origin (in terms of flares and coronal mass ejections). The statistical relationships between the energetic protons and their origin (linear and partial correlation analysis) are reported and discussed in view of earlier findings. Finally, the different trends found in the first 8 years of Solar Cycles 23 and 24 are discussed.  相似文献   

15.
We consider temporal, spectral, and polarization parameters of the hard X-ray and gamma-ray radiation observed during the solar flare of May 20, 2002, in the course of experiments with the SONG and SPR-N instruments onboard the Coronas-F spacecraft. This flare is one of the most intense gamma-ray events among all of the bursts of solar hard electromagnetic radiation detected since the beginning of the Coronas-F operation (since July 31, 2001) and one of the few gamma-ray events observed during solar cycle 23. A simultaneous analysis of the Coronas-F and GOES data on solar thermal X-ray radiation suggests that, apart from heating due to currents of matter in the the flare region, impulsive heating due to the injection of energetic electrons took place during the near-limb flare S21E65 of May 20, 2002. These electrons produced intense hard X-ray and gamma-ray radiation. The spectrum of this radiation extends up to energies ≥7 MeV. Intense gamma-ray lines are virtually unobservable against the background of the nonthermal continuum. The polarization of the hard X-ray (20–100 keV) radiation was estimated to be ≤15–20%. No significant increase in the flux of energetic protons from the flare under consideration was found. At the same time, according to ACE data, the fluxes of energetic electrons in interplanetary space increased shortly (~25 min) after the flare.  相似文献   

16.
Observations of the equatorial lunar sodium emission are examined to quantify the effect of precipitating ions on source rates for the Moon’s exospheric volatile species. Using a model of exospheric sodium transport under lunar gravity forces, the measured emission intensity is normalized to a constant lunar phase angle to minimize the effect of different viewing geometries. Daily averages of the solar Lyman α flux and ion flux are used as the input variables for photon-stimulated desorption (PSD) and ion sputtering, respectively, while impact vaporization due to the micrometeoritic influx is assumed constant. Additionally, a proxy term proportional to both the Lyman α and to the ion flux is introduced to assess the importance of ion-enhanced diffusion and/or chemical sputtering. The combination of particle transport and constrained regression models demonstrates that, assuming sputtering yields that are typical of protons incident on lunar soils, the primary effect of ion impact on the surface of the Moon is not direct sputtering but rather an enhancement of the PSD efficiency. It is inferred that the ion-induced effects must double the PSD efficiency for flux typical of the solar wind at 1 AU. The enhancement in relative efficiency of PSD due to the bombardment of the lunar surface by the plasma sheet ions during passages through the Earth’s magnetotail is shown to be approximately two times higher than when it is due to solar wind ions. This leads to the conclusion that the priming of the surface is more efficiently carried out by the energetic plasma sheet ions.  相似文献   

17.
Satellite observations of solar proton events with a halo structure or an energetic storm proton event and an SSC are studied. It is pointed out that some SSC events are associated with a decrease in the few MeV cosmic ray fluxes while most are associated with a flux increase. The properties of halo protons and energetic storm protons are compared. It is hypothesized that the two events are similar in origin. The propagation mode of storm particles is discussed. Evidence is presented for a solar, rather than interplanetary origin of storm protons.  相似文献   

18.
A model for the production and loss of energetic electrons in Jupiter's radiation belt is presented. It is postulated that the electrons originate in the solar wind and are diffused in toward the planet by perturbations which violate the particles' third adiabatic invariant. At large distances, magnetic perturbations, electric fields associated with magnotospheric convection, or interchange instabilities driven by thermal plasma gradients may drive the diffusion. Inside about 10 RJ the diffusion is probably driven by electric fields associated with the upper atmosphere dynamo which is driven by neutral winds in the ionosphere. The diurnal component of the dynamo wind fields produces a dawn-dusk asymmetry in the decimetric radiation from the electrons in the belts, and the lack of obvious measured asymmetries in the decimetric radiation measurements provides estimates of upper limits for these Jovian ionospheric neutral winds. The average diurnal winds are less than or comparable to those on earth, but only modest fluctuating winds are required to drive the energetic electron diffusion referred to above.The winds required to diffuse the energetic particles across the orbit of the satellite lo in a time equal to their drift period are also estimated. If Io is non-conducting, modest winds are required, but if Io is conducting, only small winds are needed. It is concluded that both protons and electrons are diffused in from the solar wind to small distances without serious losses occurring due to the particles being swept up by the satellites.Consideration of proton and electron diffusion in energy shows that once the electrons become relativistic, the ratio of proton to electron energy increases. Thus, if protons and electrons have the same energy in the solar wind, when the electrons reach nMeV, the protons will be nMeV if n ? 1 or n2 MeV if n ? 1. If the proton-to-electron energy ratio is initially, e.g., 5, then these figures are 5n and 5n2, respectively.  相似文献   

19.
A. O. Benz  T. Gold 《Solar physics》1971,21(1):157-166
The trapping of energetic electrons and protons in a simple, arched magnetic field imbedded in the lower solar atmosphere was considered. The lifetime of electrons with kinetic energies up to about 1.5 MeV was found to be completely determined by the motion of the mirror points, provided the gyro-synchrotron loss can be neglected. The same motion also influences the lifetimes of more energetic electrons, up to 10 MeV. This was not found to be the case for protons in the range from 1 MeV to 100 GeV. Some fluid and streaming instabilities were also considered; they pull the particles upward, raise their mirror points, and increase their lifetime. The emission of gyro-synchrotron radiation and bremsstrahlung in this model has been related to observations. Using the duration of non-thermal X-ray peaks given by Kane (1969), the altitude of injection of energetic particles was estimated.  相似文献   

20.
A model is presented which shows that large numbers of energetic electrons (0.3-> 10 MeV) and protons (1–30 MeV) can be stored in the solar corona at altitudes around 3 × 105 km for periods in excess of 5 days. Specific reference is made to the time period July 6–16 1968 as an excellent example of energetic solar particle storage. Time histories of interplanetary charged particle intensities observed by the IMP-4 and Pioneer 8 satellites are used to substantiate this contention. Detailed reference is also made to solar X-ray, optical and radio data obtained during the period in question, in addition to interplanetary magnetometer data. This model provides a unique solution to many hitherto unexplained solar particle events, and can also account for the lack of prompt particle emission from certain large solar flares recorded in the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号