共查询到20条相似文献,搜索用时 31 毫秒
1.
A small target detection approach based on independent component analysis for hyperspectral data is put forward. In this algorithm, firstly the fast independent component analysis(FICA) is used to collect target information hided in high-dimensional data and projects them into low-dimensional space. Secondly, the feature images are selected with kurtosis. At last, small targets are extracted with histogram image segmentation which has been labeled by skewness. 相似文献
2.
借助快速独立分量分析(FICA)将高维数据中隐藏的目标信息集中投影到低维特征影像中,然后以峰度为特征度量指标选择特征影像,最后用以偏斜为指标的直方图分割方法提取小目标。实验证明,此算法精度较高,适用于对高光谱影像中的小目标进行提取。 相似文献
3.
高光谱图像异常目标检测主要用于检测图像中的区别于背景环境的异常目标,为图像目标的判读提供一个初步的判断,是高光谱图像应用的一个重要内容.本文在研究现有异常目标检测算法的基础上,采用基于主成分抑制和顶点成分分析相结合的方法,对实验图像中的异常目标进行了检测,取得了较好的效果. 相似文献
4.
二级并行独立成分分析端元提取算法 总被引:1,自引:0,他引:1
在多对称处理器集群体系结构下进行独立成分分析并行算法研究,在共享内存模型一级并行算法基础上,通过同步、异步迭代两种方式并行计算固定点函数,分别提出具有两级并行特性的二级同步、二级异步并行端元提取算法,并结合两者的优势,进一步提出二级分组并行算法。实验评价表明,二级同步、分组并行算法在保持原算法精度的同时,大大提高了原算法的效率,体现出良好的并行计算性能,而二级异步并行算法可在节点数较少的情况下适用。 相似文献
5.
极化合成孔径雷达(SAR)影像的相干斑滤波,对其后处理起着至关重要的作用。针对传统的独立分量分析(ICA)算法稳定性差、易陷入局部最优等缺陷,该文提出基于粒子群优化(PSO)改进的ICA滤波算法,用于进行极化SAR影像相干斑滤波。该方法利用PSO算法来改进解混矩阵W的行向量的生成过程,以提高ICA算法的分离效果。采用AIRSAR获取的旧金山海湾地区的L波段极化SAR影像进行实验,并用相干斑指数、迭代次数、收敛时间等指标进行客观评价。结果表明,基于PSO改进的ICA算法具有更高的收敛效率和更好的相干斑抑制性能,能有效地降低影像的相干斑噪声。 相似文献
6.
针对非负矩阵盲信号分离(NMF)用于混合像元分解易陷入局部极小值的不足,将非监督端元提取与盲分解方法相结合,构建了一种基于目标端元修正的混合像元盲分解模型(ATGP-NMF)。ATGP-NMF模型利用非监督正交子空间投影算法(ATGP)和非负最小二乘法(NNLS)获取NMF盲分离的初始值,然后将获得初始目标端元光谱与丰度输入NMF模型,通过迭代运算不断逼近优化目标而得到最终的端元光谱和端元丰度。为了检验模型对于各类数据的有效性和适用性,将ATGP-NMF与传统NMF分别应用于模拟仿真数据、室内控制数据和真实遥感影像3类实验数据进行分析验证。结果表明,ATGP-NMF模型具有较好的适用性,在没有先验信息、先验信息很少,以及纯像元假设不存在情况下都能较好地分解混合像元,且能够更好克服局部极小问题,提高混合像元分解的精度。 相似文献
7.
经验模式分解联合独立分量分析降噪研究 总被引:1,自引:0,他引:1
针对高精度GPS变形监测的噪音成分以及多路径效应的剔除,提出了一种新的经验模式分解联合独立分量分析的滤波降噪法。采用模态相关准则进行信号层与噪音层的判定,有效地解决了低信噪比情况下信号层与噪音层分界点的判定,实现了噪音最大化的去除以及有用信息的最大化保留;基于经验模式分解的独立分量分析滤波降噪法,采用更为简单科学的数学判定方法,避免了人为的经验判定方法,实现了信号层与噪音层的自适应判定以及降噪效果更佳。实验结果表明:所用算法不仅能够有效地去除噪音成分,而且能够很好地保留大部分有用信息,研究结果对高精度GPS变形监测的去噪以及多路径效应的剔除研究具有一定意义。 相似文献
8.
遥感探测到的小目标信号一般是弱信号,利用传统的高光谱异常变化检测方法直接抑制背景来突出异常变化目标,往往导致小目标弱信号同时被抑制,造成目标探测率低、虚警率高。基于独立成分分析方法,研究了弱信号小目标的高光谱变化检测模型,该模型首先通过投影寻踪将异常变化影像投影到独立成分,突出异常变化目标,然后再抑制背景,从而达到异常变化目标和背景的有效分离。该模型可以有效降低虚警率,提高探测率。利用模拟数据和真实数据进行了精度验证,结果表明,利用模拟数据得到的探测精度为99%,利用真实数据得到的检测精度为86%,与传统异常变化检测算法相比,精度最高提高了9%。本文研究方法适用于弱信号小目标的高光谱异常变化检测。 相似文献
9.
10.
11.
本文分析了高光谱反射率及红边位置与叶片绿度的相关性,建立了基于敏感波段和红边位置的叶绿素估算模型。通过对不同叶绿素含量高光谱曲线特征的分析,提出了基于高光谱曲线峰度和偏度的叶绿素估算新思路,并分别建立基于原始光谱560-760nm波段和一阶导数光谱660-760nm波段对应峰度、偏度的叶绿素反演模型。结果表明,法国梧桐、无花果和白毛杨基于敏感波段的叶绿素含量反演模型的拟合度,与传统估算模型相比,本文提出的新估算模型可以明显提高高光谱反演叶绿素含量的能力。 相似文献
12.
K.C. Tiwari M.K. Arora D. Singh 《International Journal of Applied Earth Observation and Geoinformation》2011
Hyperspectral data acquired over hundreds of narrow contiguous wavelength bands are extremely suitable for target detection due to their high spectral resolution. Though spectral response of every material is expected to be unique, but in practice, it exhibits variations, which is known as spectral variability. Most target detection algorithms depend on spectral modelling using a priori available target spectra In practice, target spectra is, however, seldom available a priori. Independent component analysis (ICA) is a new evolving technique that aims at finding out components which are statistically independent or as independent as possible. The technique therefore has the potential of being used for target detection applications. A assessment of target detection from hyperspectral images using ICA and other algorithms based on spectral modelling may be of immense interest, since ICA does not require a priori target information. The aim of this paper is, thus, to assess the potential of ICA based algorithm vis a vis other prevailing algorithms for military target detection. Four spectral matching algorithms namely Orthogonal Subspace Projection (OSP), Constrained Energy Minimisation (CEM), Spectral Angle Mapper (SAM) and Spectral Correlation Mapper (SCM), and four anomaly detection algorithms namely OSP anomaly detector (OSPAD), Reed–Xiaoli anomaly detector (RXD), Uniform Target Detector (UTD) and a combination of Reed–Xiaoli anomaly detector and Uniform Target Detector (RXD–UTD) were considered. The experiments were conducted using a set of synthetic and AVIRIS hyperspectral images containing aircrafts as military targets. A comparison of true positive and false positive rates of target detections obtained from ICA and other algorithms plotted on a receiver operating curves (ROC) space indicates the superior performance of the ICA over other algorithms. 相似文献
13.
高光谱遥感影像波段众多、相关性强,导致其实际分类应用计算量大且存在明显的"维数灾难"问题。本文提出加权概率原型分析方法来研究高光谱影像的波段选择问题。该方法考虑波段间的差异性,引入综合差异性度量指标来构造权重矩阵以改进传统原型分析模型;考虑稀疏系数的狄利克雷分布和高光谱成像过程的量子特性,引入贝叶斯框架理论来构建波段选择的优化模型。加权概率原型分析方法采用迭代优化的策略,利用交替方向乘积方法来依次求解两个凸优化子问题来得到局部最优的稀疏系数矩阵并实现波段子集的最优估计。基于两个公开的高光谱数据集,对比4种主流的波段选择方法(SpaBS、SNMF、ISSC、SSR)来验证提出方法的可靠性。实验结果表明,加权概率原型分析方法的总体分类精度高于其他4种方法,能够得到更好的分类结果图。本文提出的加权概率原型分析模型能够选择合适的波段子集来满足高光谱影像的高精度分类需求。 相似文献
14.
15.
16.
17.
18.
A fast endmember-extraction algorithm based on Gaussian Elimination Method (GEM) is proposed in this paper under the fact that a pixel is an endmember if it has the maximum value in any spectral band of a hyperspectral image when based on linear mixing model. Applying Gaussian elimination is much like performing a lower triangular matrix to transform the hyperspectral image. As more endmembers have been extracted, fewer bands are needed to be involved in the Gaussian elimination process, thus greatly reducing the computing time. The experimental results with both simulated and real hyperspectral images indicate that the method proposed here is much faster than the vertex component analysis (VCA) method, and can provide a similar performance with VCA. 相似文献
19.
基于ETM+影像的绿地信息提取方法研究 总被引:1,自引:0,他引:1
文中以ETM+影像为数据源实现对贵阳市某城区的绿地信息提取。对获取的影像进行预处理,分别通过不同的方法:原始波段组合法、主成分分析法(PCA)、独立分量分析法(ICA)、归一化植被指数法(NDVI)及基于第一独立分量的实验室波段组合法,获取研究区的假彩色合成影像。将以上方法得到的影像数据进行对比分析,表明植被景观目视效果最好的是原始波段组合法。将得到的影像数据进行监督分类,通过目视解译的方法进行精度评价,结果表明,基于第一独立分量的实验室波段组合法绿地信息提取精度最高,是一种有效的绿地信息提取方法。 相似文献
20.
In response to the curse of dimensionality in hyperspectral images (HSIs), to date, numerous dimensionality reduction methods have been proposed among which the feature extraction (FE) methods are of particular interest. This paper introduces a new supervised pixel-based FE called spectral segmentation and integration (SSI). In SSI, the spectral signature curve (SSC) of the pixels are identically divided into some non-overlapping segments, called channels. The existing bands in each channel are then integrated using a mean-weighted operator, leading to some new features in a very lower number than the original bands. SSI applies a particle swarm optimization (PSO) algorithm to globally search and locate the optimum positions and widths of the channels. For the sake of evaluation and comparison, the features provided by the proposed SSI method were applied to the well-known SVM classifier. The results were compared to not only a most recent pixel-based FE method, namely, spectral region splitting but also six conventional FE methods, including nonparametric weighted feature extraction, decision boundaries feature extraction, clustering-based feature extraction, semi-supervised local discriminant analysis, band correlation clustering and principal component analysis. Experimental results, obtained on two HSIs, proved the superiority of the proposed SSI. 相似文献