首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bubble and crystal textures provide information with regard to the kinetics of the vesiculation and crystallization processes. They also provide insights into the fluid mechanical behavior of magma in a conduit. We performed textural (bubble and crystal) and compositional analyses of pyroclasts that were obtained from the Tenjo pyroclastic flow, which resulted on account of the eruption in 838 A.D. on Kozu Island, about 200 km south of Tokyo, Japan. Pyroclasts in one flow unit (300∼2,060 kg/m3; average density 1330 kg/m3) can be classified into three types on the basis of vesicle textures. Type I pyroclasts have small isolated spherical bubbles with higher vesicularities (67–77 vol.%) and number density (10.8–11.7 log m−3). Type II pyroclasts have vesicularities similar to type I (61–69 vol.%), but most bubbles exhibit evidences of bubble coalescence, and lower number densities than type I (8.9–9.5 log m−3). Type III pyroclasts contain highly deformed bubbles with lower vesicularities (16–34 vol.%) and number densities (8.2–9.0 log m−3). The microlite volume fraction (DRE converted) also changes consistently across type I, type II, and type III as 0.06, 0.08, and 0.10–0.15, respectively. However, the number density of the microlites remains nearly invariant in all the pyroclast types. These facts indicate that the variation in the microlite volume fraction is controlled not by the number density (i.e., nucleation process), but by the size (i.e., growth process); the growth history of each type of microlite was different. Water content determinations show that the three types of pumices have similar H2O contents (2.6±0.2 wt%). This fact implies that all three types were quenched at nearly the same depth (35±5 MPa, assuming that the magma was water-saturated) in the conduit. If the crystal sizes are limited only by growth time, a variation in this parameter can be related to the residence time, which is attributed to the flow heterogeneity in the conduit. By assuming a laminar Poiseuille-type flow, these textural observations can be explained by the difference in ascent velocity and shearing motion across the conduit, which in turn results in the differences in growth times of crystals, degrees of deformation, and bubble coalescence. Consequently, for crystals in the inner part of the conduit, the crystal growth time from nucleation to quenching is shorter than that near the conduit wall. The vesicle texture variation of bubbles in types I, II, and III results from the difference in the deformation history, implying that the effect of degassing occurred primarily towards the conduit wall.  相似文献   

2.
 Experiments on degassing of water-saturated granite melts with a pressure drop from 100 and 450 MPa to 40 and 120 MPa, respectively, at temperatures close to feldspar liquidus (750–700  °C), were carried out to determine the modality of water exsolution and vesicle formation at the liquidus temperature. Pressure-drop rates as small as approximately 100 bar/day were used. Uniform space distributions of bubbles of exsolved water were obtained with starting glass containing a small fraction (≈0.5 vol.%) of trapped air bubbles. Volume crystallization of feldspar was observed in degassed melts supplied with seeds. Bubble size distributions (BSD) measured in granite glasses after degassing are presented. Data on vesicle characteristics (number, radius, area, elongation) were acquired on images digitized with standard software, while the reconstruction of size distributions was performed with the Schwartz-Saltikov "unfolding" procedure. Bubble size distributions of size classes in the range 5–1000 μm were acquired with proper magnification and satisfactory statistical reliability of determined number densities. The BSDs of the experimental samples are compared with the results of measurements of rapidly degassed products of Mt. Etna and Vulcano Island. Many particular features of the bubble nucleation and growth can be distinguished in an individual BSD. However, the general BSD of the whole data set, including natural ones, can be relatively well described with linear regression in bilogarithmic coordinates. The slope of this regression is approximately 2.8±0.1. This dependence is in striking contrast with distributions theoretically predicted with classical nucleation models based on homogeneous nucleation of vesicles. The theoretical distribution requires the occurrence of strong maxima that are not observed in our experimental and natural samples, thus arguing for heterogeneous nucleation mechanisms. Received: 1 October 1998 / Accepted: 25 June 1999  相似文献   

3.
Here I present textural data (i.e., vesicularity, vesicle size distributions (VSD), plagioclase crystallinity, crystal size distributions (CSD), combined with fractal analyses of particle outlines) from a natural succession of alternating fall and surge deposits in the emergent Capelas tuff cone (Azores).The textural variation in the Capelas succession is surprisingly small considering the wide variety of fragmentation processes, vent activity and emplacement mechanisms that are characteristic of emergent eruptions. The plagioclase crystal content varies between 24 and 33 vol.%. CSD analyses of plagioclase show near-linear trends with a slight increase in time for the smallest crystal sizes (with surge deposits having more groundmass plagioclase when compared with fall deposits). This is consistent with crystallization induced by degassing and decompression at lower eruption rates. The vesicularities of the Capelas pyroclasts are more variable (18 to 59 vol.%), with VSDs displaying kinked trends characteristic of coalescence. This is especially evident in the fall deposits, and consistent with being formed in continuous uprush (jetting) with an overall shallow fragmentation level within the conduit. Bubble coalescence can also be identified in the surge deposits, although to a much lesser extent. The amount of bubble coalescence is negatively correlated with the amount of groundmass crystallization (i.e., plagioclase) in the Capelas deposits.A relatively broad range of fractal dimensions (with average Dbox = 1.744 and σ = 0.032) for the outlines of pyroclastic fragments emplaced by fall or as surges indicate that there is little difference in the fragmentation process itself at Capelas. In addition to this, the fact that the fractal dimensions for both the fall and surge end-members completely overlap suggests that shape modification due to abrasion and chipping of grain edges was minor during emplacement of base surges. These results are consistent with emergent eruptions, building tuff cones, to be a relatively low-energy phreatomagmatic landform (e.g., at least when compared with more energetic phreatomagmatic eruptions producing tuff rings and maar volcanoes).  相似文献   

4.
By applying a number of analytical techniques across a spectrum of spatial scales (centimeter to micrometer) in juvenile components, we show that the Cerro Galán volcanic system has repeatedly erupted magmas with nearly identical geochemistries over >3.5 Myr. The Cerro Galán system produced nine ignimbrites (∼5.6 to 2 Ma) with a cumulative volume of >1,200 km3 (DRE; dense rock equivalent) of calc-alkaline, high-K rhyodacitic magmas (68–71 wt.% SiO2). The mineralogy is broadly constant throughout the eruptive sequence, comprising plagioclase, quartz, biotite, Fe–Ti oxides, apatite, and titanite. Early ignimbrite magmas also contained amphibole, while the final eruption, the most voluminous Cerro Galán ignimbrite (CGI; 2.08 ± 0.02 Ma) erupted a magma containing rare amphibole, but significant sanidine. Each ignimbrite contains two main juvenile clast types; dominant “white” pumice and ubiquitous but subordinate “grey” pumice. Fe–Ti oxide and amphibole-plagioclase thermometry coupled with amphibole barometry suggest that the grey pumice originated from potentially hotter and deeper magmas (800–840°C, 3–5 kbar) than the more voluminous white pumice (770–810°C, 1.5–2.5 kbar). The grey pumice is interpreted to represent the parental magmas to the Galán system emplaced into the upper crust from a deeper storage zone. Most inter-ignimbrite variations can be accounted for by differences in modal mineralogy and crystal contents that vary from 40 to 55 vol.% on a vesicle-free basis. Geochemical modeling shows that subtle bulk-rock variations in Ta, Y, Nb, Dy, and Yb between the Galán ignimbrites can be reconciled with differences in amounts of crystal fractionation from the “grey” parent magma. The amount of fractionation is inversely correlated with volume; the CGI (∼630 km3) and Real Grande Ignimbrite (∼390 km3) return higher F values (proportion of liquid remaining) than the older Toconquis Group ignimbrites (<50 km3), implying less crystal fractionation took place during the upper-crustal evolution of these larger volume magmas. We attribute this relationship to variations in magma chamber geometry; the younger, largest volume ignimbrites came from flat sill-like magma chambers, reducing the relative proportion of sidewall crystallization and fractionation compared to the older, smaller-volume ignimbrite eruptions. The grey pumice clasts also show evidence of silicic recharge throughout the history of the Cerro Galán system, and recharge days prior to eruption has previously been suggested based on reversely zoned (OH and Cl) apatite phenocrysts. A rare population of plagioclase phenocrysts with thin An-rich rims in juvenile clasts in many ignimbrites supports the importance of recharge in the evolution and potential triggering of eruptions. This study extends the notion that large volumes of nearly identical silicic magmas can be generated repeatedly, producing prolonged geochemical homogeneity from a long-lived magma source in a subduction zone volcanic setting. At Cerro Galán, we propose that there is a zone between mantle magma input and upper crustal chambers, where magmas are geochemically “buffered”, producing the underlying geochemical and isotopic signatures. This produces the same parental magmas that are delivered repeatedly to the upper crust. A lower-crustal MASH (melting, assimilation, storage, and homogenization) zone is proposed to act as this buffer zone. Subsequent upper crustal magmatic processes serve only to slightly modify the geochemistry of the magmas.  相似文献   

5.
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 μm vesicle diameter and cumulative number densities ranging from 107–109 cm–3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h.  相似文献   

6.
Silicic pumices formed during explosive volcanic eruptions are faithful recorders of the state of the magma in the conduit, close to or at the fragmentation level. We have characterized four types of pumices from the non-welded rhyolitic Kos Plateau Tuff, which erupted 161,000 years ago in the East Aegean Arc, Greece. The dominant type of pumice (>90 vol.%) shows highly elongated tubular vesicles. These tube pumices occur throughout the eruption. Less common pumice types include: (1) “frothy” pumice (highly porous with large, sub-rounded vesicles), which form 5–10 vol.% of the coarsest pyroclastic flow deposits, (2) dominantly “microvesicular” and systematically crystal-poor pumices, which are found in early erupted, fine-grained pyroclastic flow units, and are characterized by many small (<50 μm in diameter) vesicles and few mm-sized, irregular voids, (3) grey or banded pumices, indicating the interaction between the rhyolite and a more mafic magma, which are found throughout the eruption sequence and display highly irregular bubble shapes. Except for the grey-banded pumices, all three other types are compositionally identical and were generated synchronously as they are found in the same pyroclastic units. They, therefore, record different conditions in the volcanic conduit leading to variable bubble nucleation, growth and coalescence. A total of 74 pumice samples have been characterized using thin section observation, SEM imagery, porosimetry, and permeametry. We show that the four pumice types have distinct total and connected porosity, tortuosity and permeability. Grey-banded pumices show large variations in petrophysical characteristics as a response to mingling of two different magmas. The microvesicular, crystal-poor, pumices have a bimodal bubble size distribution, interpreted as reflecting an early heterogeneous bubble nucleation event followed by homogeneous bubble nucleation close to fragmentation. Finally, the significant differences in porosity, tortuosity and permeability in compositionally identical tube and frothy pumices are the result of variable shear rates in different parts of the conduit. Differential shear rates may be the result of either: (1) pure shear, inducing a vertical progression from frothy to tube and implying a relatively thick fragmentation zone to produce both types of pumices at the same time or (2) localized simple shear, inducing strongly tubular vesicles along the wall and near-spherical bubbles in the centre of the conduit and not necessarily requiring a thick fragmentation zone.  相似文献   

7.
Grain-specific analyses of Fe–Ti oxides and estimates of eruption temperature (T) and oxygen fugacity (fO2) have been used to fingerprint rhyolitic fall and flow deposits that are important for tephrostratigraphic studies in and around the Taupo volcanic zone of North Island, New Zealand. The analysed Fe–Ti oxides commonly occur in the rims of orthopyroxene crystals and appear to reflect equilibrium immediately prior to eruption because of geochemical correlation with the co-existing glass phase. The composition of the spinel phase is particularly diagnostic of eruptive centre for post-65 ka events and can be used to distinguish many tephra beds from the same volcano. The 29 different units examined were erupted over a wide range in T (690–990°C) and Δ log fO2 (–0.1 to 2.0). These parameters are closely related to the mafic mineral assemblage, with hydrous mineral-bearing units displaying higher fO2. Such trends are superimposed on larger differences in fO2 that are related to eruptive centre. At any given temperature, all post-65 ka Okataina centre tephra have higher fO2 values than post-65 ka Taupo centre tephra. This provides a useful criterion for identifying the volcanic source. There are no temporal T and fO2 trends in the tephra record; over intervals >20 ka, however, tephra sequences from Taupo centre form characteristic T-fO2 buffer trends mirroring the glass chemistry. Individual eruptive events display uniform spinel and rhombohedral phase compositions and thus narrow ranges in T (± <20°C) and log fO2 (± <0.5), allowing these features to identify individual magma batches. These criteria can help distinguish tephra deposits of similar bulk or glass composition that originated from the same volcano. Distal fall deposits record the same T-fO2 conditions as the proximal ignimbrite and enable distal–proximal correlation. Lateral and vertical compositional and T-fO2 variability displayed in large volume (>100 km3) ignimbrites, such as the Oruanui, Rotoiti and Ongatiti, is similar to that found in a single pumice clast and thus mainly reflects analytical error; however, thermal gradients of ca. 50°C may occur in some units. Received: 6 April 1998 / Accepted: 16 June 1998  相似文献   

8.
X-ray computed microtomography (μCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for μCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93–98 μm) and mean throat size (~23–29 μm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f 0 ). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits.  相似文献   

9.
Textural characterization of pumice clasts from explosive volcanic eruptions provides constraints on magmatic processes through the quantification of crystal and vesicle content, size, shape, vesicle wall thickness and the degree of interconnectivity. The Plinian fallout deposit directly underlying the Campanian Ignimbrite (CI) eruption represents a suitable case to investigate pumice products with different textural characteristics and to link the findings to processes accompanying conduit magma ascent to the crater. The deposit consists of a lower (LFU) and upper (UFU) pumice lapilli bed generated by the sub-steady eruption of trachytic magma with <5 vol%. crystals and a peak discharge rate of 3.2×10 8 kg/s. Density measurements were performed on samples collected from different stratigraphic intervals at the Voscone-type outcrop, and their textural characteristics were investigated at different magnifications through image analysis techniques. According to clast densities, morphologies and vesicle textures pumice clasts were classified into microvesicular (heterogeneous vesicles), tube (elongated/deformed vesicles) and expanded (coalesced/inflated vesicles).The combination of density data and textural investigations allowed us to characterize both representative areas and textural extremes of pumice products. Bulk vesicularity spans a broad interval varying from 0.46 to >0.90, with vesicle number density ranging from 10 7–10 8 cm -3. The degree of vesicle coalescence is high for all pumice types, with interconnected vesicles generally representing more than 90% of the bulk vesicle population. The results show a high degree of heterogeneous textures among pumice clasts from both phases of the eruption and within each eruption phase, the different pumice types and also within each single pumice type fragment. The origin of pumice clasts with different textural characteristics is ascribed to the development of conduit regions marked by different rheological behavior. The conclusions of this study are that vesicle deformation, degree of coalescence and intense shear at the conduit walls play a major role on the degassing process, hence affecting the entire conduit dynamics.  相似文献   

10.
The submarine Healy volcano (southern Kermadec arc), with a 2-2.5 km wide caldera, is pervasively mantled with highly vesicular silicic pumice within a water depth of 1,150-1,800 m. Pumices comprise type 1 white-light grey pumice with ⢾ mm vesicles and weak-moderate foliation, type 2 grey pumice with millimetre-scale laminae, flow banded foliation, including stretched vesicles ⣗ mm in length, and a minor finely vesicular type 3 pumice. All types are sparsely porphyritic, with undevitrified glassy groundmass (68-70% SiO2), which is microlite and lithic free. Coexisting pyroxenes yield magma temperatures of ~950 °C. Pumice density is А.5 g cm-3 and vesicularity is 78-83%. Vesicle size distributions for types 1 and 2 pumice, range from ~20 µm to >20 mm, with a strong power-law relation (with d=-2.5ǂ.4) for vesicles <1-2 mm. Larger vesicles have variable size modes. The vesicle size distribution and packing indicates rapid magma decompression and ascent. Consideration of the pressure dependent, solubility of H2O at a magma temperature of 𙧶 °C and water content of Ж wt%, with pumice petrography and vesicle granulometry, strongly suggests a pyroclastic eruption. Reconstructions of the submarine edifice between water depths of 1,000 and 550 m constrain the ambient hydrostatic pressure to ~6-9 MPa. Pressures >~9 MPa will limit vesicularity to less than the observed 78-83%, whereas pressure <~6 MPa require a more shallower reconstruction of the edifice and larger-volume syn-eruptive collapse. Uniformly high vesicularity is interpreted as evidence of insulation within an eruption column comprising steam and hot pyroclasts. Most pyroclasts cool, condensing and ingesting water into steam-inflated vesicles, and then sink. Progression into pyroclastic mode would expand the eruption column, displace ambient water, reduce the hydrostatic load, and further promote vesiculation and fragmentation. Pyroclasts within the column would quench at these reduced pressures. We argue that Healy eruptions deeper than ~1,000 m cannot be pyroclastic. Volumes for the lower and upper bounds of edifice size are 2.36 and 3.58 km3, respectively, but do not account for intra-caldera pumice fill. These volumes are considered to be predominantly primary eruption output, as shown by a dearth of accessory lithics in all pumice, yielding (at an average 81% vesicularity) eruptive pumice volumes of between 10 and 15 km3. Some pyroclasts may have risen to the sea surface and be a correlative of the sea-rafted Loisels pumice; the latter occurs in some New Zealand Holocene beach sequences and has a estimated age of 590ᇤ calendar years.  相似文献   

11.
Probabilistic seismic hazard for Mainland Portugal was re-evaluated in order to perform its disaggregation. Seismic hazard was disaggregated considering different spaces of random variables, namely, univariate conditional hazard distributions of M (magnitude), R (source-to-site distance) and ε (deviation of ground motion to the median value predicted by an attenuation model), bivariate conditional hazard distributions of MR and XY (seismic source latitude and longitude) or multivariate conditional hazard distributions of MRε and M–(XY)–ε. The main objective of the present work was achieved, as it was possible, based on the modal values of the above mentioned distributions, to characterize the scenarios that dominate some seismic hazard levels of the 278 Mainland Portuguese counties. In addition, results of 4D disaggregation analysis, in M–(XY)–ε, pointed out the existence of one geographic location shared by the dominant scenario of most analyzed counties, especially for hazard levels correspondent to high return periods. Those dominant scenarios are located offshore at a distance of approximately 70 km WSW of S. Vicente cape. On the other hand, the lower the return period the higher is the number of modal scenarios in the neighbourhood of the analyzed site. One may conclude that modal scenarios reproduce hazard target values in each site with great accuracy enabling the applications derived from those scenarios (e.g. loss evaluation) to be associated to a hazard level exceedance probability.  相似文献   

12.
The continuous ash and gas emissions from the Tavurvur cone in Rabaul caldera, Papua New Guinea, during 2007–08, raised concerns regarding how exposure would affect the respiratory health of nearby populations and impact on the environment. As part of a formal evaluation of the effects of volcanic emissions on public health, we investigated the potential health hazard of the ash using a suite of selected mineralogical analyses and in vitro toxicity screening tests. The trachy-andesitic ash comprised 2.1–6.7 vol.% respirable (sub-4 μm diameter) particles. The crystalline silica content was 1.9–5.0 wt.% cristobalite (in the bulk sample) with trace amounts of quartz and/or tridymite. Scanning electron microscopy showed that the ash particles were angular with sparse, fibre-like particles (∼3–60 μm max. diameter) observed in some samples, which we confirmed to be CaSO4 (gypsum, at <6 wt.% in the bulk samples) and not asbestiform fibres. The ash specific surface area was low (0.1–2.7 m2 g−1). The leached solution from one of the ash samples was slightly acidic (pH 5.6), but did not contain high levels of toxic metals (such as F, Cu, Zn, Mn, As, Ni and Cd) when compared to previously tested volcanic ash leachates. Ash samples generated potentially-harmful hydroxyl radicals through an iron-mediated catalytic reaction, in the range of 0.15–2.47 μmol m−2 (after 30 min of reaction). However, measurement of particle oxidative capacity (potential oxidative stress reaction using ascorbic acid) and silica-like injury to red blood cells (erythrolysis assay, i.e. measurement of cell death) nevertheless revealed low biological reactivity. The findings suggest that acute exposure to the ash would have a limited potential to exacerbate pre-existing conditions such as asthma or chronic bronchitis, and the potential for chronic exposure leading to silicosis was low.  相似文献   

13.
 Computer-assisted image analysis can be successfully used to derive quantitative textural data on pyroclastic rock samples. This method provides a large number of different measurements such as grain size, particle shape and 2D orientation of particle main axes (directional- or shape-fabric) automatically and in a relatively short time. Orientation data reduction requires specific statistical tests, mainly devoted to defining the kind of particle distribution pattern, the possible occurrence of preferred particle orientation, the confidence interval of the mean direction and the degree of randomness with respect to pre-assigned theoretical frequency distributions. Data obtained from image analysis of seven lithified ignimbrite samples from the Vulsini Volcanic District (Central Italy) are used to test different statistics and to provide insight about directional fabrics. First, the possible occurrence of a significant deviation from a theoretical circular uniform distribution was evaluated by using the Rayleigh and Tukey χ 2 tests. Then, the Kuiper test was performed to evaluate whether or not the observation fits with a unimodal, Von Mises-like theoretical frequency distribution. Finally, the confidence interval of mean direction was calculated. With the exception of one sample (FPD10), which showed a well-developed bimodality, all the analysed samples display significant anisotropic and unimodal distributions. The minimum number of measurements necessary to obtain reasonable variabilities of the calculated statistics and mean directions was evaluated by repeating random collections of the measured particles at increments of 100 particles for each sample. Although the observed variabilities depend largely on the pattern of distribution and an absolute minimum number cannot be stated, approximately 1500–2000 measurements are required in order to get meaningful mean directions for the analysed samples. Received: 9 April 1996 / Accepted: 26 December 1996  相似文献   

14.
Regular eruptions from Sakurajima volcano, Japan, repeatedly cover local urban areas with volcanic ash. The frequency of exposure of local populations to the ash led to substantial concerns about possible respiratory health hazards, resulting in many epidemiological and toxicological studies being carried out in the 1980s. However, very few mineralogical data were available for determination of whether the ash was sufficiently fine to present a respiratory hazard. In this study, we review the existing studies and carry out mineralogical, geochemical and toxicological analyses to address whether the ash from Sakurajima has the potential to cause respiratory health problems. The results show that the amount of respirable (<4 μm) material produced by the volcano is highly variable in different eruptions (1.1–18.8 vol.%). The finest samples derive from historical, plinian eruptions but considerable amounts of respirable material were also produced from the most recent vulcanian eruptive phase (since 1955). The amount of cristobalite, a crystalline silica polymorph which has the potential to cause chronic respiratory diseases, is ~3–5 wt.% in the bulk ash. Scanning electron microscope and transmission electron microscope imaging showed no fibrous particles similar to asbestos particles. Surface reactivity tests showed that the ash did not produce significant amounts of highly reactive hydroxyl radicals (0.09–1.35 μmol m−2 at 30 min.) in comparison to other volcanic ash types. A basic toxicology assay to assess the ability of ash to rupture the membrane of red blood cells showed low propensity for haemolysis. The findings suggest that the potential health hazard of the ash is low, but exposure and respiratory conditions should still be monitored given the high frequency and durations of exposure.  相似文献   

15.
The 1959 summit eruption of Kīlauea volcano produced the highest recorded Hawaiian fountain in Hawai‘i. Quantitative analysis of closely spaced samples from the final two high-fountaining episodes of the eruption result in a fine-scale textural study of pyroclasts and provide a record of postfragmentation processes. As clast vesicularity increases, the vesicle number density decreases and vesicle morphology shifts from small and round to larger and more irregular. The shift in microtexture corresponds to greater degrees of postfragmentation expansion of clasts with higher vesicularity. We suggest the range of clast morphologies in the deposit is related to thermal zonation within a Hawaiian fountain where the highest vesicularity clasts traveled in the center and lowest traveled along the margins. Vesicle number densities are greatest in the highest fountaining episode and therefore scale with intensity of activity. Major element chemical analyses and fasciculate crystal textures indicate microlite-rich zones within individual clasts are portions of recycled lava lake material that were incorporated into newly vesiculating primary melt.  相似文献   

16.
Large vesicles record pathways of degassing at basaltic volcanoes   总被引:2,自引:2,他引:0  
Volcanic degassing is directly linked to magma dynamics and controls the style of eruptive activity. To better understand how gas is transported within basaltic magma we perform a 3D investigation of vesicles preserved in scoria from the 2005 activity at Stromboli volcano (Italy). We find that clasts are characterized by the ubiquitous occurrence of one to a few large vesicles, exhibiting mostly irregular, tortuous, channel-like textures, orders of magnitude greater in volume than all the other vesicles in the sample. We compare observations on natural samples with results from numerical simulations and experimental investigations of vesicle size distributions and demonstrate that this type of vesicle invariably forms in magmas with vesicularities > 0.30 (and possibly > 0.10). We suggest that large vesicles represent pathways used by gas to flow non-explosively to the surface and that they indicate the development of an efficient system that sustains persistent degassing in basaltic systems.  相似文献   

17.
Segregation structures in vapor-differentiated basaltic flows   总被引:1,自引:0,他引:1  
 Vesicle cylinders represent a spectacular kind of segregation structure involving residual liquids formed in situ during the cooling of lava flows. These vertical pipes, commonly found within basalt flows typically 2–10 m thick, are interpreted as the product of a vapor-driven differentiation process. The olivine phenocrysts and the earliest generation of groundmass olivines found in cylinder-bearing basalts appear to have been generally affected by magmatic oxidation, resulting in high-temperature iddingsite (HTI) alteration. This feature is also observed within cylinder-free basalt flows which exhibit other kinds of vesicular segregation structures, such as vesicle-rich pegmatoid segregation sheets and/or segregation vesicles. Detailed textural, petrological, and geochemical characteristics of two types of cylinders, three types of vesicle sheets, and five types of segregation vesicles are described, based on the study of 12 occurrences of HTI-bearing basalt flows from oceanic shield volcanoes or continental basalt plateaus. We propose a general classification of these segregation structures likely to derive from vapor differentiation. Flow thickness is probably the main factor influencing their morphology. Finally, we suggest that the concomitant occurrence of olivine oxidation and vapor-differentiation effects results from the late persistence of water oversaturation after eruption, perhaps due to a high rate of magma ascent. Received: 27 March 1999 / Accepted: 15 February 2000  相似文献   

18.
The eruption of the Pelagatos scoria cone in the Sierra Chichinautzin monogenetic field near the southern suburbs of Mexico City occurred less than 14,000 years ago. The eruption initiated at a fissure with an effusive phase that formed a 7-km-long lava flow, and continued with a phase of alternating and/or simultaneous explosive and effusive activity that built a 50-m-high scoria cone on the western end of the fissure and formed a compound lava flow-field near the vent. The eruption ended with the emplacement of a short lava flow that breached the cone and was accompanied by weak explosions at the crater. Products consist of a microlite-rich high-Mg basaltic andesite. Samples were analyzed to determine the magma’s initial properties as well as the effects of degassing-induced crystallization on eruptive style. Although distal ash fallout deposits from this eruption are not preserved, a recent quarry exposes a large section of the scoria cone. Detailed study of exposed layers allows us to elucidate the mode of cone-building activity. Petrological and textural data, combined with models calibrated by experimental work and melt-inclusion analyses of similar magmas elsewhere, indicate that the magma was initially hot (>1,200°C), gas-rich (up to 5 wt.% H2O), crystal-poor (~10 vol.% Fo90 olivine phenocrysts) and thus poorly viscous (40–80 Pa s). During the early phase, low magma ascent velocity at the fissure vent allowed low-viscosity magma to degas and crystallize during ascent, producing lava flows with elevated crystal contents at T < 1,100°C, and blocky surfaces. Later, the closure of the fissure by cooling dikes focused the magma flow at a narrow section of the fissure. This led to an increased magma ascent velocity. Rapid and shallow degassing (<3 km deep) triggered ~40 vol.% microlite crystallization. Limited times for gas-escape and higher magma viscosity (6 × 105–4 × 106 Pa s) drove strong explosions of highly (60–80 vol.%) and finely vesicular magma. Coarse clasts broke on landing, which implies brittle behavior due to complete solidification. This requires sufficient time to cool and in turn implies ejection heights of over 1 km, which is much higher than “normal” Strombolian activity. Hence, magma viscosity significantly impacts eruption style at monogenetic volcanoes because it affects the kinetics of shallow degassing. The long-lasting eruptions of Jorullo and Paricutin, which produced similar magmas in western México, were more explosive. This can be related to higher magma fluxes and total erupted volumes. Implications of this study are important because basaltic andesites are commonly erupted to form monogenetic scoria cones of the Trans-Mexican Volcanic Belt.  相似文献   

19.
Most, if not all, magmas contain gas bubbles at depth before they erupt. Those bubbles play a crucial role in eruption dynamics, by allowing magma to degas, which causes the magma to accelerate as it ascends towards the surface. There must be a limit to that acceleration, however, because gas bubbles cannot grow infinitely fast. To explore that limit, a series of experiments was undertaken to determine the maximum rate at which bubbly high-silica rhyolite can decompress. Rhyolite melt that was hydrated at 150 MPa with ~5.3 wt.% dissolved water and contained 7 to 18 vol.% bubbles can degas in equilibrium at 875°C when decompressed at rates up to 1.2 MPa s−1 from 150 to 78 MPa, and up to 1.8 MPa s−1 when decompressed further to 42 MPa. In contrast, that same rhyolite cannot degas in equilibrium at 750°C if decompressed faster than 0.015–0.025 MPa s−1. When combined with other published experiments, the maximum rate of decompression for equilibrium degassing is found to increase by a factor of ten for every 50–75°C increase in temperature. When compared to predictions from conduit flow models that assume equilibrium degassing, it is found that such models greatly over-estimate the rate at which relatively cold rhyolite can decompress, whereas that assumption is largely correct for hot rhyolite, and thus for most other magmas, all of which are less viscous than rhyolite. In addition, most bubbles that were 20–30 μm in size at high pressure were lost from the population at low pressure. That absence suggests that only relatively large vesicles seen in volcanic pumice may be relics of pre-eruptive bubbles, even if small bubbles were originally present at depth.  相似文献   

20.
Notes on the variation of magnetization within basalt lava flows and dikes   总被引:2,自引:0,他引:2  
Summary The magnetic properties of basaltic rocks are dominated by the contained primary Fe–Ti oxides. At solidus temperature (1000°C) the composition of these primary oxides is restricted to titanomagnetite (Fe3-xTixO4) and hemoilmenites (Fe2-yTiyO3). The examination of 269 chemical analyses of the primary Fe–Ti oxides in basalts (in sensu lato) gives an average ofx=0.61 (T c=168°C) for the titanomagnetites andy=0.89 (T c=–121°C) for the hemoilmenites. If distinction is made between tholeiites, alkali basalts and andesites, a clear difference for thex-values is observed: the average for tholeiitesx=0.64 (T c=144°C), for alkali basaltsx=0.52 (T c=253°C), for andesitesx=0.38 (T c=341°C).Environment of crystallization and cooling rate are major interrelated factors influencing subsequent changes in the mineralogy of the primary Fe–Ti oxides and resulting magnetic properties. This has been tested by studying the variation of magnetization and some of its parameters in three different basalt rock units: a dike, 180 cm, and two lava flows, 3 m and 33 m thick, respectively. Grain size and oxidation state of the titanomagnetites control the variation of magnetization in these basalt units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号