共查询到20条相似文献,搜索用时 0 毫秒
1.
New spectrophotometry from 1.5 to 2.5 μm is reported for the Uranian satellites Titania, Oberon, and Umbriel. A spectrum of the rings of Uranus from 2.0 to 2.4 μm is also reported. No evidence is found for frost covering the surface of the ring material, consistent with the low albedo of the rings (PK = 0.03) previously reported by Nicholson and Jones (1980). The surfaces of the satellites are found to be covered by dirty water frost. Assuming albedos of the frost and gray components covering the Uranian satellites to be the same as the light and dark faces of Iapetus, radii are derived that are roughly twice those inferred from the assumption of a visual albedo of 0.5. 相似文献
2.
《Icarus》1987,71(1):91-102
The occultation of KME 17 by Uranus and its rings was observed with the 1.8-m telescope at SAAO through a K filter with an InSb detector on 25 March 1983. Immersion of the nine main rings and the emersion of rings, 5, 4, α, and β were recorded in the nonchopping mode. A diffracted square-well model was fitted to the data, and the midtime, width, and equivalent depth were determined for each profile. The profile model also includes the diameter of the occulted star as a free parameter, and an average of the narrow ring results yields 0.096 ± 0.005 milliarcsec for the angular diameter of KME 17, under the assumption of a fully darkened disk. The immersion and emersion atmospheric events give mean temperatures of 166 ± 15 and 149 ± 15°K within the pressure altitude range 1–10 μbar. Photometry in the JHKL bands for KME 17 and other stars previously occulted by the Uranian rings is presented. 相似文献
3.
The spectrum of Saturn was measured from 80 to 350 cm?1 (29 to 125 μm) with ≈6-cm?1 resolution using a Michelson interferometer aboard NASA's Kuiper Airborne Observatory. These observations are of the full disk, with little contribution from the rings. For frequencies below 300 cm?1, Saturn's brightness temperature rises slowly, reaching ≈111°K at 100 cm?1. The effective temperature is 96.8 ± 2.5°K, implying that Saturn emits 3.0 ± 0.5 times as much energy as it receives from the Sun. The rotation-inversion manifolds of NH3 that are prominent in the far-infrared spectrum of Jupiter are not observed on Saturn. Our models predict the strengths to be only ≈2 to 5°K in brightness temperature because most of the NH3 is frozen out; this is comparable to the noise in our data. By combining our data with those of an earlier investigation when the Saturnicentric latitude of the Sun was B′ = 21.2°, we obtain the spectrum of the rings. The high-frequency end of the ring spectrum (ν > 230 cm?1) has nearly constant brightness temperature of 85°K. At lower frequencies, the brightness temperature decreases roughly as predicted by a simple absorption model with an optical depth proportional to ν1.5. This behavior could be due to mu-structure on the surface of the ring particles with a scale size of 10 to 100 μm and/or to impurities in their composition. 相似文献
4.
We present high quality images of the uranian ring system, obtained in August 2002, October 2003, and July 2004 at 2.2 μm with the adaptive optics camera NIRC2 on the Keck II telescope. Using these data, we report the first detection in backscattered light of a ring (which we refer to as the ζ ring) interior to Uranus' known rings. This ring consists of a generally uniform sheet of dust between 37,850 and 41,350 km with an equivalent width (in 2004; or ), and extends inward to 32,600 km at a gradually decreasing brightness. This ring might be related to the Voyager ring R/1986 U 2, although both its location and extent differ. This could be attributed to a difference in observing wavelength and/or solar phase angle, or perhaps to temporal variations in the ring. Through careful modeling of the I/F of the individual rings at each ansa, we reveal the presence of narrow (few 100 km wide) sheets of dust between the δ and ε rings, and between rings 4 and α. We derived a typical anisotropy factor g≈0.7 in the scattering behavior of these particles. The spatial distribution and relative intensity of these dust sheets is different than that seen in Voyager images taken in forward scattered light, due either to a difference in observing wavelength, and/or solar phase angle or to changes over time. We may have detected the λ ring in one scan at , but other scans provided upper limits below this value. A single detection, however, would be consistent with azimuthal asymmetries known to exist in this ring. We further demonstrate the presence of azimuthal asymmetries in all rings. We confirm the eccentricity of ∼0.001 in rings 4, 5, 6, which in 2004 are ∼70 km closer to Uranus in the north (near periapse; lower I/F) than in the south. We find a global optical depth of τ∼0.3 in the main rings, and of τ=0.25±0.05 in the ε ring. 相似文献
5.
J.L. Elliot J.H. Elias R.G. French Jay A. Frogel W. Liller K. Matthews K.J. Meech D.J. Mink P.D. Nicholson B. Sicardy 《Icarus》1983,56(2):202-208
Occultation profiles for the nine confirmed Uranian rings obtained from Las Campanas, the European Southern Observatory, and Cerro Tololo on 15–16 August 1980 are compared. The α ring shows a “double-dip” structure; the η ring shows a broad and narrow component (similar to Saturn's F ring); and the ε ring shows six features that appear in the data from all three observatories. Diffraction fringes appear at the edges of several of the occultation profiles. 相似文献
6.
We present the first Earth-based images of several of the individual faint rings of Uranus, as observed with the adaptive optics system on the W.M. Keck II telescope on four consecutive days in October 2003. We derive reflectivities based on multiple measurements of 8 minor moons of Uranus as well as Ariel and Miranda in filters centered at wavelengths of 1.25(J), 1.63(H), and 2.1(Kp) μm. These observations have a phase angle of 1.84°-1.96°. We find that the small satellites are somewhat less bright than in observations made by the HST at smaller phase angles, confirming an opposition surge effect. We calculate albedoes for the ring groups and for each ring separately. We find that the ε ring particles, as well as the particles in the three other ring groups, have albedoes near 0.043 at these phase angles. The equivalent depths of some of the individual rings are different than predicted based upon ring widths from occultation measurements (assuming a constant particle ring brightness); in particular the γ ring is fainter and the η ring brighter than expected. Our results indicate that q, the ratio of ε ring intensity at apoapse vs. periapse, is close to 3.2±0.16. This agrees well with a model that has a filling factor for the ε ring of 0.06 (Karkoschka, 2001, Icarus 151, 78-83). We also determine values of the north to south brightness ratio for the individual rings and find that in most cases they are close to unity. 相似文献
7.
《Icarus》1987,69(1):176-184
The 22 April 1982 stellar occultation of KME 14 by Uranus was observed from Tenerife, Canary Islands, using the Teide Observatory 1.5-m telescope. From model fits to the immersion and emersion ring profiles, we obtained (1) midtimes of the ring events with a typical uncertainty of 0.01 sec; (2) ring widths for rings 4, α, β, γ, δ, and ϵ with a typical uncertainty of a few tenths of a kilometer; and (3) equivalent widths and normal optical depths of all nine rings. The immersion planetary occultation was clouded out, but emersion was successfully observed, and the stratospheric temperature profile was obtained by numerical inversion. The profile shows a temperature maximum near the 8-μbar pressure level, characterized by T(8 μbar) = 141°K and T(8 μbar)–T(13 μbar) = 5°K for the sampled suboccultation latitude of −11°.9. Both the mean temperature and the temperature variations are consistent with the latitude-dependent atmospheric structure found by B. Sicardy et al. (1985, Icarus 64, 88–106) from widely separated observations of the same event. 相似文献
8.
《Icarus》1987,69(3):499-505
The 1 May 1982 occultation of KME 15 by Uranus and its rings was observed at λ = 2.2 μm using the 1.9-m telescope of the Mount Stromlo Observatory. From model fits to the immersion and emersion ring profiles, accurate midtimes for rings 6, 5, 4, α, β, η, γ, σ, and ϵ, and ring widths, equivalent widths, and normal optical depths for all but ring 6 were obtained. The recently discovered ring 1986 U1R is not detectable in the data, setting an upper limit on the product of ring width and normal optical depth of ≤0.4 km at λ = 2.2 μm. From the immersion and emersion atmosphere occultations, vertical temperature profiles were obtained by numerical inversion. Both profiles show mean temperatures near 130°K and a local maximum near the 8-μbar pressure level. 相似文献
9.
W.B. Hubbard 《Icarus》1975,24(3):285-291
A mission to Uranus will permit definitive measurements of fundamental parameters of Uranus' interior structure, such as radius, rotation, magnetic moment, atmospheric composition, and gravitational harmonics. We briefly discuss the utility of such data for constraining interior models. 相似文献
10.
We present high-resolution interferometry of Uranus at 6 cm wavelength and single-dish observations of the disk-averaged brightness temperature, TB, at 2.8 and 4.8 cm wavelength. The 1978 measurements of TB of 228 ± 2,243 ± 9, and 259 ± 4 K at 2.8, 4.8, and 6 cm, respectively, support the finding of M. J. Klein and J. A. Turegano (1978, Astrophy. J.224, L31–L34) that the brightness temperature of Uranus has been rising. There is no evidence for radio emission from outside the visible disk at 6 cm. Radiation from a synchrotron radiation belt or from the Uranian rings is certainly less than 10% of the total radio flux. The interferometry shows a possible 55 ± 20 K difference in brightness temperature between the equator and the currently exposed pole. The pole appears to be ~275 K while the equator is ~220 K. However, a permanent gradient of this magnitude is insufficient to account for the rise in disk-averaged brightness by simple reorientation of Uranus' globe relative to our line of sight. The changing insolation probably triggers a redistribution of the trace constituent NH3 which is responsible for the radio opacity. The NH3 may be interacting strongly with H2S on Uranus. 相似文献
11.
Peter H. Stone 《Icarus》1975,24(3):292-298
Current knowledge of the atmosphere of Uranus is reviewed and specific objectives are suggested for satellite missions to Uranus. The anomalous composition of Uranus makes determinations of its atmospheric composition particularly valuable for testing theories of solar system evolution. The weakness of its atmospheric heating makes the determination of its atmospheric structure and dynamics particularly valuable for testing theories of atmospheric behavior. The large axial inclination of Uranus implies an anomalous latitudinal variation of temperature and dynamics different from that of the other planets. 相似文献
12.
《Planetary and Space Science》1999,47(8-9):1119-1139
Far and extreme ultraviolet observations of Uranus and Neptune, principally by the ultraviolet spectrometer (UVS) on Voyager 2, are reviewed. Occultation observations have characterized the temperature, energy deposition, and major-constituent compositional profiles of these atmospheres above the 0.1–1 mbar level. Observations of airglow, light emitted by these atmospheres, are more complex to interpret but yield insight into atmospheric energy balance and chemistry. 相似文献
13.
Analysis of 206 high-quality plates from three recent apparitions taken in five colors has yielded several photometric parameters for Saturn and its A and B rings. Phase curves and geometric albedos are derived for two regions of Saturn and for each ring. The phase coefficients of the rings are found to be independent of the ring-plane inclination angle. A comparison of the phase curves shows that the particles of ring A exhibit a larger phase coefficient than do those of ring B. When examined with a multiple-scattering model using Henyey-Greenstein phase functions, the observations of the ring tilt effect indicate that the particles of ring A may also have lower single-scattering and geometric albedos. The color dependence of the geometric albedo of the particles in ring B is shown to be very similar to that of Europa (J II). We find for ring A an optical thickness of 0.50 (0.45 ≤ τA ≤ 0.57) and for the Cassini division, 0.018 ± 0.004. 相似文献
14.
G.L. Siscoe 《Icarus》1975,24(3):311-324
In 1985 the spin axis of Uranus points within 10° of the Sun and the planet's position is very near the solar apex direction. A Uranus mission with an encounter near 1985 might expect to measure the unusual particle and field configuration of a “pole-on” magnetosphere and also properties of the interstellar medium. We give here estimates of the particle and field environment of Uranus based on extrapolation of solar wind data from 1 AU and on scaling relations for an Earth-type magnetosphere. Since the magnetic moment of Uranus is unknown, all magnetospheric parameters are derived as a function of the dipole strength. The onset of special magnetospheric properties are identified as the dipole moment increases from small to large values. A fairly complete set of magnetospheric parameters is given for a specific dipole moment to illustrate the case of a large moment. 相似文献
15.
We have obtained 5-μm brightness temperatures and brightness temperature upper limits for Uranus and Neptune which are substantially lower than those of Jupiter and Saturn and which correspond to a geometric albedo of approximately 0.01, in agreement with results reported by F. C. Gillet and G. H. Rieke (1977, Astrophys. J.218, L141–L144). Phospine and CH3D, which are observed at 5 μm on Jupiter and Saturn, are discussed as possible sources of opacity at 5 μm in the atmospheres of Uranus and Neptune. 相似文献
16.
A.G.W. Cameron 《Icarus》1975,24(3):280-284
The cosmogony of Uranus is discussed within the context of a picture in which solid condensed materials accumulate to form a large body, which then acquires significant amounts of gas from the primitive solar nebula. Of prime cosmogonical importance is the tilt of the equatorial plane of the planet and of the plane of tilt of the planet can easily occur as a result of a major collision during the formation process; it seems most likely that the tilt of the satellite orbits requires that they were formed from a gaseous disc rotating about the planet after the tilt of the planetary rotational axis had occurred. Possible methods for tilting this gaseous disc are discussed. A strong early magnetic field may have helped in this and may have played an essential role in showing down the spin of the planet to the present observed value. These processes may have produced significant compositional differences between the satellites of Uranus and those of Jupiter and Saturn. 相似文献
17.
Investigation of Uranus,its satellites,and distant interplanetary phenomena by spacecraft techniques
J.A. Van Allen 《Icarus》1975,24(3):277-279
A brief digest is given of the principal scientific objectives that can be addressed effectively, and perhaps uniquely, by spacecraft missions to Uranus. Practical considerations favor the launching of such missions in late 1979, with subsequent swing-bys of Jupiter and arrival at Uranus in late 1986. 相似文献
18.
19.
C. Z. Zhang 《Earth, Moon, and Planets》1996,75(1):17-24
This paper is concerned with the interior structure of Uranus and Neptune. Our approach is three-fold. First, a set of three-layer models for both Uranus and Neptune are constructed using a method similar to that used in the study of the terrestrial planets. The variations of the mass density (s) and flattening e(s) with fractional mean radius s for two representative models of Uranus and Neptune are calculated. The results are tabulated. A comparison of these models shows that these two planets are probably very similar to each other in their basic dynamical features. Such similarity is very seldom seen in our solar system. Secondly, we check the conformance between the theoretical results and observational data for the two planets. And thirdly, the 6th degree Stokes zonal parameters for Uranus and for Neptune are predicted, based on the interior models put forward in this paper. 相似文献
20.
J. C. Bhattacharyya M. K. V. Bappu S. Mohin H. S. Mahra S. K. Gupta 《Earth, Moon, and Planets》1979,21(4):393-404
Two photoelectric records of the occultation event on 10 March, 1977, obtained by two 102-cm-aperture telescopes, spaced 1500 km apart, are critically analysed and indications of a complex structure of distribution of occulting material surrounding the planet are obtained. The results confirm the existence of a very shallow broad ring system with local condensation lanes of narrow and intermediate widths. A system of numerous thin rings are also present around the planet in the equatorial plane. 相似文献