首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν2+ν3 band of CH3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν3 band of C2H2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C2H2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν3+ν9+ν11 band of C2H6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C2H6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH4 to the ν7 band of C2H6, and derive a mixing ratio of 9±4×10−6 for this species. Most of the C2H6 3.3 μm line emission arises in the altitude range 460-620 km (at ∼μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (∼30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (∼12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that they are composed of hydrocarbons.  相似文献   

2.
A spectrum of Jupiter between 6000 and 12 000 cm? at high resolution (0.05 cm?) was recorded with a Michelson interferometer at Palomar Mountain in October 1974. An analysis of the R branch of the 3ν3CH4 band with the reflecting-layer model, taking into account the H2 absorption which occurs in the same spectral range, leads to a Lorentzian half-width of 0.09 ± 0.02 cm?1, a rotational temperature of 175 ± 10° K, and a CH4 abundance of order 52m atm. Five lines of the 13CH43ν3 band have been identified; a comparison with new laboratory spectra indicates that the 13CH4/12CH4 ratio in the Jupiter atmosphere is close to the terrestrial ratio.  相似文献   

3.
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10 to 1400 cm−1 (1000-7 μm). In this paper we analyze a zonally averaged set of CIRS spectra taken at the highest (0.48 cm−1) resolution, firstly to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the ν4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm−1. Stratospheric temperatures at 5 mbar are generally warmer in the north than the south by 7-8 K, while tropospheric temperatures show no such asymmetry. Both latitudinal temperature profiles however do show a pattern of maxima and minima which are largely anti-correlated between the two levels. We then use the derived temperature profiles to infer the vertical abundances of C2H2 and C2H6 by modeling tropospheric absorption (∼200 mbar) and stratospheric emission (∼5 mbar) in the C2H2ν5 and C2H6ν9 bands, and also emission of the acetylene (ν4+ν5)−ν4 hotband (∼0.1 mbar). Acetylene shows a distinct north-south asymmetry in the stratosphere, with 5 mbar abundances greatest close to 20° N and decreasing from there towards both poles by a factor of ∼4. At 200 mbar in contrast, acetylene is nearly flat at a level of ∼3×10−9. Additionally, the abundance gradient of C2H2 between 10 and 0.1 mbar is derived, based on interpolated temperatures at 0.1 mbar, and is found to be positive and uniform with latitude to within errors. Ethane at both 5 and 200 mbar shows increasing VMR towards polar regions of ∼1.75 towards 70° N and ∼2.0 towards 70° S. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors of 2.7 and 3.5, respectively, at latitude 70°. However, the lifetime of C2H6 in the stratosphere (3×1010 s at 5 mbar) is much longer than the dynamical timescale for meridional mixing inferred from Comet SL-9 debris (5-50×108 s), and therefore the rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite occurs, with the relatively short photochemical lifetime (3×107 s), compared to meridional mixing times, ensuring that the expected photochemical trends are visible.  相似文献   

4.
A radiative seasonal model which incorporates a multilayer radiative transfer treatment at wave-lengths longward of 7 μm is presented and applied to Saturn's stratosphere. Opacities due to H2-He, CH4, C2H2, and C2H6 are included. Season-dependent insolation is shown to produce a strong hemispheric asymmetry decreasing with depth at the Voyager encounter times, and seasonal amplitudes of 30°K at the poles are predicted in the high stratosphere. The ring-modulated dependence of the insolation and the orbital eccentricity are shown to have a significant effect. Calculations agree closely with the Voyager 1 and 2 radio occultation ingress profiles recorded at 76°S and 36.5°S for CH4/H2 = 3.5 + 1.4/? 1.0 × 10?3;the estimated errors include modeling systematic errors and uncertainties in the occultations profiles. The possible role of aerosols in the stratospheric heating is analyzed. The Voyager 2 egress profile recorded at 31°S cannot be reproduced by calculations. Some constraints on the C2H2 and C2H6 abundances are derived. The upper portion of the occultation profiles (p < 3mbar) can be matched for C2H2/H2 = 1.0 + 1.3/?0.6 × 10?7, C2H6/H2 = 1.5 + 1.8/?0.9 × 10?6 at 76°S and C2H2/H2 = 4 + 6/?4 × 10?8, C2H6/H2 = 6 + 9/?6 × 10?7 at 36.5°N. At the northern occultation latitude, the discrepancy with the concentrations derived from analysis of IRIS spectra by R. Courtin, D. Gautier, A. Marten, B. Bézard, and R. Hanel (1984, Astrophys. J.287) can be explained by a sharp variation of the mixing ratios of these gases with altitude in the upper stratosphere. Other interpretations are discussed.  相似文献   

5.
Darrell F. Strobel 《Icarus》1974,21(4):466-470
Detailed photochemical models are constructed for two model atmospheres: (1) 100% CH4 and (2) 50% H2, 50% CH4. Both models predict large column densities of C2H2 and C2H6 (~1 cm atm) for eddy mixing rates ~105 cm2 sec?, which are comparable to rates appropriate for Jupiter. These column densities vary inversely with the eddy diffusion coefficient. The models confirm the interpretation by Danielson et al. (1973) of the 12μ feature in the spectra of Gillet et al. (1973) as emission by C2H6 in a thermal inversion region. The C2H6C2H2 mixing ratio is sensitive to the net escape rate of H atoms from the exobase.  相似文献   

6.
The Cassini Huygens mission provides a unique opportunity to combine ground-based and spacecraft investigations to increase our understanding of chemical and dynamical processes in Titan’s atmosphere. Spectroscopic measurements from both vantage points enable retrieving global wind structure, temperature structure, and atmospheric composition. An updated analysis of Titan data obtained with the NASA Goddard Space Flight Center’s Infrared Heterodyne Spectrometer (IRHS) and Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) prior to and during the Cassini Huygens mission is compared to retrievals from measurements with the Cassini Composite Infrared Spectrometer (CIRS). IRHS/HIPWAC results include the first direct stratospheric wind measurements on Titan, constraints on stratospheric temperature, and the study of atmospheric molecular composition. These results are compared to CIRS retrievals of wind and temperature profile from thermal mapping data and ethane abundance at 10-15° South latitude, near the equatorial region. IRHS/HIPWAC wind results are combined with other direct techniques, stellar occultation measurements, and CIRS results to explore seasonal variability over nearly one Titan year and to provide an empirical altitude profile of stratospheric winds, varying from ∼50 to 210 m/s prograde. The advantage of fully resolved line spectra in species abundance measurements is illustrated by comparing the possible effect on retrieved ethane abundance by blended spectral features of other molecular constituents, e.g., acetylene (C2H2), ethylene (C2H4), allene (C3H4), and propane (C3H8), which overlap the ν9 band of ethane, and are not resolved at lower spectral resolution. IR heterodyne spectral resolution can discriminate weak spectral features that overlap the ν9 band of ethane, enabling ethane lines alone to be used to retrieve abundance. Titan’s stratospheric mean ethane mole fraction (8.6±3 ppmv) retrieved from IRHS/HIPWAC emission line profiles (resolving power λλ∼106) is compared to past values obtained from lower resolution spectra and from CIRS measurements (resolving power λλ∼2×103) and more compatible recent analysis. Results illustrate how high spectral resolution ground-based studies complement the spectral and spatial coverage and resolution of moderate spectral resolution space-borne spectrometers.  相似文献   

7.
We reduced ultraviolet spectra of Saturn from the IUE satellite to produce a geometric albedo of the planet from 1500 to 3000 Å. By matching computer models to the albedo we determined a chemical composition consistent with the data. This model includes C2H2 and C2H6 with mixing ratios and distributions of (9 ± 3) × 10?8 in the top 20 mbar of the atmosphere with none below for C2H2 and (6 ± 1) × 10?6 also in the top 20 mbar with none below for C2H6. The C2H2 and C2H6 distributions and the C2H6 mixing ratio are taken directly from the Voyager IRIS model [R. Courtin et al., Bull. Amer. Astron. Soc.13, 722 (1981), and private communication]. The Voyager IRIS model also includes PH3, which is not consistent with the uv albedo from 1800 to 2400 Å. Our model requires a previously unidentified absorber to explain the albedo near 1600 Å. After considering several candidates, we find that the best fit to the data is obtained with H2O, having a column density of (6 ± 1) × 10?3 cm-am.  相似文献   

8.
G.S. Orton  H.H. Aumann 《Icarus》1977,32(4):431-436
The Q and R branches of the C2H2 ν5 fundamental, observed in emission in an aircraft spectrum of Jupiter near 750 cm?1, have been analyzed with the help of an improved line listing for this band. The line parameters have been certified in the laboratory with the same interferometer used in the Jovian observations. The maximum mixing ratio of C2H2 is found to be between 5 × 10?8 and 6 × 10?9, depending on the form of its vertical distribution and the temperature structure assumed for the lower stratosphere. Most consistent with observations of both Q and R branches are: (1) distributions of C2H2 with a constant mixing ratio in the stratosphere and a cutoff at a total pressure of 100 mbar or less, and (2) the assumption of a temperature at 10?2 bar which is near 155°K.  相似文献   

9.
A model is presented for the photochemistry of PH3 in the upper troposphere and lower stratosphere of Saturn that includes the effects of coupling with NH3 and hydrocarbon photochemistry, specifically the C2H2 catalyzed photodissociation of CH4. PH3 is rapidly depleted with altitude (scale height ~35 km) in the upper troposphere when K~104cm2sec?1; an upper limit for K at the tropopause is estimated at ~105cm2sec?1. If there is no gas phase P2H4 because of sublimation, P2 and P4 formation is unlikely unless the rate of the spin-forbidden recombination reaction PH + H2 + M → PH3 + M is exceedingly slow. An upper limit P4 column density of ~2×1015cm?2 is estimated in the limit of no recombination. If sublimation does not remove all gas phase P2H4, P2 and P4 may be produced in potentially larger quantities, although they would be restricted almost entirely to the lowest levels of our model, where T?100°K. Potentially observable amounts of the organophosphorus compounds CH3P2H2 and HCP are predicted, with column densities of >1017 cm?2 and production rates of ~2×108cm?2sec?1. The possible importance of electronically excited states of PHx and additional PH3/hydrocarbon photochemical coupling paths are also considered.  相似文献   

10.
Building upon previous studies, we re-investigated the ethane spectrum between 1330 and 1610 cm?1 by combining unapodized spectra obtained at room temperature with a Bruker Fourier transform spectrometer (FTS) in Brussels and at 131 K with a Bruker FTS in Pasadena. The maximum optical path differences (MOPD) of the two datasets were 450 and 323.7 cm, corresponding to spectral resolutions of 0.0020 and 0.0028 cm?1, respectively. Of the 15,000 lines observed, over 4592 transitions were assigned to the ν6 (at 1379 cm?1), ν8 (at 1472 cm?1), ν412 (at 1481 cm?1) and 2ν49 (at 1388 cm?1) bands, and another 1044 transitions were located for the ν484 hot band (at 1472 cm?1). Our new analysis included an improved implementation of the Hamiltonian calculation needed to interpret the complex spectral structures caused by numerous interactions affecting these four modes of vibration. From these results, we created the first line-by-line database containing the molecular parameters for over 20,000 12C2H6 transitions at 7 μm.  相似文献   

11.
The rates and altitudes for the dissociation of atmospheric constituents of Titan are calculated for solar UV, solar wind protons, interplanetary electrons, Saturn magnetospheric particles, and cosmic rays. The resulting integrated synthesis rates of organic products range from 102–103 g cm?2 over 4.5 × 109 years for high-energy particle sources to 1.3 × 104 g cm?2 for UV at λ < 1550 A?, and to 5.0 × 105 g cm?2 if λ > 1550 A? (acting primarily on C2H2, C2H4, and C4H2) is included. The production rate curves show no localized maxima corresponding to observed altitudes of Titan's hazes and clouds. For simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at 2825 km. Such condensates comprise the principal cloud mass, with molecules of greater complexity condensing at higher altitudes. The scattering optical depths of the condensates of molecules produced in the Titanian mesosphere are as great as ~ 102/(particulate radius, μm) if column densities of condensed and gas phases are comparable. Visible condensation hazes of more complex organic compounds may occur at altitudes up to ~ 3060 km provided only that the abundance of organic products declines with molecular mass no faster than laboratory experiments indicate. Typical organics condensing at 2900 km have molecular masses = 100–150 Da. At current rates of production the integrated depth of precipitated organic liquids, ices, and tholins produced over 4.5 × 109 years ranges from a minimum ~ 100 m to kilometers if UV at λ > 1550 A? is important. The organic nitrogen content of this layer is expected to be ~ 10?1?10?3 by mass.  相似文献   

12.
We have analyzed data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft during the Titan flybys T0-T10 (July 2004-January 2006). The spectra characterize various regions on Titan from 70° S to 70° N with a variety of emission angles. We study the molecular signatures observed in the mid-infrared CIRS detector arrays (FP3 and FP4, covering roughly the 600-1500 cm−1 spectral range with apodized resolutions of 2.54 or 0.53 cm−1). The composite spectrum shows several molecular signatures: hydrocarbons, nitriles and CO2. A firm detection of benzene (C6H6) is provided by CIRS at levels of about 3.5×10−9 around 70° N. We have used temperature profiles retrieved from the inversion of the emission observed in the methane ν4 band at 1304 cm−1 and a line-by-line radiative transfer code to infer the abundances of the trace constituents and some of their isotopes in Titan's stratosphere. No longitudinal variations were found for these gases. Little or no change is observed generally in their abundances from the south to the equator. On the other hand, meridional variations retrieved for these trace constituents from the equator to the North ranged from almost zero (no or very little meridional variations) for C2H2, C2H6, C3H8, C2H4 and CO2 to a significant enhancement at high northern (early winter) latitudes for HCN, HC3N, C4H2, C3H4 and C6H6. For the more important increases in the northern latitudes, the transition occurs roughly between 30 and 50 degrees north latitude, depending on the molecule. Note however that the very high-northern latitude results from tours TB-T10 bear large uncertainties due to few available data and problems with latitude smearing effects. The observed variations are consistent with some, but not all, of the predictions from dynamical-photochemical models. Constraints are set on the vertical distribution of C2H2, found to be compatible with 2-D equatorial predictions by global circulation models. The D/H ratio in the methane on Titan has been determined from the CH3D band at 1156 cm−1 and found to be . Implications of this deuterium enrichment, with respect to the protosolar abundance on the origin of Titan, are discussed. We compare our results with values retrieved by Voyager IRIS observations taken in 1980, as well as with more recent (1997) disk-averaged Infrared Space Observatory (ISO) results and with the latest Cassini-Huygens inferences from other instruments in an attempt to better comprehend the physical phenomena on Titan.  相似文献   

13.
The HCN emission features near 3 μm recently detected by Geballe et al. (2003, Astrophys. J. 583, L39) are analyzed with a model for fluorescence of sunlight in the ν3 band of HCN. The emission spectrum is consistent with current knowledge of the atmospheric temperature profile and the HCN distribution inferred from millimeter-wave observations. The spectrum is insensitive to the abundance of HCN in the thermosphere and the thousand-fold enhancement relative to photochemical models suggested by Geballe et al. (2003, Astrophys. J. 583, L39) is not required to explain the observations. We find that the spectrum can be matched with temperatures from 130 to 200 K, with slightly better fits at high temperature, contrary to the temperature determination of 130±10 K of Geballe et al. (2003, Astrophys. J. 583, L39). The HCN emission spectrum is sensitive to the collisional de-excitation probability, P10, for the ν3 state and we determine a value of 10−5 with an accuracy of about a factor of two. Analysis of absorption lines in the C2H2ν3 band near 3 μm, detected in the same spectrum, indicate a C2H2 mole fraction near 0.01 μbar of 10−5 for P10=10−4. The derived mole fraction, however, is dependent upon the value adopted for P10 and lower values are required if P10 at Titan temperatures is less than its room temperature value.  相似文献   

14.
High-altitude spectra of Jupiter obtained from the Kuiper Airborne Observatory are analyzed for the presence of germane (GeH4) in Jupiter's atmosphere. Comparison with laboratory spectra shows that the strong Q branch of the ν3 band of germane at 2111 cm?1 is prominent in the Jovian spectra. The abundance of germane in Jupiter's atmosphere is 0.006 (±0.003) cm-am corresponding to a mixing ratio of 0.6 ppb. This trace amount of germane is consistent with chemical equilibrium calculations if the germane present at ~1000°K is carried up by convection to the spectroscopically observable region at ~300°K.  相似文献   

15.
Results of the scattered solar radiation spectrum measurements made deep in the Venus atmosphere by the Venera 11 and 12 descent probes are presented. The instrument had two channels: spectrometric (to measure downward radiation in the range 0.45 < γ < 1.17 μm) and photometric (four filters and circular angle scanning in an almost vertical plane). Spectra and angular scans were made in the height range from 63 km above the planet surface. The integral flux of solar radiation is 90 ± 12 W m?2 measured on the surface at the subsolar point. The mean value of surface absorbed radiation flux per planetary unit area is 17.5 ± 2.3 W m?2. For Venera 11 and 12 landing sites the atmospheric absorbed radiation flux is ~15 W m?2 for H >; 43 km and ~45 W m?2 for H < 48 km in the range 0.45 to 1.55 μm. At the landing sites of the two probes the investigated portion of the cloud layer has almost the same structure: it consists of three parts with boundaries between them at about 51 and 57 km. The base of clouds is near 48 km above the surface. The optical depth of the cloud layer (below 63 km) in the range 0.5 to 1 μm does not depend on the wavelength and is ~29 and ~38 for the Venera 11 and 12 landing sites, respectively. The single-scattering albedo, ω0, in the clouds is very close to 1 outside the absorption bands. Below 58 km the parameter (1 ? ω0) is <10?3 for 0.49 and 0.7 μm. The parameter (1 ? ω0) obviously increases above 60 km. Below 48 km some aerosol is present. The optical depth here is a strong function of wavelength. It varies from 1.5 to 3 at λ = 0.49 μm and from 0.13 to 0.4 at 1.0 μm. The mean size of particles below the cloud deck is about 0.1 μm. Below 35 km true absorption was found at λ < 0.55 μm with the (1 ? ω0) maximum at H ≈ 15 km. The wavelength and height dependence of the absorption coefficient are compatible with the assumption that sulfur with a mixing ratio ~2 × 10?8 normalized to S2 molecules is the absorber. The upper limits of the mixing ratio for Cl2, Br2, and NO2 are 4 × 10?8, 2 × 10?11, and 4 × 10?10, respectively. The CO2 and H2O bands are confidently identified in the observed spectra. The mean value of the H2O mixing ratio is 3 × 10?5 < FH2O < 10?4 in the undercloud atmosphere. The H2O mixing ratio evidently varies with height. The most probable profile is characterized by a gradual increase from FH2O = 2 × 10?5 near the surface to a 10 to 20 times higher value in the clouds.  相似文献   

16.
Ethane (C2H6), methylacetylene (CH3C2H or C3H4) and diacetylene (C4H2) have been discovered in Spitzer 10-20 μm spectra of Uranus, with 0.1-mbar volume mixing ratios of (1.0±0.1)×10−8, (2.5±0.3)×10−10, and (1.6±0.2)×10−10, respectively. These hydrocarbons complement previously detected methane (CH4) and acetylene (C2H2). Carbon dioxide (CO2) was also detected at the 7-σ level with a 0.1-mbar volume mixing ratio of (4±0.5)×10−11. Although the reactions producing hydrocarbons in the atmospheres of giant planets start from radicals, the methyl radical (CH3) was not found in the spectra, implying much lower abundances than in the atmospheres of Saturn or Neptune where it has been detected. This finding underlines the fact that Uranus' atmosphere occupies a special position among the giant planets, and our results shed light on the chemical reactions happening in the absence of a substantial internal energy source.  相似文献   

17.
E.L. Gibb  M.J. Mumma  M.A. DiSanti 《Icarus》2003,165(2):391-406
We detected CH4 in eight Oort cloud comets using high-dispersion (λλ∼2×104) infrared spectra acquired with CSHELL at NASA's IRTF and NIRSPEC at the W.M. Keck Observatory. The observed comets were C/1995 O1 (Hale-Bopp), C/1996 B2 (Hyakutake), C/1999 H1 (Lee), C/1999 T1 (McNaught-Hartley), C/1999 S4 (LINEAR), C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), and 153/P Ikeya-Zhang (C/2002 C1). We detected the R0 and R1 lines of the ν3 vibrational band of CH4 near 3.3 μm in each comet, with the exception of McNaught-Hartley where only the R0 line was measured. In order to obtain production rates, a fluorescence model has been developed for this band of CH4. We report g-factors for the R0 and R1 transitions at several rotational temperatures typically found in comet comae and relevant to our observations. Using g-factors appropriate to Trot as determined from HCN, CO and/or H2O and C2H6, CH4 production rates and mixing ratios are presented. Abundances of CH4/H2O are compared among our existing sample of comets, in the context of establishing their place of origin. In addition, CH4 is compared to native CO, another hypervolatile species, and no correlation is found among the comets observed.  相似文献   

18.
The Mariner 9 infrared spectrometer obtained data over a large part of Mars for almost a year beginning late in 1971. Mars' infrared emission spectrum was measured from 200 to 2000 cm?1 with an apodized resolution of 2.4 cm?1. No significant deviation from terrestrial ratios of carbon (12C/13C) or oxygen (16O/18O; 16O/17O) isotopes was observed on Mars. The 12C/13C isotopic ratio was found to be terrestrial with an uncertainty of 15%. Upper limits have been calculated for several minor constituents. With an effective noise equivalent radiance of 1.2 × 10?9 W cm?2 sr?1/cm?1, new upper limits in centimeter-atmospheres of 2 × 10?5 for C2H2, 4 × 10?3 for C2H4, 3 × 10?3 for C2H6, 2 × 10?4 for CH4, 1 × 10?3 for N2O, 1 × 10?4 for NO2, 4 × 10?5 for NH3, 1 × 10?3 for PH3, 7 × 10?4 for SO2, and 1 × 10?4 for OCS have been derived.  相似文献   

19.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

20.
We have analyzed Titan observations performed by the Infrared Space Observatory (ISO) in the range 7-30 μm. The spectra obtained by three of the instruments on board the mission (the short wavelength spectrometer, the photometer, and the camera) were combined to provide new and more precise thermal and compositional knowledge of Titan’s stratosphere. With the high spectral resolution achieved by the SWS (much higher than that of the Voyager 1 IRIS spectrometer), we were able to detect and separate the contributions of most of the atmospheric gases present on Titan and to determine disk-averaged mole fractions. We have also tested existing vertical distributions for C2H2, HCN, C2H6, and CO2 and inferred some information on the abundance of the first species as a function of altitude. From the CH3D band at 1161 cm−1 and for a CH4 mole fraction assumed to be 1.9% in Titan’s stratosphere, we have obtained the monodeuterated methane-averaged abundance and retrieved a D/H isotopic ratio of 8.7−1.9+3.2 × 10−5. We discuss the implications of this value with respect to current evolutionary scenarios for Titan. The ν5 band of HC3N at 663 cm−1 was observed for the first time in a disk-averaged spectrum. We have also obtained a first tentative detection of benzene at 674 cm−1, where the fit of the ISO/SWS spectrum at R = 1980 is significantly improved when a constant mean mole fraction of 4 × 10−10 of C6H6 is incorporated into the atmospheric model. This corresponds to a column density of ∼ 2 × 1015 molecules cm−2 above the 30-mbar level. We have also tested available vertical profiles for HC3N and C6H6 and adjusted them to fit the data. Finally, we have inferred upper limits of a few 10−10 for a number of molecules proposed as likely candidates on Titan (such as allene, acetonitrile, propionitrile, and other more complex gases).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号