首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When solar cosmic rays (SCRs) can be observed with ground-based equipment (ground-level enhancements, GLEs), events are often characterized by a rapid increase in the relativistic proton intensity during the initial phase, which makes it possible to estimate the time of particle escape from the solar corona. This phase attracts attention of researchers owing to its closeness in time to the instant of particle acceleration. It is known that the observed SCR characteristics bear traces of many physical processes, including different acceleration mechanisms the relative role of which is still unclear. Flare processes and acceleration by a shock, related to coronal mass ejection (CME), are the main pretenders to the role of SCR accelerator. Several powerful solar proton events during cycle 23 are considered in the work, and the release time of the first particles from the corona and the dynamics of CMEs have been estimated. The time series of the X-ray and radio bursts, close in time to particle escape, are analyzed. The conclusion have been drawn that the first relativistic particles were most probably accelerated during flare processes.  相似文献   

2.
The main data have been summarized, and the results, achieved using data from the worldwide network during the entire period of ground-based observations of solar cosmic rays (SCRs) from February 28, 1942, when they were discovered, have been generalized. The methods and equipment for registering SCRs have been described. The physical, methodical, and applied aspects, related to the SCR generation, as well as the SCR interaction with the solar atmosphere, transport in the IMF, motion in the Earth’s magnetosphere, and the affect on the Earth’s atmosphere, have been discussed. It has been indicated that the fundamental results were achieved in this field of space physics during 70 years of studies. Special attention has been paid to up-to-date models and concepts of ground-level enhancement (GLE). The most promising tendencies in the development and application of this effective method of solar-terrestrial physics have been outlined.  相似文献   

3.
The effect of solar and galactic cosmic ray variations on the duration of elementary synoptic processes (ESPs) in the Atlantic-European sector of the Northern Hemisphere has been studied. It has been found that solar cosmic ray (SCR) bursts result in an increase in the duration of ESPs, which belong to the western and meridional forms of atmospheric circulation. Forbush decreases in galactic cosmic rays (GCRs) are accompanied by an increase in the duration of ESPs, which belong to the meridional atmospheric circulation form, and in a decrease in the duration of ESPs, which are related to the western and eastern circulation forms. It has been assumed that the observed variations in the ESP duration are caused by the effect of short-period cosmic ray variations on the intensity of cyclonic processes at middle and high latitudes, namely, the regeneration of cyclones near the southeastern coast of Greenland after SCR bursts and the development of blocking anticyclones over the northeastern Atlantic, Europe, and Scandinavia during GCR Forbush decreases.  相似文献   

4.
Geomagnetism and Aeronomy - Stellar and galactic cosmic rays (SCR and GCR) are the primary factors influencing the radiation conditions near exoplanets. The GCR spectrum and its time variations are...  相似文献   

5.
An index of cosmic ray scintillation introduced previously is verified. This procedure has been performed within the scope of the long-term full-scale monitoring of galactic cosmic rays (GCRs) in the real time regime. The 5-min data of the global network of high-latitude neutron monitors at Tixie Bay (Apatity) and Oulu (Finland) stations during the last four solar cycles (cycles 20–23), i.e., during the entire period of data registration with a high (5 min) resolution, have been used. The relationship between the amplitude-frequency-time structure of a precursor in the GCR scintillation index and the soliton-like structure of the heliospheric current sheet during the disturbed period has been established. This indicates that the precursor is of a coherent origin. Only the presence of a coherent process—quasi-week variation—makes it fundamentally possible to predict heliospheric storms. Finally, the justifiability of the effective prediction of heliospheric storms (~80%) has been obtained based on the long-term cosmic ray monitoring during cycle 23.  相似文献   

6.
The production rate profiles of21Ne and22Ne as a function of depth in meteoroids due to spallation by solar flare cosmic rays (SCR) and galactic cosmic rays (GCR) are calculated and their dependence on size and composition of meteoroids has been evaluated. The GCR production rate at a given depth increases with size for radii<25cm and then decreases whereas the22Ne21Ne ratio (NeR) generally decreases with size and depth. The calculated GCR production rates and NeR are consistent with the measurements in several Chondrites. A plot of track production rate vs. NeR shows that some chondrites have NeR values smaller than those expected for their sizes. Thes obeervation suggestsat least a two-stage irradiation for such meteorites; the meteoroid exposure as a small body in the interplanetary space must have been preceded by exposure under deep shielding, possibly in its parent body.  相似文献   

7.
The accelerated particle energy spectra in different energy intervals (from 0.06 to 75.69 MeV n–1) have been constructed for various powerful flare events (1997–2006) with the appearance of solar cosmic rays (SCRs) based on the processing of data from the Advanced Composition Explorer (ACE) and WIND spacecraft. Flares were as a rule accompanied by coronal mass ejections. Different specific features in the particle spectra behavior, possibly those related to different acceleration processes, were revealed when the events developed. The Fe/O abundance ratio in different energy intervals during the disturbed development of flareinduced fluxes has been qualitatively estimated. It has been established that ground level event (GLE) fluxes represent an individual subclass of gradual events according to the character of Fe/O variations. The manifestations of the first ionization potential (FIP) effect in the composition of SCRs during their propagation have been qualitatively described.  相似文献   

8.
The paper deals with the relation of long-term variations of 10 GV galactic cosmic rays (GCR) to the global solar magnetic field and solar wind parameters. This study continues previous works, where the tilt of the heliospheric current sheet (HCS) and other solar-heliospheric parameters are successfully used to describe long-term variations of cosmic rays in the past two solar cycles. The novelty of the present work is the use of the HCS tilt and other parameters reconstructed from Hα observations of filaments for the period when direct global solar magnetic field observations were unavailable. Thus, we could extend the GCR simulation interval back to 1953. The analysis of data for 1953–1999 revealed a good correlation (the correlation coefficient >0.88) between the solar-heliospheric parameters and GCR in different cycles of solar activity. Moreover, the approach applied makes it possible to describe the behavior of cosmic rays in the epochs of solar maxima, which could not be done before. This indicates both the adequacy of the model and the reliability of the reconstructed global solar magnetic field parameters.  相似文献   

9.
On the basis of data from the Radio Solar Telescope Network (RSTN), as well as the Geostationary Operational Environmental Satellite (GOES) and the WIND spacecraft, for the period from 1989 to 2006 covering 107 flare events, we investigated the relationship between the intensity of solar cosmic rays and parameters of continuum radio bursts (25?C15400 MHz), as well as type II radio bursts in the meter and decahectometer wavelength ranges. Proton fluxes with energies E p > 1?100 MeV were calculated with regard to a reduced heliolongitude. The maximum correlation between solar cosmic rays and solar parameters of microwave bursts was 0.80. Its value was no more than 0.40 for the drift rate of type II bursts and 0.70 for the compression rate of coronal shock waves. Based on linear regression equations, we estimated the contribution of coronal shock waves to the acceleration of protons. We found that major acceleration processes occur in the area of burst energy release and complimentary processes occur at the fronts of coronal shock waves. The contribution of the latter to the acceleration process increases significantly with proton energy.  相似文献   

10.
提出了一个新的太阳宇宙线日 -地传输的数学模型 ,它包括日冕粒子分布源和行星际传播方程 .根据对太阳宇宙线耀斑黑子群特征和耀斑相的观测 ,提出了多极性黑子湮没的两阶段日冕传输过程和传输方程 ,得到了与观测特征一致的日冕粒子分布源 .日冕传输的第一阶段 ,和太阳耀斑脉冲相的时间相当 ,加速粒子通过扩散很快均匀地分布在耀斑区 ,形成所谓快传播区 .第二阶段 ,加速粒子向快传播区以外的日冕区扩散并向行星际空间逃逸 ,形成慢传播过程 .日冕传输模型的数值结果和日冕传输的观测特征符合 .太阳宇宙线的行星际传播采用三维正交均匀各向异性方程描述 .最后把模型的数值结果与 1 997年 9月 2 4日事件的SOHO(SolarandHeliosphericObservatory)观测资料作了比较 .能较好地符合 .  相似文献   

11.
Galactic cosmic rays (GCR) have been suggested as a possible contributory mechanism to cloud formation. If these are significant then, in addition to the similarity between long-term (years) changes in GCR and cloud cover, there should also be a similarity over shorter (days) time scales. This paper reports an analysis of changes in global cloud cover and GCR recorded at 3 hourly intervals over 22 years. There is a significant correlation between short-term changes in low cloud cover over northern and southern hemispheres, consistent with about 3% of the variation arising from common factors. However, GCR is not a major factor responsible for cloud cover changes. There is an association between short-term changes in low cloud cover and galactic cosmic radiation over a period of several days. This could arise if approximately 3% of the variations in cloud cover resulted from GCR.  相似文献   

12.
提出了一个新的太阳宇宙线日 -地传输的数学模型 ,它包括日冕粒子分布源和行星际传播方程 .根据对太阳宇宙线耀斑黑子群特征和耀斑相的观测 ,提出了多极性黑子湮没的两阶段日冕传输过程和传输方程 ,得到了与观测特征一致的日冕粒子分布源 .日冕传输的第一阶段 ,和太阳耀斑脉冲相的时间相当 ,加速粒子通过扩散很快均匀地分布在耀斑区 ,形成所谓快传播区 .第二阶段 ,加速粒子向快传播区以外的日冕区扩散并向行星际空间逃逸 ,形成慢传播过程 .日冕传输模型的数值结果和日冕传输的观测特征符合 .太阳宇宙线的行星际传播采用三维正交均匀各向异性方程描述 .最后把模型的数值结果与 1 997年 9月 2 4日事件的SOHO(SolarandHeliosphericObservatory)观测资料作了比较 .能较好地符合 .  相似文献   

13.
During the prolonged and deep minimum of solar activity between cycles 23 and 24, an unusual behavior of the heliospheric characteristics and increased intensity of galactic cosmic rays (GCRs) near the Earth’s orbit were observed. The maximum of the current solar cycle 24 is lower than the previous one, and the decline in solar and, therefore, heliospheric activity is expected to continue in the next cycle. In these conditions, it is important for an understanding of the process of GCR modulation in the heliosphere, as well as for applied purposes (evaluation of the radiation safety of planned space flights, etc.), to estimate quantitatively the possible GCR characteristics near the Earth in the upcoming solar minimum (~2019–2020). Our estimation is based on the prediction of the heliospheric characteristics that are important for cosmic ray modulation, as well as on numeric calculations of GCR intensity. Additionally, we consider the distribution of the intensity and other GCR characteristics in the heliosphere and discuss the intercycle variations in the GCR characteristics that are integral for the whole heliosphere (total energy, mean energy, and charge).  相似文献   

14.
Several authors have suggested that a link exists between the flux of galactic cosmic rays (GCR) and cloudiness. Here we review the evidence for such a connection from studies of cloud factors using both satellite and ground-based data. In particular, we search for evidence for the low cloud decrease predicted by the rising levels of solar activity and the low cloud-cosmic ray flux correlation indicated by satellite data. Sunshine and synoptic cloud records both indicate that the global total cloud cover has increased during the past century. This increase in total cloud cover argues against a dominating role by solar activity (via GCR) over cloud formation on centennial time scales. Either the predicted low cloud decrease has not occurred or the medium-high level cloud has increased to a greater extent than low cloud has decreased.As there is no accurate long term data available on low cloud behaviour during the last century, we are not able to totally dismiss the link between GCR and cloudiness, but we list a number of arguments for and against the proposed cosmic ray-cloud connection.  相似文献   

15.
The catalog of ground level enhancements of solar cosmic rays during cycles 21—23 of solar activity has been presented. The main properties, time distribution, and relation of these events to solar sources and proton enhancements observed on satellites have been studied.  相似文献   

16.
The observations of solar activity (average monthly values of the international sunspot numbers and areas, solar radioemission flux at a wavelength of 10.7 cm) and galactic cosmic ray (GCR) intensity (average monthly values of the count rate of an omnidirectional Geiger counter at a maximum of the transition curve in the regions of Moscow and Murmansk and differences between these values) have been studied. The main aim of the studies was to assess the possibility of using the series of GCR values as an additional type of instrumental observations to predict solar activity. The results of an analysis made it possible to assess the degree of interrelation between the studied time series and, thereby, to confirm that GCRs, together with the characteristics of sunspot formation and solar radioemission flux at a wavelength of 10.7 cm, can be used to predict solar activity. The development of the current solar cycle has been predicted. It is assumed that the duration of this cycle will exceed the average value.  相似文献   

17.
The currently available experimental data, among which the series of particle flux measurements on satellites are of crucial importance, have revealed a number of regularities pertaining to solar cosmic rays (SCRs). Based on these regularities, we have developed a probabilistic model of particle fluxes. This model not only provides a basis for determining radiation conditions in space flights and space weather impacts but also allows such situations as the occurrence of extreme SCR events in the quiet-Sun period in 2005–2006 to be predicted.  相似文献   

18.
We present a compelling similarity of impulsive nitrate enhancements observed in polar ice from the northern and southern hemispheres. This analysis concentrates on the period 1940–1950, during which time the first four recorded solar cosmic ray ground-level enhancements (GLEs) occurred. GLEs are strong solar proton events. We show that large and sudden enhancements in the nitrate records from both hemispheres were observed within weeks following the recorded solar cosmic ray ground-level event. The observation of impulsive nitrate enhancements simultaneously in both hemispheres shortly after a large fluence solar proton event is strong evidence in support of a causal connection and argues strongly for rapid transport of atmospheric nitrates generated through the polar atmosphere by energetic solar proton events.  相似文献   

19.
We perform spectral analysis of records of meteorological (temperature, humidity, pressure of the atmosphere) and electrical (strength of quasi-static electric field and electric conductivity of air) parameters observed simultaneously at the Paratunka observatory during the solar events of October 21–31, 2003. Also, we use simultaneous records of X-ray fluxes of solar radiation, galactic cosmic rays, and the horizontal component of the geomagnetic field. We show that the power spectra of the meteorological parameters under fine weather conditions involve oscillations with a period of thermal tidal waves (T ~ 12 and 24 h) caused by the influx of thermal radiation of the Sun. During strong solar flares and geomagnetic storm of October 29–31 with a prevailing component of T ~ 24 h, their spectra involve an additional component of T ~ 48 h (the period of planetary-scale waves). With the development of solar and geomagnetic activities, the power spectra of atmospheric electric conductivity and electric field stress involve components of both thermal tidal and planetary-scale waves, which vary highly by intensity. In the power spectra of galactic cosmic rays accompanying the strong solar flares, components with T ~ 48 h were dominant with the appearance of additional (weaker by intensity) components with T ~ 24 h. The simultaneous amplification of components with T ~ 48 h in the power spectra of electric conductivity and electric field strength provides evidence of the fact that the lower troposphere is mainly ionized by galactic cosmic rays during strong solar flares and geomagnetic storms. The specified oscillation period with T ~ 48 h in their spectra, as well as in the spectra of X-ray radiation of the sun, is apparently caused by the dynamics of solar and geomagnetic activities with this time scale.  相似文献   

20.
Qualitative estimates of the relative iron and oxygen ions (Fe/O) in flows of solar cosmic rays from impulsive and long-duration solar flares are obtained for different ion energy ranges. The Fe/O value serves as a measuring unit for the known FIP effect in the solar atmosphere. It is shown that the FIP effect is most evident (maximum Fe/O values) in impulsive events for ions at energies <2 MeV/n. In long-duration events, the Fe/O value gradually decreases in parallel with ion energy and its maximum values are observable in the area of relatively low energies. The comparison of some flare models provided grounds for a qualitative explanation of the Fe/O behavior in response to changes in ion energies for both classes of solar cosmic ray (SCR) events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号