首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Nova outbursts on rotating oblate white dwarfs   总被引:1,自引:0,他引:1  
A novel hypothesis is proposed in which the prolate geometry and latitudinal abundance gradients observed in nova ejecta are simultaneously explained as a natural consequence of the rotation and oblate distortion of the white dwarf. Thermonuclear runaway on the surface of an oblate rotating white dwarf is strongly affected by the local gravity, leading to stronger outbursts and faster outflows at the poles than in the equatorial regions. A unified scheme is presented which is capable of explaining the gross structures of the shells of classical novae, those 'recurrent novae' with giant companions, and symbiotic novae, which also show evidence for bipolar outbursts. It is shown that this hypothesis is capable of producing the observed geometry of the ejecta of the classical novae DQ Her 1934, V1500 Cyg 1975 and GK Per 1901, the recurrent nova RS Oph (1985 outburst), and the symbiotic nova HM Sge. Some observationally testable predictions which follow from this hypothesis are discussed.  相似文献   

2.
Taking advantage of the very precise de Jager et al. optical white dwarf orbit and spin ephemerides; ASCA , XMM–Newton and Chandra X-ray observations spread over 10 yr; and a cumulative 27-yr baseline, we have found that in recent years the white dwarf in AE Aqr is spinning down at a rate that is slightly faster than predicted by the de Jager et al. spin ephemeris. At the present time, the observed period evolution is consistent with either a cubic term in the spin ephemeris with     , which is inconsistent in sign and magnitude with magnetic dipole radiation losses, or an additional quadratic term with     , which is consistent with a modest increase in the accretion torques spinning down the white dwarf. Regular monitoring, in the optical, ultraviolet and/or X-rays, is required to track the evolution of the spin period of the white dwarf in AE Aqr.  相似文献   

3.
A period analysis of CCD unfiltered photometry of V4745 Sgr (Nova Sgr 2003 #1) performed during 23 nights in the years 2003–2005 is presented. The photometric data are modulated with a period of  0.20 782 ± 0.00 003 d (4.98 768 ± 0.00 072 h)  . Following the shape of the phased light curve and the presence of the periodicity in all data sets with no apparent change in its value, we interpret this periodicity as orbital in nature and this is consistent with a cataclysmic variable above the period gap. We found a probable short-term periodicity of  0.017 238 ± 0.000 037 d (24.82 272 ± 0.05 328 min)  which we interpret as the probable spin period of the white dwarf or the beat period between the orbital and spin period. Therefore, we propose that nova V4745 Sgr should be classified as an intermediate polar candidate, supporting the proposed link between transition-oscillation novae and intermediate polars. The mass–period relation for cataclysmic variables yields a secondary mass of about  0.52 ± 0.05 M  .  相似文献   

4.
We report on the time-dependent behaviour of ultraviolet spectral lines in Hubble Space Telescope Goddard High-Resolution Spectrograph data of the classical nova V603 Aql. In particular, episodic blueshifted absorption (extending to ∼−2500 km s−1) is present, with a variability time-scale down to ∼1 min. The data provide a rare opportunity to study the rapid evolution of absorption structures that may be associated with accretion-disc winds in cataclysmic variables. At least three absorption events are recorded (at blueward velocities only) over ∼5 h, each lasting ∼10–15 min. The derived velocity, acceleration and optical depth properties provide an empirical picture of stochastically variable structures in the outflow, with no evidence for short-term (less than ∼1 h) cyclic or modulated behaviour in the overall absorption properties. In contrast, the emission components of the ultraviolet resonance lines are very stable in velocity and strength in this low-inclination system. On at least two occasions there is an intriguing short-term 'flare' in the ultraviolet continuum flux (of up to ∼40 per cent). Though there is no clear one-to-one relation in these data between the continuum fluctuations and the occurrence of the absorption events, the time-scales for the two variable phenomena are essentially the same. The irregular absorption episodes in the ultraviolet data of V603 Aql presently defy a clear physical interpretation. Their overall characteristics are discussed in the context of instabilities in radiation-pressure-driven disc winds.  相似文献   

5.
Dwarf nova oscillations (DNOs) have been observed in a number of cataclysmic variables. I propose that these oscillations could be produced by a non-axisymmetric bulge at the transition between the optically thick disc and the optically thin boundary layer region. This would naturally explain the observed oscillation periods and the dependence of the oscillation amplitude on photon energy. The transition radius moves inward and outward with changing mass accretion rate, which explains the correlation between period and flux, and the time-scale for period variations. The underlying cause of the non-axisymmetry that produces the oscillations is not known, so it is not possible to predict the oscillation amplitude from first principles.  相似文献   

6.
We consider the effects of accretion stream overflow on the viscous dynamics of accretion discs in dwarf novae. If the stream from the secondary star is geometrically thick enough, some fraction of its material can flow over and under the disc. The mass and specific angular momentum of the stream are then deposited not only at the point of collision with the outer disc, but also at those radii in the inner disc with geometric heights that are large enough to intercept the residual stream, or near the radius where the disc has the same specific angular momentum as the stream. The overflowing stream can alter the behaviour of heating fronts and cooling fronts in the disc. If the mass fraction of the overflowing stream is of order tens of per cent, the deposition of mass in the inner parts of the disc is sufficient to change the character of the eruption light curves significantly.  相似文献   

7.
We present charge-coupled device (CCD) photometry of WX Cet in quiescence. Apart from the flickering which is characteristic to cataclysmic binaries, our data also reveal the periodic modulation of the brightness of WX Cet with a period of 0.058 27±0.000 02, with further restrictions on it. This period is derived from our data alone, but it agrees, within errors, with the spectroscopic period of Thorstensen et al. Hence the most likely spectroscopic and photometric periods are identical and correspond to the orbital motion. Our data were obtained during two observational seasons in 1990 and 1998. In the former season we observed what appears to be the ordinary orbital hump. However, in 1998 we observed both single- and double-hump orbital modulation. Several authors have noted the similarities between WX Cet and WZ Sge: the occurrence of rare, large-amplitude, long-lasting superoutbursts with superhump modulation, and the slow rate of decline. Both stars have similar, extremely short orbital periods. We recorded further similarities: the orbital modulation of brightness, with switching between single- and double-hump light curves. Patterson noticed that superhump excesses in WX Cet and WZ Sge are different in that they may fall on different evolutionary branches (pre-period minimum versus post-period minimum). We demonstrate that the masses of their white dwarfs differ by a factor of two.  相似文献   

8.
We report on the discovery of a 25.5-min superhump period for the suspected helium dwarf nova system KL Draconis in a high state. The presence of superhumps combined with the previously observed helium spectrum and large-amplitude photometric variations confirm that KL Dra is an AM CVn system similar to CR Bootis, V803 Cen and CP Eridani. We also find a low-state photometric period at 25.0 min that we suggest may be the orbital period. With this assumption, we estimate   q =0.075  ,   M 1=0.76 M  and   M 2=0.057 M  .  相似文献   

9.
We have extracted spectra of 20 magnetic cataclysmic variables (mCVs) from the RXTE archive and best fitted them using the X-ray continuum method of Cropper et al. to determine the mass of the accreting white dwarf in each system. We find evidence that the mass distribution of these mCVs is significantly different from that of non-magnetic isolated white dwarfs, with the white dwarfs in mCVs being biased towards higher masses. It is unclear if this effect is a result of selection or whether this reflects a real difference in the parent populations.  相似文献   

10.
We determine the mass of the white dwarf in the eclipsing intermediate polar XY Ari following the method given in Cropper, Ramsay &38; Wu using a multitemperature bremsstrahlung model. By fitting X-ray spectra from Ginga RXTE and ASCA we find that the mean of the best fits to the data taken using different detectors is M wd = 1.28 ± 0.04 M⊙. This figure is too high to be consistent with the mass of the white dwarf found by Hellier from X-ray eclipse timings. There are also small systematic differences between the masses derived using different X-ray satellites.  相似文献   

11.
We present spectroscopy of the eclipsing recurrent nova U Sco. The radial velocity semi-amplitude of the primary star was found to be     from the motion of the wings of the He  ii λ 4686-Å emission line. By detecting weak absorption features from the secondary star, we find its radial velocity semi-amplitude to be     . From these parameters, we obtain a mass of     for the white dwarf primary star and a mass of     for the secondary star. The radius of the secondary is calculated to be     , confirming that it is evolved. The inclination of the system is calculated to be     , consistent with the deep eclipse seen in the light-curves. The helium emission lines are double-peaked, with the blueshifted regions of the disc being eclipsed prior to the redshifted regions, clearly indicating the presence of an accretion disc. The high mass of the white dwarf is consistent with the thermonuclear runaway model of recurrent nova outbursts, and confirms that U Sco is the best Type Ia supernova progenitor currently known. We predict that U Sco is likely to explode within ∼700 000 yr.  相似文献   

12.
13.
14.
We have detected coherent oscillations, at multiple frequencies, in the line and continuum emission of the eclipsing dwarf nova V2051 Ophiuchi using the 10-m Keck II telescope. Our own novel data acquisition system allowed us to obtain very fast spectroscopy using a continuous readout of the CCD on the LRIS spectrograph. This is the first time that dwarf nova oscillations have been detected and resolved in the emission lines. The accretion disc is highly asymmetric with a stronger contribution from the blueshifted side of the disc during our observations. The disc extends from close to the white dwarf out to the outer regions of the primary Roche lobe.
Continuum oscillations at 56.12 s and its first harmonic at 28.06 s are most likely to originate on the surface of a spinning white dwarf with the fundamental period corresponding to the spin period. Balmer and helium emission lines oscillate with a period of 29.77 s at a mean amplitude of 1.9 per cent. The line kinematics and the eclipse constraints indicate an origin in the accretion disc at a radius of 12±2 R wd. The amplitude of the emission-line oscillation modulates (0–4 per cent) at a period of 488 s, corresponding to the Kepler period at R =12 R wd. This modulation is caused by the beating between the white dwarf spin and the orbital motion in the disc.
The observed emission-line oscillations cannot be explained by a truncated disc as in the intermediate polars. The observations suggest a non-axisymmetric bulge in the disc, orbiting at 12 R wd, is required. The close correspondence between the location of the oscillations and the circularization radius of the system suggests that stream overflow effects may be of relevance.  相似文献   

15.
16.
17.
18.
We present an analysis of X-ray and ultraviolet (UV) data of the dwarf nova VW Hyi that were obtained with XMM–Newton during the quiescent state. The X-ray spectrum indicates the presence of an optically thin plasma in the boundary layer that cools as it settles on to the white dwarf. The plasma has a continuous temperature distribution that is well described by a power law or a cooling flow model with a maximum temperature of 6–8 keV. We estimate from the X-ray spectrum a boundary layer luminosity of  8 × 1030 erg s-1  , which is only 20 per cent of the disc luminosity. The rate of accretion on to the white dwarf is  5 × 10−12 M yr−1  , about half of the rate in the disc. From the high-resolution X-ray spectra, we estimate that the X-ray emitting part of the boundary layer is rotating with a velocity of 540 km s−1, which is close to the rotation velocity of the white dwarf but is significantly smaller than the Keplerian velocity. We detect a 60-s quasi-periodic oscillation of the X-ray flux, which is likely to be due to the rotation of the boundary layer. The X-ray and the UV flux show strong variability on a time-scale of ∼1500 s. We find that the variability in the two bands is correlated and that the X-ray fluctuations are delayed by ∼100 s. The correlation indicates that the variable UV flux is emitted near the transition region between the disc and the boundary layer and that accretion rate fluctuations in this region are propagated to the X-ray emitting part of the boundary layer within ∼100 s. An orbital modulation of the X-ray flux suggests that the inner accretion disc is tilted with respect to the orbital plane. The elemental abundances in the boundary layer are close to their solar values.  相似文献   

19.
The analyses of X-ray emission from classical novae during the outburst stage have shown that the soft X-ray emission below 1 keV, which is thought to originate from the photosphere of the white dwarf, is inconsistent with the simple blackbody model of emission. Thus, ROSAT Position Sensitive Proportional Counter (PSPC) archival data of the classical Nova Mus 1983 (GQ Mus) have been re-analysed in order to understand the spectral development in the X-ray wavelengths during the outburst stage. The X-ray spectra are fitted with the hot white dwarf (WD) atmosphere emission models developed for the remnants of classical novae near the Eddington luminosity. The post-outburst X-ray spectra of the remnant white dwarf are examined in the context of evolution on the Hertzsprung–Russell diagram using C–O enhanced atmosphere models. The data obtained in 1991 August (during the ROSAT All Sky Survey) indicate that the effective temperature is         . The 1992 February data show that the white dwarf had reached an effective temperature in the range         with an unabsorbed X-ray flux (i.e. ∼ bolometric flux) between     and     . We show that the H burning at the surface of the WD had most likely ceased at the time of the X-ray observations. Only the 1991 August data show evidence for ongoing H burning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号