共查询到18条相似文献,搜索用时 62 毫秒
1.
两次东北冷涡天气异同的成因分析 总被引:3,自引:1,他引:3
2006年7月5日和2006年6月16日是两次冷涡位置相似,造成的天气不尽相同的东北冷涡天气过程.利用常规气象资料、卫星云图、自动站资料、NCEP再分析资料(水平分辨率1°×1°,一天4次),对两次天气过程的大尺度环流场、云图演变、能量场、动力场进行了对比分析.结果表明:同在东北冷涡天气背景下,由于中低层温度场配置不同、上下游系统强弱不同,导致天气不同;东北冷涡云带尾部的云团以"前消后长"的传播形式向前传播;强对流天气与θse高能区的密集带、SI指数场的负值区、地面中尺度辐合线的偏南气流、水汽能量的大值区及CAPE的高值区有较好的对应关系. 相似文献
2.
针对1次由东北冷涡产生的辽西暴雨天气过程,利用T213再分析资料,应用MM5模式对东北冷涡暴雨过程进行了数值模拟试验。结果表明:东北冷涡具有明显的移动特点;MM5模式对东北冷涡产生的暴雨强对流天气具有一定的模拟效果。 相似文献
3.
一次东北冷涡不同阶段强对流天气特征对比分析 总被引:3,自引:0,他引:3
利用NCAR/NCEP再分析(1?×1?)资料、区域自动站观测、FY-2D/2E卫星观测和GPS/MET水汽监测等资料,对2012年6月7-18日长春地区发生在同一东北冷涡系统不同演变阶段的3次强对流天气进行对比诊断分析。结果表明:在冷涡形成期,高低空急流耦合产生的次级环流上升支,触发锋前不稳定能量释放,导致中β尺度孤立深厚湿对流系统出现;在冷涡发展期,对流层高层干冷空气向对流层中下层侵入,形成高空露点锋,触发有组织的中α尺度对流系统;在冷涡消亡期,低涡减弱为高空槽并快速东移,其后部冷空气置于低层大范围暖湿空气之上,地面中尺度辐合触发不稳定能量释放,形成中β尺度对流系统。 相似文献
4.
东北冷涡中尺度天气的背景分析 总被引:3,自引:0,他引:3
通过大量的个例分析,统计得出东北冷涡造成中尺度天气系统和天气背景的条件,结论可供分析和预报东北冷涡中对流天气的可能性和落区时参考。 相似文献
5.
利用地面观测资料、天气雷达资料和ECMWF-ERA5逐小时0.25°×0.25°再分析资料,主要从环境条件和触发机制两个方面,对2019年6月8日(简称过程A)、9日(简称过程B)影响江苏省北部的两次冷涡型强对流天气过程进行了对比分析。结果表明: 过程A是由暖湿气流引起的短时强降水伴随雷暴大风的湿对流天气;过程B则是在高层西北气流下由干冷平流强迫引起的大风冰雹伴随短时强降水的混合对流天气。过程A,由暖湿气流形成强对流不稳定层结,垂直风切变强度一般,湿层深厚,有利于短时强降水的发生;过程B,中高层的较强干冷平流叠加在低层暖湿平流上而形成强对流不稳定层结,强的垂直风切变位于中低层,配合较强的动力抬升条件,有利于冰雹的发生。两次天气过程的触发机制都是地面辐合线。过程A的预报重点为水汽条件和来自上游的对流系统与当地地面辐合线的耦合;过程B的预报重点为大气的不稳定度和冷涡后部冷空气的干侵入与地面辐合线的耦合。 相似文献
6.
东北冷涡过程中的飑线分析 总被引:3,自引:0,他引:3
利用哈尔滨站的飑线资料和常规高空、地面观测资料,对冷涡过程中的飑线从天气尺度环流背景、大尺度动力条件和中尺度天气系统等几个方面进行了分析。结果指出:①飑线发生在冷涡发展较强阶段,②飑线发生在冷涡浊温压场结构不对称性较强的锋区上,③层结不稳定、低层水汽输送与辐合、强烈的上升运动等是必要的天气尺度条件,④地面上有明显的中尺度系统,⑤飑线发生时天气尺度动能明显向中尺度系统转换。 相似文献
7.
利用呼伦贝尔市CIMISS系统实况资料,统计分析了2010—2021年5—9月东北冷涡背景下的强对流天气时空分布及物理量参数特征。结果表明:(1)5月雷暴大风次数最多,6月冰雹次数最多,6—8月是短时强降水集中发生期,尤以8月次数最多。(2)强对流天气主要出现在12:00—20:00,其中短时强降水每个时次均有发生,但雷暴大风与冰雹天气在21:00—次日08:00基本没有发生过。(3)大兴安岭西部雷暴大风站次较多;大兴安岭东北部、岭上及岭西北的冰雹站次较多;短时强降水与强对流天气空间分布特征较为一致,均是大兴安岭岭上南段与岭东的站次较多。(4)雷暴大风天气的风速多以17.2~20.7 m·s-1为主;短时强降水量级为20.0~29.9 mm的站次占总站次的74.3%;持续时间小于5 min冰雹居多,直径小于5 mm冰雹的站次占总站次的49.1%。(5)短时强降水850 hPa的比湿、水汽通量、水汽通量散度的物理量参数均值均大于冰雹、雷暴大风;短时强降水K指数均值大于冰雹、雷暴大风,T850-T500均值大于26℃,短时强... 相似文献
8.
一次东北冷涡产生的突发性暴雨分析 总被引:1,自引:0,他引:1
用常规天气图、云图及单站探空资料,对1996年7月6日夜间到7日凌晨生成于渤海的由东北冷涡引发的强对流单体的环境条件进行了诊断分析。结果表明:这个强对流单体产生于东北冷涡南部,地面弱冷锋附近,产生前,环境大气已处于对流不稳定状态,东北冷涡的南压和移动方向,冷涡横槽的转竖,山东半岛北海岸的对流不稳定环境及大量不稳定能量的贮藏,有利于强对流单体在山东半岛北海岸的发展和加强。 相似文献
9.
10.
从深对流发展必须满足的对流层低层有足够强的湿层、层结不稳定和足够强的触发机制出发,对2002年7月11~15日由东北冷涡诱发的一次连续强风暴生成的环境条件进行了诊断分析。结果表明:低层暖湿条件是冷涡强对流预报的关键,强大的冷涡由于冷性层结深厚难以诱发强的对流性天气,而其分裂的次涡度中心或弱的冷性低涡配合低层暖湿气流常常产生突发性强对流性天气;强的风垂直切变引发的斜压不稳定和垂直运动是强对流触发和维持的重要条件,风暴发生前边界层到500 hPa风向随高度顺转超过90°,随着对流性天气的发展,850 hPa以上风垂直切变逐渐减小,而850 hPa以下可能受低层冷丘产生中高压的影响,切变有增大的趋势;冷涡诱发的强对流性天气常常位于高空急流出口区左侧,但在实际预报业务中需要配合散度场来进行综合判断。 相似文献
11.
利用1961—2017年广西91个气象观测站逐日降水量资料,通过定义广西区域性暴雨,采用线性趋势计算、低通滤波等方法,统计分析了广西区域性暴雨过程的变化特征。结果表明:广西区域性暴雨过程发生频率较高,全年各月均可有区域性暴雨过程出现,5—8月为多发期,出现次数占全年总数的74.2%;持续天数在5 d以上的区域性暴雨过程主要出现在6—8月,以6月最多。近57 a,广西年及秋季区域性暴雨过程频次呈显著增加趋势,20世纪90年代以来区域性暴雨过程总体偏多、强度偏强,暴雨范围在30站以上的过程明显增多;近10 a秋季过程频次偏多、强度偏强特征尤为明显。 相似文献
12.
应用常规地面观测资料、区域加密站降水资料、NCEP再分析资料(水平分辨率1°×1°,间隔为6 h),对2009年6月8日发生在华北的一次强对流暴雨过程的湿位涡场进行了诊断分析。结果表明:湿位涡的分布对强对流暴雨的发生、落区有较强的指示性作用,MPV1“正负值区垂直叠加”的配置是强对流暴雨发生、发展的有利形势。暴雨出现在850 hPa上MPV、MPV1、MPV2正负值过渡带附近,是对流不稳定与斜压不稳定相结合的地区。θse的等值线接近垂直的地区有利于垂直涡度的增长,亦有利于强降水发生。 相似文献
13.
应用常规地面观测资料、区域加密站降水资料、NCEP再分析资料(水平分辨率为1°×1°,时间间隔为6 h),对2009年6月8日发生在华北的一次强对流暴雨过程的湿位涡场进行了诊断分析。结果表明:湿位涡的分布对强对流暴雨的发生、落区有较强的指示性作用,MPV1"正负值区垂直叠加"的配置是强对流暴雨发生、发展的有利形势。暴雨出现在850 hPa上MPV、MPV1、MPV2正负值过渡带附近,是对流不稳定与斜压不稳定相结合的地区。θse等值线接近垂直的地区有利于垂直涡度的增长,亦有利于强降水发生。 相似文献
14.
利用常规观测资料、NCEP 1°×1°间隔6 h再分析资料、区域加密站资料、卫星云图和雷达资料,对2015年5月6日(简称“05.06”)和8月30日(简称“08.30”)河南两次东北冷涡型强对流天气过程的系统配置、环境条件、中尺度特征等进行了详细分析。结果表明:(1)两次过程均发生在东北冷涡稳定维持下的环流背景下,“05.06”过程是在高层西北气流下由干冷平流强迫引起的大风冰雹伴随短时强降水的混合对流,“08.30”过程则由横槽南下及暖湿气流引起以短时强降水为主伴有大风的湿对流。(2)“05.06”过程中高层有较强的干冷平流,叠加在低层暖湿平流上,形成了强对流不稳定层结,强的垂直风切变位于中低层,配合较强的动力抬升条件,有利于冰雹发生发展;“08.30”过程则类似准正压类强对流,弱暖平流抬升配合上层冷平流形成不稳定,垂直风切变小,湿层较厚,有利于短时强降水的发生。(3)两次过程均发生在地面温度、露点大值区及高梯度区,高温高湿为其提供了能量和水汽条件,地面辐合线是其触发抬升机制。“05.06”过程冷暖交汇明显,干湿对比显著,是在冷暖交汇和干湿交汇共同有利环境下产生大风冰雹天气;“08.30”过程则是在高湿区中由冷暖交汇产生对流不稳定,以短时强降水为主。(4)两次过程均由发展旺盛的中β尺度对流云团自北向南移动产生,云顶
15.
“080825”上海大暴雨综合分析 总被引:9,自引:5,他引:9
利用常规天气资料以及非常规高密度观测资料、物理量场资料、云图资料以及PWV可降水汽资料等,对2008年8月25日上海地区的强对流暴雨进行了分析.分析表明三支气流在长江中下游及江南北部地区交汇有利于低涡的生成发展,为上海强对流天气的发生提供了有利的天气背景条件;中低纬度系统相互作用为上海强对流暴雨天气提供了水汽、能量和触发条件.在大暴雨开始前12~24小时,水汽、能量和中低层大的正涡度有向长江下游汇合的趋势,在上海附近逐渐形成强的位势不稳定.上升运动集中在1个经度左右非常窄的地区,是产生特强降水原因之一.GPS/PWV探测可以及时了解大气水汽总量的变化,仅靠本地上空的水汽全部落下是远远不够的,还需要大量的水汽辐合.对流云团合并,云核合并后强烈发展移动缓慢同样是产生特强降水原因之一,在对流云团的后侧,对应温度梯度最大,是降水最强的地方. 相似文献
16.
东北冷涡是对流层发生在东北亚区域深厚的冷性低压系统,它的活动异常往往会给夏季降水预测带来很大的不确定性。为改进降水预测技术,使用1961—2021年中国2400多站降水数据和NCEP/NCAR再分析环流数据等资料,采用机器自动识别、相关分析和回归重构等方法,分析了东北冷涡气候特征及其对海河流域夏季降水的影响。主要结果如下:(1)东北冷涡发生时间和地理位置具有明显的气候特征。东北冷涡一年四季均可出现,夏季冷涡天数最多。月份上,5—9月冷涡过程明显偏多,其中6月过程和天数最多。夏季,冷涡中心位置在6月最偏南,7月最偏西,8月最偏东北。(2)海河流域夏季降水与全年或夏季的东北冷涡天数整体上不存在明显相关,但与夏季西涡(<120°E)天数存在显著的正相关,与夏季东涡(≥120°E)天数存在显著的负相关。夏季西涡活动多,有利于海河流域夏季降水偏多;夏季东涡活动多,可能会造成海河流域夏季降水偏少。(3)东北冷涡可通过动力环流异常和水汽输送异常影响海河流域夏季降水。西涡出现时,会造成200 hPa层西风急流在海河流域上空显著增强,500 hPa层海河流域处于“东高西低”环流型槽前的上升区,850 hPa层东亚地区出现偏南风异常,增强了向海河流域的水汽输送。东涡出现时,200 hPa层西风急流在海河流域上空无明显异常,500 hPa层海河流域处于 “东低西高”环流型高压脊前的辐散区,850 hPa东亚地区无明显水汽输送异常。 相似文献
17.
两次台风远距离暴雨过程的对比分析 总被引:2,自引:0,他引:2
利用常规高空、地面气象观测资料以及NCEP/NCAR1°×1°逐6h再分析资料,对2010年7月23—24日和2011年9月17—18日两次台风远距离暴雨进行对比分析。结果表明:两次暴雨过程虽然都受台风影响,但影响方式截然不同。前着台风直接通过低空急流将其附近的水汽、能量输送到暴雨区,降水效率高、强度大。后着台风作为扰动源,产生了类东风扰动并向西传播,在四川东部和青藏高原东部与西风带系统相遇,增大暴雨区气压梯度,诱发低空急流,增强暴雨区水汽辐合,同时延长西风带系统在暴雨区的停滞时间,造成降水时间延长。 相似文献
18.
利用常规观测资料、自动气象站降水量以及NCEP FNL再分析资料,对2019年8月6—8日一次持续性东北冷涡暴雨过程成因及特征进行诊断分析。结果表明:暖锋稳定维持在同一区域且不断锋生造成持续性暴雨。强降水出现在850 hPa锋区南侧,呈东西带状分布,暴雨与最大锋生区相对应。大气中层为弱对流不稳定,有利于强降水的维持。高层正位涡大值区向下层扩展,促使中低层涡度增加,在暖锋前形成正涡柱结构,在地面锋区上诱发出气旋性环流,有低压新生。锋区低层的强辐合区位于迎风坡,锋面辐合抬升和地形强迫抬升的共同作用,使低层强辐合区持续3 d维持在同一区域。冷涡东移减弱阶段,台风携带大量暖湿空气北上促使锋区北抬,强降水维持。冷涡新生和维持阶段,T_(850-500)≥25℃,K≥35℃,且有一定的对流有效位能,对暴雨的出现有较好的指示意义。暴雨区东边界的水汽输入最为关键,占到整个水汽输入总量的一半,尽管南边界的总水汽输入量不大,但集中出现在第一个暴雨日,是6日暴雨过程主要水汽贡献者。 相似文献