首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partition, not kinetics, ultimately determines the concentration of highly soluble gases in cloud droplets. Partition equations are formulated and applied to idealized air-mass thunderclouds and precipitating stratus. Contribution to aqueous concentrations from sub-cloud scavenging of highly soluble gases is estimated at between 10 and 20% under relatively unpolluted conditions. Data indicate that evaporation can produce enhancements in concentration of as much as a factor of 3. The calculations give large-scale mean coefficients of wet removal of highly soluble gases of about 2.8×10-6 s-1 (4-day residence time) for air-mass thunderclouds and precipitating stratus. Removal is so effective that the mean scale heights of these gases should be decreased to 2 km or less. The criterion of high solubility in this paper is that K H (Henry's Law coefficient) > 105 mol l-1 atm-1. Gases that are effectively highly soluble include HCl, HNO3, H2SO4, H2O2, NH3 in acid droplets, SO2 in oxidizing droplets (and probably some light amines and sulfonic acids), but not SO2 in the absence of oxidants, nor HCHO. A variation of removal coefficient and scale height with solubility is presented. A comparison of atmospheric NH3 concentrations deduced from rain NH4 + and measured directly gives reasonable agreement.  相似文献   

2.
A model with spectral microphysics was developed to describe the scavenging of nitrate aerosol particles and HNO3 gas. This model was incorporated into the dynamic framework of an entraining air parcel model with which we computed the uptake of nitrate by cloud drops whose size distribution changes with time because of condensation, collision-coalescence and break-up. Significant differences were found between the scavenging behavior of nitrate and our former results on the scavenging behavior of sulfate. These reflect the following chemical and microphysical differences between the two systems:
  1. nitrate particles occur in a larger size range than sulfate particles.
  2. HNO3 has a much greater solubility than SO2 and is taken up irreversibly inside the drops in contrast to SO2.
  3. nitric acid in the cloud water is formed directly on uptake of HNO3 gas whereas on uptake of SO2 sulfuric acid is formed only after the reaction with oxidizing agents such as e.g., H2O2 or O3.
  4. nitrate resulting from uptake of HNO3 is confined mainly to small drops, whereas sulfate resulting from uptake of SO2 is most concentrated in the largest, oldest drops, which have had the greatest time for reaction.
Sensitivity studies showed that the nitrate concentration of small drops is significantly affected by the mass accommodation coefficient.  相似文献   

3.
With the global Chemistry-Transport model MATCHsensitivity simulations were performed to determinethe degree to which especially upward transport ofgases from the earth's surface is limited byconvective and large-scale precipitation scavenging.When only dissolution of species in the liquid phaseis taken into account, mixing ratio reductions in themiddle and upper troposphere by 10% arecalculated for gases with a Henry's Law constant H of103 mol/l/atm. The removal increases to 50% forH = 104 mol/l/atm, and to 90% for H =105 mol/l/atm. We also consider scavenging by theice phase, which is generally much less efficient thanby the aqueous phase. In fact, rejection of gases fromfreezing water droplets may be a source of trace gasat higher altitudes.H2O2 and the strong acids (H2SO4,HNO3, HCl, HBr, HI) have such large solubilitiesthat they become largely removed by precipitation.When significant concentrations of these gases andsulfate aerosol exist above the liquid water domain ofthe atmosphere, they have likely been produced thereor at higher altitudes, although some could have comefrom trace gas rejection from ice particles or fromevaporating hydrometeors. Several other gases areaffected by precipitation, but not strongly enough toprevent fractional transfer to the middle and uppertroposphere: e.g., HNO4, HNO2 at pH 5,CH2O, the organic acids at pH 6,CH3SOCH3, HOCl, HOBr, and HOI. NH3 islargely removed by liquid phase scavenging at pH 7 and SO2 atpH 7. At pH less thanabout 6, upward transport of SO2 should largelydepend on the efficiency of oxidation processes in thewater droplets by O3 and H2O2.Most gases have solubilities which are too low forsignificant precipitation scavenging and aqueous phaseoxidation to occur. This holds, e.g., for O3, CO,the hydrocarbons, NO, NO2, HCN, CH3CN,CH3SCH3, CH3O2H, CH3CHOandhigher aldehydes, CH3OH and higher alcohols,peroxyacetylnitrate (PAN), CH3COCH3 andother ketones (note that some of these are not listedin Table I because their solubilities are below 10mol/l/atm). Especially for the short-lived gases,transfer from the boundary layer to the middle andupper troposphere is actually promoted by the enhancedupward transport that occurs in clouds.  相似文献   

4.
The role of trace gases and aerosol particles in the control of sulfur and nitrogen levels in atmospheric precipitation is estimated on the basis of the enrichment factor in the precipitation of these elements relative to particulate matter in the air. By using air and precipitation chemistry data obtained at a Hungarian background air pollution station (K-puszta) it is found that the fraction of ammonium, nitrate and sulfate in precipitation, due to the removal of particulate matter is at least 59, 27 and 31%, respectively. The relationship between wet depositions and air concentrations of different species is determined statistically by applying daily data set. The regression equations obtained make the estimation of the sub-cloud scavenging ratios possible and they give some information on the magnitude of in-cloud scavenging processes. The results show that the in-cloud scavenging is a determining factor for precipitation sulfate, while it is relatively unimportant in the case of ammonium. The sub-cloud scavening of NO2 and SO2 is not too significant. However, for HNO3, and NH3 it is an effective process. The sub-cloud scavenging ratio of sulfur and nitrogen-containing particles varies around 0.25×106.  相似文献   

5.
We suggest a one-dimensional model of precipitation scavenging of soluble gaseous pollutants by non-evaporating and evaporating droplets that is valid for arbitrary initial vertical distribution of soluble trace gases in the atmosphere. It is shown that for low gradients of soluble trace gases in the atmosphere, scavenging of gaseous pollutants is governed by a linear wave equation that describes propagation of a wave in one direction. The derived equation is solved by the method of characteristics. Scavenging coefficient and the rates of precipitation scavenging are calculated for wet removal of sulfur dioxide (SO2) and ammonia (NH3) using measured initial distributions of trace gases. It is shown that scavenging coefficient for arbitrary initial vertical distribution of soluble trace gases in the atmosphere is non-stationary and height-dependent. In case of exponential initial distribution of soluble trace gases in the atmosphere, scavenging coefficient for non-evaporating droplets in the region between the ground and the position of a scavenging front is a product of rainfall rate, solubility parameter, and the growth constant in the formula for the initial profile of a soluble trace gas in the atmosphere. This expression yields the same estimate of scavenging coefficient for sulfur dioxide scavenging by rain as field estimates presented in McMahon and Denison (1979). It is demonstrated that the smaller the slope of the concentration profile the higher the value of a scavenging coefficient.  相似文献   

6.
An in-cloud scavenging case study of the major ions (NH4 +, SO4 2- and NO3 -) determining the cloudwater composition at a mountain site (1620 m.a.s.l.) is presented. A comparison between in-cloud measurements of the cloudwater composition, liquid water content, gas concentrations and aerosol concentrations and pre-cloud gas and aerosol concentrations yields the following results. Cloudwater concentrations resulted from scavenging of about half of the available NH3, aerosol NH4 +, aerosol NO3 -, and aerosol SO4 2-. Approximately a third of the SO2 was scavenged by the cloudwater and oxidized to SO4 2-. Cloud acidity during the first two hours of cloud interception (pH 3.24) was determined mostly by the scavenged gases (NH3, SO2, and HNO3); aerosol contributions to the acidity were found to be small. Observations of gas and aerosol concentrations at three elevations prior to several winter precipitation events indicated that NH3 concentrations are typically half (12–80 %) of the total (gas and aerosol) N (-III) concentrations. HNO3 typically is present at much lower concentrations (1–55 %) than aerosol NO3 -. Concentrations of SO2 are a substantial component of total sulfur, with concentrations averaging 60 % (14–76 %) of the total S (IV and VI).  相似文献   

7.
The acidification of precipitation and the wet removal of pollutants in South China in spring are evaluated by using a one dimensional, time-dependent, physico-chemical model of stratiform clouds. The results are consistent with the mean field data. In the typical condition, the in-cloud scavenging of gases and aerosols is the major removal process at the begining of rainfall, then fractions of below-cloud scavenging of S(VI) from S(IV) oxidation, NH3, HNO3 and particles increase gradually. It can be treated as an irreversible process. Numerical tests show that the concentration of oxidants, H2O2 can affect wet removal of SO2, as well as the formation and deposition amount of S(VI). The convergence of airflow can compensate partially the depletion of pollutants by wet removal.  相似文献   

8.
无锡梅雨期湿沉降综合分析   总被引:2,自引:0,他引:2  
苏艳  刘端阳  彭华青  周彬  赵兵 《气象科学》2016,36(4):547-555
利用2008—2014年梅雨期间酸雨观测资料及2014年6月16—27日降水个例加密采样资料,结合大气污染物资料分析了近7 a无锡梅雨期酸雨特征,研究降水过程中空气污染物、p H值、电导率的变化及降水对污染物的清除作用。结果表明:无锡市梅雨期酸雨年平均p H值呈现逐年递增趋势。降水过程中,颗粒物质量浓度显著降低;气体浓度变化受其自身日变化及排放源影响大于雨水的清除作用;样品的p H值、K值每个过程变化并不一致,K值变化与颗粒物质量浓度变化大致保持一致。降水、风对颗粒物质量浓度影响大于对气体浓度的影响。长时间连续降水时,降水对颗粒污染物的清除存在极限。小时雨量在0~0.5 mm时,降水对颗粒物浓度做负清除,其值反而略有增加;小时雨量在0.6~5.0 mm时,降水对颗粒物质量浓度做正清除;小时雨量达到5.1 mm及以上时,对PM_(2.5)和PM_(2.5-10)做正清除,对PM_(10)做负清除。降水对SO_2有稀释清除作用;对NO_2的稀释作用取决于其开始浓度值;对CO、O_3的清除作用不显著。  相似文献   

9.
为了深入了解发生在武汉地区一次重雾霾天气过程的气象条件、污染源和污染物的湿清除特征,本文利用空气质量监测资料、地面观测资料和遥感火点监测资料和实测雨滴谱资料,详细分析了这次过程。结果表明:此次持续10 d的重雾霾天气过程发生在高压天气系统和静风条件下,辐射降温形成的稳定逆温边界层结构有利于污染气溶胶的积累和雾霾的形成和发展,尤其是来自南方持续不断的湿平流使雾霾天气得以长时间持续和发展,整个雾霾天气期间能见度均小于2 km,最低能见度不足50 m。2014年11月23~24日降水过程对此类污染物有明显的清除效果,清除率最高的是颗粒物污染,NO_2、SO_2和CO次之,最差的是O_3,通过与Scott(1982)按平均碰并系数E(E=0.65)得到的清除率和雨强的关系比较,武汉地区稳定性降水对气溶胶的平均碰并系数可取0.25~0.35。  相似文献   

10.
We investigated the partitioning of trace substances during the phase transition from supercooled to mixed-phase cloud induced by artificial seeding. Simultaneous determination of the concentrations of H2O2, NH3 and black carbon (BC) in both condensed and interstitial phases with high time resolution showed that the three species undergo different behaviour in the presence of a mixture of ice crystals and supercooled droplets. Both H2O2 and NH3 are efficiently scavenged by growing ice crystals, whereas BC stayed predominantly in the interstitial phase. In addition, the scavenging of H2O2 is driven by co-condensation with water vapour onto ice crystals while NH3 uptake into the ice phase is more efficient than co-condensation alone. The high solubility of NH4+ in the ice could explain this result. Finally, it appears that the H2O2–SO2 reaction is very slow in the ice phase with respect to the liquid phase. Our results are directly applicable for clouds undergoing limited riming.  相似文献   

11.
Transport of trace gases within the gas phase to a cloud or a sulphate aerosol droplet proceeds by molecular diffusion at the gas-liquid interface. An accurate determination of the molecular diffusion coefficient has a direct bearing on estimates of trace gas uptake and scavenging. A literature search revealed that this parameter is often chosen rather arbitrarily and the choice of a particular value is constrained by the availability of experimental data which are usually available at one atmospheric pressure under laboratory conditions. Since the process of trace gas transport to droplets occur at heights much above the ground level, it is important to determine an accurate value of the diffusion coefficient at varying levels in the atmosphere. This was achieved theoretically by estimating diffusivities for some important trace gases under stratospheric conditions by a Lennard-Jones method. Molecular diffusivity of 22 trace gases (including ClONO2, HNO3, SO2 and H2O2 which may lead to heterogeneous reactions on various surfaces) have been estimated which can be used by modellers for improved scavenging estimates.  相似文献   

12.
The chemical removal of SO2 in the presence of different aerosol systems has been investigated in laboratory experiments using a dynamic flow reactor. The aerosols consisted of wetted particles containing one of the following substances: MnCl2, Mn(NO3)2, MnSO4, CuCl2, Cu(NO3)2, CuSO4, FeCl3, NaCl. The SO2 removal rate R was measured as a function of the SO2 gas phase concentration (SO2)g, the spatial metal concentration CMe, and the relative humidity rH in the reactor. A first-order dependence with regard to (SO2)g was observed for each type of aerosol. For the Mn(II) and Cu(II) aerosols R was found to be a non-linear function of CMe except for MnSO4 and Cu(NO3)2 particles. The removal rate showed a significant increase with the relative humidity particularly when rH was close to the deliquescence point of the wetted particles. Among the Mn(II) and Cu(II) aerosols investigated Mn(NO3)2 was found to be most efficient for the chemical removal of SO2 at atmospheric background conditions, especially in haze and fog droplets. The results further indicate that the catalytic oxidation of S(IV) in such aerosol systems may be as efficient as its oxidation by H2O2 in cloud water.  相似文献   

13.
结合MEIC大气污染物排放源清单,利用耦合了大气化学模式的中尺度气象数值模式WRF-Chem,对2016年5月6日广东地区一次深对流天气过程及其大气化学气体成分变化进行模拟,着重研究深对流系统对大气化学气体成分再分布的影响。结果表明:数值模拟较真实地再现了这次深对流天气过程中大气污染物的时空分布特征。通过计算,评估了这次对流降水对不同溶解度的大气污染气体的湿清除效率,发现湿清除过程对低溶解度大气污染气体CO、NO_2和O_3的湿清除效率几乎可以忽略不计,而对SO_2、H_2O_2和HNO_3的湿清除效率则分别达到50.8%、98.6%和38.2%。随着溶解度的增大,清除效率并不一定增大,这是因为大气物理和化学过程共同影响着气体污染物的清除效率。  相似文献   

14.
    
Using the “lumped mechanism” and “counting species” methods, we developed a condensed gas-phase chemical model based on a simplified one. The modified quasi-steady-state approximation (QSSA) scheme and the error redistribution mass conservation technique are adopted to solve the atmospheric chemistry kinetic equations. Results show that the condensed model can well simulate concentration variations of gas species such as SO2, NOX, O3, H2O2 and conversion rates of SO2 and NOX transformation to H2SO4 and HNO3. These results are in good agreement with those from the simplified model. The conversion rates of SO2 and NOX under different initial concentrations and meteorological conditions are computed, and the results can be directly applied to regional acid deposition model.  相似文献   

15.
A one-dimensional, time-dependent model of the physics and chemistry of a warm stratiform cloud is used to study the possible impact of chemical inhomogeneity among cloud and raindrops on the oxidation of SO2 in clouds. The effects of chemical inhomogeneity are examined using two contrasting models: In Model 1 a bulk-solution parameterization is adopted which effectively treats all cloud and raindrops as if they are chemically homogeneous; in Model 2 we allow the cloud and raindrops to have a dichotomous distribution. The dichotomous distribution in Model 2 is simulated by assuming that the two groups of cloud droplets nucleate from two chemically distinct populations of condensation nuclei; one being acidic and the other being alkaline. While the two models yield essentially identical results when the ambient levels of H2O2 are greater than the ambient levels of SO2, the rate of conversion of SO2 to sulfuric acid and the amount of sulfate removed in the precipitation can be significantly enhanced in Model 2 over that of Model 1 under conditions of oxidant limitation (i.e., H2O2 < SO2). This enhancement is critically dependent upon the fraction of alkaline nuclei assumed to be present in Model 2 and arises from the rapid increase in the aqueous-phase reaction between O3+SIV at high pH. Our results suggest that cloud models which adopt a bulk-solution parameterization for cloud droplet chemistry, may underestimate the amount of in-cloud SO2 oxidation under oxidant-limited conditions.  相似文献   

16.
The growth of monodisperse particles (0.07 to 0.5 µm) exposed to SO2 (0–860 ppb), H2O2 (0–150 ppb) and sometimes NH3 (0–550 ppb) in purified air at 22 °C at relative humidities ranging from 25 to 75% were measured using the Tandem Differential Mobility Analyzer technique. The experiments were performed in a flow reactor with aqueous (NH4)2SO4 and Na2SO4 droplets. For (NH4)2SO4 droplets the fractional diameter growth was independent of size above 0.3 µm but decreased with decreasing size below that. When NH3 was added the fractional growth increased with decreasing size. Measurements were compared with predictions of a model that accounts for solubility of the reactive gases, the liquid phase oxidation of SO2 by H2O2, and ionic equilibria. Agreement between measured and predicted droplet growth is reasonable when the ionic strength effects are included. Theory and experiments suggest that NH3 evaporation is responsible for the decrease in relative growth rates for small aqueous ammonium sulfate particles. The observed droplet growth rates are too slow to explain observed growth rates of secondary atmospheric sulfate particles.  相似文献   

17.
Measurements of aerosol physical, chemical and optical parameters were carried out in Guangzhou, China from 1 July to 31 July 2006 during the Pearl River Delta Campaign. The dry aerosol scattering coefficient was measured using an integrating nephelometer and the aerosol scattering coefficient for wet conditions was determined by subtracting the sum of the aerosol absorption coefficient, gas scattering coefficient and gas absorption coefficient from the atmospheric extinction coefficient. Following this, the aerosol hygroscopic growth factor, f(RH), was calculated as the ratio of wet and dry aerosol scattering coefficients. Measurements of size-resolved chemical composition, relative humidity (RH), and published functional relationships between particle chemical composition and water uptake were likewise used to find the aerosol scattering coefficients in wet and dry conditions using Mie theory for internally- or externally-mixed particle species [(NH4)2SO4, NH4NO3, NaCl, POM, EC and residue]. Closure was obtained by comparing the measured f(RH) values from the nephelometer and other in situ optical instruments with those computed from chemical composition and thermodynamics. Results show that the model can represent the observed f(RH) and is appropriate for use as a component in other higher-order models.  相似文献   

18.
For the purpose of testing our previously described theory of SO2 scavenging a laboratory investigation was carried out in the UCLA 33 m long rainshaft. Drops with radii between 250 and 2500 m were allowed to come to terminal velocity, after which they passed through a chamber of variable length filled with various SO2 concentrations in air. After falling through a gas separating chamber consisting of a fluorocarbon gas the drops were collected and analyzed for their total S content in order to determine the rate of SO 2 absorption.The SO2 concentration in air studied ranged between 1 and 60% (v). Such relatively large concentrations were necessary due to the short times the drops were exposed to SO2 in the present setup. The present experimental results were therefore not used to simulate atmospheric conditions but rather to test our previously derived theory which is applicable to any laboratory or atmospheric condition. Comparison of our studies with the results from our theory applied to our laboratory conditions led to predicted values for the S concentration in the drops which agreed well with those observed if the drops had radii smaller than 500 m. In order to obtain agreement between predicted and observed S concentrations in larger drops, an empirically derived eddy diffusivity for SO2 in water had to be included in the theory to take into account the effect of turbulent mixing inside such large drops.In a subsequent set of experiments, drops initially saturated with S (IV) were allowed to fall through S-free air to determine the rate of SO 2 desorption. The results of these studies also agreed well with the results of our theoretical model, thus justifying the reversibility assumption made in our theoretical models.In a final set of experiments, the effects of oxidation on SO2 absorption was studied by means of drops containing various amounts of H2O2. For comparable exposure times to SO2, the S concentration in drops with H2O2 was found to be up to 10 times higher than the concentration in drops in which no oxidation occurred.  相似文献   

19.
The concentrations of H+, nitrate (NO3 -), and sulfate (SO4 2-) in rainwater and their temporal changes were analyzed on the basis of continuous observation from 1 July 1991 to 30 June 1992 at a suburb of Nagoya, Japan. The yearly average for pH was 4.4. In general, an increasing pH with increase in precipitation amount was observed for rain events. Relatively high pH rainwater was sometimes observed at the beginning of rainfall, even though high concentrations of NO3 - and SO4 2- were involved. The high pH values were considered to be caused by the neutralization process with particulate matter containing cations. The yearly averaged ratio of equivalent concentration of nitrate to sulfate (N/S) in rainwater was 0.58. In the early stage of rain, the N/S value was usually more than 1.0 due to the difference of scavenging process between NO3 - and SO4 2-. High values of N/S ranging from 5 to 10 were found under the atmospheric conditions of calm winds and low humidity, during which it is possible that atmospheric particles float for a long time in the air before a rain event. The adsorption of NO3 - in the early stage of rainfall by particulate matter was suggested from the difference in scavenging processes of NO3 - and SO4 2-. A possible scavenging process, called limb cloud scavenging, is presented to explain the interaction of particles and nitrate ions at the early stage of rain. In limb cloud scavenging, the repeated migration of cloud particles or raindrops between the inside and outside of clouds increases the absorption of ions to a highly condensed level, thus increasing the N/S value of rainwater. The influence of global scale seasonal phenomena with large amounts of particulates, such as typhoons or Asian dust storms, was also studied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号