首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model for describing river channel pro?le adjustments through time is developed and applied to a river responding to base‐level lowering in order to examine the effect of channel widening and downstream aggradation on equilibrium timescales. Across a range of boundary conditions, downstream aggradation controlled how quickly a channel reached equilibrium. Channel widening either increased or decreased the equilibrium timescale, depending on whether or not sediment derived from widening was deposited downstream. Results suggest that pro?le adjustments are more important than channel width adjustments in controlling equilibrium timescales for a channel responding to base‐level lowering. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Redwood Creek, north coastal California, USA, has experienced dramatic changes in channel configuration since the 1950s. A series of large floods (in 1955, 1964, 1972 and 1975) combined with the advent of widespread commercial timber harvest and road building resulted in extensive erosion in the basin and contributed high sediment loads to Redwood Creek. Since 1975, no peak flows have exceeded a 5 year recurrence interval. Twenty years of cross-sectional survey data document the downstream movement of a ‘sediment wave’ in the lower 26 km of this gravel-bedded river at a rate of 800 to 1600 m a−1 during this period of moderately low flows. Higher transit rates are associated with reaches of higher unit stream power. The wave was initially deposited at a site with an abrupt decrease in channel gradient and increase in channel width. The amplitude of the wave has attenuated more than 1 m as it moved downstream, and the duration of the wave increased from eight years upstream to more than 20 years downstream. Channel aggradation and subsequent degradation have been accommodated across the entire channel bed. Channel width has not decreased significantly after initial channel widening from large (>25 year recurrence interval) floods. Three sets of longitudinal surveys of the streambed showed the highest increase in pool depths and frequency in a degrading reach, but even the aggrading reach exhibited some pool development through time. The aggraded channel bed switched from functioning as a sediment sink to a significant sediment source as the channel adjusted to high sediment loads. From 1980 to 1990, sediment eroded from temporary channel storage represented about 25 per cent of the total sediment load and 95 per cent of the bedload exported from the basin.  相似文献   

3.
The process of dam removal establishes the channel morphology that is later adjusted by high-flow events. Generalities about process responses have been hypothesized, but broad applicability and details remain a research need. We completed laboratory experiments focused on understanding how processes occurring immediately after a sediment release upon dam removal or failure affect the downstream channel bed. Flume experiments tested three sediment mixtures at high and low flow rates. We measured changes in impounded sediment volume, downstream bed surface, and rates of deposition and erosion as the downstream bed adjusted. Results quantified the process responses and connected changes in downstream channel morphology to sediment composition, temporal variability in impounded sediment erosion, and spatial and temporal rates of bedload transport. Within gravel and sand sediments, the process response depended on sediment mobility. Dam removals at low flows created partial mobility with sands transporting as ripples over the gravel bed. In total, 37% of the reservoir eroded, and half the eroded sediment remained in the downstream reach. High flows generated full bed mobility, eroding sands and gravels into and through the downstream reach as 38% of the reservoir eroded. Although some sediment deposited, there was net erosion from the reach as a new, narrower channel eroded through the deposit. When silt was part of the sediment, the process response depended on how the flow rate influenced reservoir erosion rates. At low flows, reservoir erosion rates were initially low and the sediment partially exposed. The reduced sediment supply led to downstream bed erosion. Once reservoir erosion rates increased, sediment deposited downstream and a new channel eroded into the deposits. At high flows, eroded sediment temporarily deposited evenly over the downstream channel before eroding both the deposits and channel bed. At low flows, reservoir erosion was 17–18%, while at the high flow it was 31–41%.  相似文献   

4.
1 INTRODUCTION The construction of more than 75,000 dams and reservoirs on rivers in the United States (Graf, 1999) has resulted in alteration of the hydrology, geometry, and sediment flow in many of the river channels downstream of dams. Additionally, hydrologic and geomorphic impacts lead to changes in the physical habitat affecting both the flora and fauna of the riparian and aquatic environments. Legislation for protection of endangered species as well as heightened interest in ma…  相似文献   

5.
Bars are key morphological units in river systems, fashioning the sediment regime and bedload transport processes within a reach. Reworking of these features underpins channel adjustment at larger scales, thereby acting as a key determinant of channel stability. Despite their importance to channel evolution, few investigations have acquired spatially continuous data on bar morphology and sediment-size to investigate bar reworking. To this end, four bars along a 10 km reach of a wandering gravel-bed river were surveyed with terrestrial laser scanning (TLS), comparing downstream changes in slope, bed material size and channel planform. Detrended standard deviations (σz) were extracted from TLS point clouds and correlated to underlying physically measured median grain-size (D50), across a greater range of σz values than have hitherto been reported. The resulting linear regression model was used to create a 1 m resolution median grain-size map. A fusion of airborne LiDAR and optical-empirical bathymetric mapping was used to develop reach-scale digital elevation models (DEMs) for rapid two-dimensional hydraulic modelling using JFlow® software. The ratio of dimensionless shear stress over critical shear stress was calculated for each raster cell to calculate the effectiveness of a range of flood events (2.33–100 year recurrence intervals) to entrain sediment and rework bar units. Results show that multiple bar forming discharges exist, whereby frequent flood flows rework tail and back channel areas, while much larger, less frequent floods are required to mobilise the coarser sediment fraction on bar heads. Valley confinement is shown to exert a primary influence on patterns of bar reworking. Historical aerial photography, hyperscale DEMs and hydraulic modelling are used to explain channel adjustment at the reach scale. The proportion of the bar comprised of more frequently entrained units (tail, back channel, supra-platform) relative to more static units (bar head) exerts a direct influence upon geomorphic sensitivity. © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Extreme rainfall in June 1949 and November 1985 triggered numerous large debris flows on the steep slopes of North Fork Mountain, eastern West Virginia. Detailed mapping at four sites and field observations of several others indicate that the debris flows began in steep hillslope hollows, propagated downslope through the channel system, eroded channel sediment, produced complex distributions of deposits in lower gradient channels, and delivered sediment to floodwaters beyond the debris-flow termini. Based on the distribution of deposits and eroded surfaces, up to four zones were identified with each debris flow: an upper failure zone, a middle transport/erosion zone, a lower deposition zone, and a sediment-laden floodwater zone immediately downstream from the debris-flow terminus. Geomorphic effects of the debris flows in these zones are spatially variable. The initiation of debris flows in the failure zones and passage through the transport/erosion zones are characterized by degradation; 2300 to 17 000 m3 of sediment was eroded from these zones. The total volume of channel erosion in the transport/erosion zones was 1·3 to 1·5 times greater than the total volume of sediment that initially failed, indicating that the debris flows were effective erosion agents as they travelled through the transport/erosion zones. The overall response in the deposition zones was aggradation. However, up to 43 per cent of the sediment delivered to these zones was eroded by floodwaters from joining tributaries immediately after debris-flow deposition. This sediment was incorporated into floodwaters downstream from the debris-flow termini causing considerable erosion and deposition in these channels. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Casey Lee  Guy Foster 《水文研究》2013,27(10):1426-1439
In‐stream sensors are increasingly deployed as part of ambient water quality‐monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in‐stream flow and water quality monitoring stations were coupled with the two‐dimensional hydrodynamic CE‐QUAL‐W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east‐central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two‐dimensional model was used to estimate the residence time of 55 equal‐volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in‐stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The impact of afforestation on stream bank erosion and channel form   总被引:1,自引:0,他引:1  
Modification of the land use of a small catchment through coniferous afforestation is shown to have influenced stream bank erosion and channel form. Field mapping and erosion pin measurements over a 19-month period provides evidence of more active bank erosion along forested channel reaches than along non-forested. Extrapolation of downstream increases in bankfull width, bankfull depth, and channel capacity with increasing basin area for the non-forested catchment has demonstrated that afforestation of the lower part of the catchment has had a marked effect on channel form. Channel widths within the forest are up to three times greater than that predicted from the regression. These changes in bankfull width have led to stream bed aggradation and the development of wide shallow channels within the forest, and channel capacities within the forest are over two times that predicted from the basin area. The relationship between channel sinuosity and valley gradient for non-forested reaches of the river also indicated decreased sinuosity resulting from afforestation. These changes in channel form result from active bank erosion within the forest with coarse material being deposited within the channel as point-bars and mid-channel bars. Active bank erosion is largely attributed to the suppression by the forest of a thick grass turf and its associated dense network of fine roots, and secondly to the river attempting to bypass log jams and debris dams in the stream channel.  相似文献   

9.
We describe additions made to a multi‐size sediment routing model enabling it to simulate width adjustment simultaneously alongside bed aggradation/incision and fining/coarsening. The model is intended for use in single thread gravel‐bed rivers over annual to decadal timescales and for reach lengths of 1–10 km. It uses a split‐channel approach with separate calculations of flow and sediment transport in the left and right sides of the channel. Bank erosion is treated as a function of excess shear stress with bank accretion occurring when shear stress falls below a second, low, threshold. A curvature function redistributes shear stress to either side of the channel. We illustrate the model through applications to a 5·6‐km reach of the upper River Wharfe in northern England. The sediment routing component with default parameter values gives excellent agreement with field data on downstream fining and down‐reach reduction in bedload flux, and the width‐adjustment components with approximate calibration to match maximum observed rates of bank shifting give plausible patterns of local change. The approach may be useful for exploring interactions between sediment delivery, river management and channel change in upland settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Human‐induced changes to the channel and 18·6 km2 catchment of Second Creek, in Knox County, Tennessee (USA), have included deliberate channel realignment, channelization of some reaches in culverts or cement‐lined channels, the addition of coarse particles, and intentional and unintentional changes in catchment hydrology. Field observations and measurements made between 1997 and 2001 showed active adjustment of the stream channel. Channel bank erosion is the dominant adjustment, but aggradation also occurs. One change following urbanization is an increase in bed particle size due to the addition of particles of anthropogenic origin. Such particles constitute 2–21 per cent of particles sampled at eight sites along the stream, and their D50 exceeds the D50 of natural particles at five of the sites. The downstream portion of the catchment has been urbanized for more than 150 years, but urbanizing activity has continued throughout the catchment, occurring not as a discrete perturbation, but as a set of disturbances with varying spatial and temporal scales. Spatial patterns of erosion and deposition in the channel are complex and do not show an upstream–downstream trend. Effective, although unintended, decoupling of the most manipulated reaches has hindered the propagation of changes in channel morphology and channel materials in this urbanized stream system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
I. INTRODUCTIONThe Yellow River is a heavily sediment--laden river. The sediment load of the Yellow River ranks the first in the world while its annual runoff is only of medium size. Toharness the river, it is necessary to build reservoirs for regulating runoff to meet the demands of economic development. Since the founding of PRC in 1949, I S4 large and medium--sized reservoirs have been constructed on the main stem and the tributaries with atotal storage capacity of 84.5 billion m3.…  相似文献   

12.
Abstract

A study on the suspended sediment transportation downstream from the Danjiangkou Reservoir in China has shown that the dynamics of suspended sediment grain size are complicated. During the period when the reservoir was used for flood retention, the suspended sediment median size decreased gradually; after entering the period when the reservoir was used for water storage, the median size started to increase, reaching a maximum, and then decreased again. These variations correspond to different stages of channel adjustment. At the stage with dominant downcutting, most of the downstream reservoir sediment comes from bed downcutting, and thus the suspended sediment median size becomes coarser and coarser; at the succeeding stage with dominant channel widening, a majority of the suspended sediment comes from bank erosion, and so its median size becomes finer. This phenomenon can be regarded as a reflection of the complex response of channel adjustment in the characteristics of suspended sediment transportation downstream from a reservoir.  相似文献   

13.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Geomorphic river design strives for natural resilience by encouraging geomorphic form complexity and morphological processes linked to greater habitat diversity. Increasing availability of high-resolution topographic data and spatial feature mapping methods provide advantages for morphological analysis and river restoration planning. We propose and evaluate an approach to quantifying topographic variability of geomorphic form and pixel-level surface roughness resulting from channel planform geometry differences using spatially continuous variety computation applied to component metrics including flow direction, aspect and planform curvature. We define this as the geomorphic form variation (GFV) approach and found it scalable, repeatable and a multi-stage analytical metric for quantifying physical aspects of river-bed topographic variability. GFV may complement process-based morphological feature mapping applications, hydraulic assessment indices and spatial habitat heterogeneity metrics commonly used for ecological quality evaluation and river restoration. The GFV was tested on controlled synthetic channels derived from River Builder software and quasi-controlled sinuous planform flume experiment channels. Component variety metrics respond independently to specific geometric surface changes and are sensitive to multi-scaled morphology change, including coarser-grained sediment distributions of pixel-level surface roughness. GFV showed systematic patterns of change related to the effects of channel geometry, vertical bed feature (pool-bar) frequency and amplitude, and bar size, shape and orientation. Hotspot analysis found that bar margins were major components of topographic complexity, whereas grain-scale variety class maps further supported the multi-stage analytical capability and scalability of the GFV approach. The GFV can provide an overall variety value that may support river restoration decision-making and planning, particularly when geomorphic complexity enhancement is a design objective. Analysing metric variety values with statistically significant hotspot cluster maps and complementary process-based software and mapping applications allows variety correspondence to systematic feature changes to be assessed, providing an analytical approach for river morphology change comparison, channel design and geomorphic process restoration.  相似文献   

15.
Changes in river regime after the construction of upstream reservoirs   总被引:1,自引:0,他引:1  
This article presents and analyses many years of investigations in China on the fluvial processes downstream of impounding and detention reservoirs. The study covers the change in hydrograph, the recovering of sediment concentration along the river course, the degradation of stream bed, the adjustment of longitudinal profile, the coarsening of bed material, the change in channel width, and the trend of channel pattern variation for alluvial streams downstream of impounding reservoirs. Without confluence of major tributaries, the degradation may extend to a great distance below the dam. In the process of reducing the sediment carrying capacity of the flow to match the diminished sediment supply, the coarsening of bed material is a factor of equal, if not greater, importance as compared with the flattening of channel gradient. In places where the flow has not been sufficiently cut down and the bank is erosive non-resistant, a receding of banklines may take place in concurrence with the deepening of the river bed. Below detention reservoirs, even if the total runoff and sediment supply remain essentially unchanged, the modification of the hydrograph is sufficient to enhance the deterioration of the downstream channel.  相似文献   

16.
We evaluate the validity of the beaver‐meadow complex hypothesis, used to explain the deposition of extensive fine sediment in broad, low‐gradient valleys. Previous work establishes that beaver damming forms wet meadows with multi‐thread channels and enhanced sediment storage, but the long‐term geomorphic effects of beaver are unclear. We focus on two low‐gradient broad valleys, Beaver Meadows and Moraine Park, in Rocky Mountain National Park (Colorado, USA). Both valleys experienced a dramatic decrease in beaver population in the past century and provide an ideal setting for determining whether contemporary geomorphic conditions and sedimentation are within the historical range of variability of valley bottom processes. We examine the geomorphic significance of beaver‐pond sediment by determining the rates and types of sedimentation since the middle Holocene and the role of beaver in driving floodplain evolution through increased channel complexity and fine sediment deposition. Sediment analyses from cores and cutbanks indicate that 33–50% of the alluvial sediment in Beaver Meadows is ponded and 28–40% was deposited in‐channel; in Moraine Park 32–41% is ponded sediment and 40–52% was deposited in‐channel. Radiocarbon ages spanning 4300 years indicate long‐term aggradation rates of ~0.05 cm yr‐1. The observed highly variable short‐term rates indicate temporal heterogeneity in aggradation, which in turn reflects spatial heterogeneity in processes at any point in time. Channel complexity increases directly downstream of beaver dams. The increased complexity forms a positive feedback for beaver‐induced sedimentation; the multi‐thread channel increases potential channel length for further damming, which increases the potential area occupied by beaver ponds and the volume of fine sediment trapped. Channel complexity decreased significantly as surveyed beaver population decreased. Beaver Meadows and Moraine Park represent settings where beaver substantially influence post‐glacial floodplain aggradation. These findings underscore the importance of understanding the historical range of variability of valley bottom processes, and implications for environmental restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Previous studies have demonstrated that riparian vegetation leads to channel transformation from a multi-bar to a single-thread channel planform. However, it still remains unclear how the presence of pioneer and mature vegetation affects the morphodynamics of single-thread meandering rivers. In this study, we therefore investigated the effects of vegetation strength on the morphodynamic evolution of an experimental meandering channel. Three physical laboratory experiments were conducted using alfalfa sprouts in different life stages – no vegetation, immature vegetation, and mature vegetation – to simulate different floodplain vegetation strengths. Our results demonstrate that vegetation plays a key role in mediating bank erosion and point-bar accretion, and that this is reflected in both the evolution of the channel bed as well as the sediment flux. The presence of mature vegetation maintained a deep, single-thread channel by reducing bank erosion, thereby limiting both channel widening and sediment storage capacity. Conversely, an unvegetated floodplain led to channel widening and high sediment storage capacity. Channel evolution in the unvegetated scenario showed that the active sediment supply from outer bank erosion led to slightly delayed point-bar accretion on the inner banks due to helical flow, deflecting the surface flow toward the outer banks and causing further erosion. In contrast, in the immature vegetation scenario, the outer banks were also initially eroded, but point-bar accretion did not clearly progress. This led to a greater width-to-depth ratio, resulting in a transition from a single- to a multi-thread channel with minor flow paths on the floodplain. The experimental results suggest that the eco-morphodynamic effects of young (low-strength) and mature (high-strength) vegetation are different. Notably, low-strength, early-stage vegetation increases channel complexity by accelerating both channel widening and branching, and therefore might promote the coexistence of multi-bars and pioneer vegetation.  相似文献   

18.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

19.
The exponential downstream decline in particle size predicted by Sternberg (1875) is examined within a highly active alpine fluvial environment, the gravel-bed Squamish River in southwestern British Columbia. Transect survey procedures for sampling within the coarse alluvial gravels are described in detail. Downstream trends for various particle size statistics, plotted with distance from a major sediment source, are considered according to two scenarios. Evaluation of overall trends indicates that the downstream expression derived by Sternberg (1875) is not the most appropriate; rather, curves are better described by power functions. This reflects a very rapid decline in particle size immediately downstream of the major sediment source. Secondly, evaluation of downstream trends in relation to channel planform determines that exponential functions with different coefficients describe adequately relations within individual planform reaches. There is insufficient evidence to suggest which of these two scenarios may be appropriate. Several lines of evidence suggest that the trends found are more the result of selective sediment transport phenomena than of abrasion, a condition attributed to channel competence within a system dominated by sediment-supply conditions.  相似文献   

20.
Delta channels are important landforms at the interface of sediment transfer from terrestrial to oceanic realms and affect large, and often vulnerable, human populations. Understanding these dynamics is pressing because delta processes are sensitive to climate change and human activity via adjustments in, for example, mean sea level and water/sediment regimes. Data collected over a 40-year period along a 110-km distributary channel of the Yellow River Delta offer an ideal opportunity to investigate morphological responses to changing water and sediment regimes and intensive human activity. Complementary data from the delta front provide an opportunity to explore the interaction between delta channel geomorphology and delta-front erosion–accretion patterns. Cross-section dimensions and shape, longitudinal gradation and a sediment budget are used to quantify spatial and temporal morphological change along the Qingshuigou channel. Distinctive periods of channel change are identified, and analysis provides a detailed understanding of the temporal and spatial adjustments of the channel to specific human interventions, including two artificial channel diversions and changes in water and sediment supply driven by river management, and downstream delta-front development. Adjustments to the diversions included a short-lived period of erosion upstream and significant erosion in the newly activated channel, which progressed downstream. Channel geomorphology widened and deepened during periods when management increased water yield and decreased sediment supply, and narrowed and shallowed during periods when management reduced water yield and the sediment load. Changes along the channel are driven by both upstream and downstream forcing. Finally, there is some evidence that changing delta-front erosion–accretion patterns played an important role in the geomorphic evolution of the deltaic channel; an area that requires further investigation. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号