首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The response of an earth dam to seismic loading is studied through displacement-based analyses and finite element, effective stress dynamic analyses. Displacement-based analyses are carried out using both empirical relationships and the decoupled approach in which the deformable response of the soil is accounted for through ground response analyses, and the resulting accelerograms are used in the sliding block analysis. The FE analyses are carried out using a constitutive model capable to reproduce soil non-linearity, calibrated against laboratory measurements of the stiffness at small strains. The influence of the assumed input motion and bedrock depth on the seismic response of the dam is also studied.  相似文献   

2.
The seismic response of elasto‐plastic structures to both recorded and generated accelerograms is characterized by a large scattering of the results, even for accelerograms with similar peak ground acceleration values and frequency content. According to current code recommendations a design value of the seismic response of an elasto‐plastic structure can be computed as the mean of the responses to a certain number of spectrum‐fitting generated accelerograms. A more effective probabilistic approach is presented herein. It allows the analyst to calculate a design value of the seismic response characterized by a predefined non‐exceedance probability using a limited number of generated accelerograms. The results of the performed analyses are presented in diagrams that can be used for structural design applications. The applicability of the proposed method is demonstrated in the case of an elasto‐plastic structural system and the results are compared with those obtained applying current code recommendations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
In a previous publication1 dealing with the lateral seismic response of dams and embankments the authors developed an inhomogeneous shear beam (SB) model in which the modulus increases as a power m of the depth, with m ranging from 0.35 to 0.90 and depending on material and geometric parameters. Reference 1 studied primarily the free vibration characteristics and the distribution of peak seismic displacements in earth dams. This paper focuses on seismic shear strains and stresses, and on seismic coefficients. Both steady-state and transient vibrations are considered and the effects of inhomogeneity are graphically illustrated. A comprehensive comparative study is undertaken using five dam cross-sections, each excited by four recorded accelerograms. It is found that plane-strain finite-element analyses yield distributions of peak values of seismic shear strains which, in general, are in good accord with the results of a ‘consistent’ inhomogeneous SB model. The limitations of the developed model are also elucidated and possible ways of overcoming them are suggested.  相似文献   

4.
Earthquake-resistant design and seismic analysis often require the earthquake action to be represented in the form of acceleration time-histories. Real accelerograms can be selected based on matching an earthquake scenario, defined by magnitude and distance, and scaled if necessary. The scaled accelerograms should reflect the hazard in terms of the parameters that characterise the inelastic demand on structures, including response spectral ordinates, duration and energy content. In order to maintain realistic ground motions, the scaling factors should not differ greatly from unity. It is found that in many cases, where the hazard is influenced by more than one seismic source, it is impossible to define a single earthquake scenario that is compatible with the results of probabilistic seismic hazard assessment. Even if a hazard-consistent scenario can be defined, there are difficulties encountered in using the results to select and scale real accelerograms.  相似文献   

5.
6.
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.  相似文献   

7.
The seismic events occurred in recent years highlighted the extreme vulnerability of large part of the existing constructed facilities and the need to adopt innovative solutions to improve their seismic performance. With this purpose, the possible exploitation of a seismic early warning system (SEWS) in the framework of semi-active structural control using magnetorheological (MR) dampers is herein investigated. The main idea consists in the use of these time-varying properties devices to control an hosting structure by changing their behaviour according to an anticipate estimate, provided by the SEWS, of the peak ground acceleration (PGA) of the incoming earthquake. In this way, the dampers are able to adapt their mechanical characteristics to the specific earthquake obtaining the optimal seismic response. The present paper describes the application of this protection technique to a case-study problem, a highway bridge located in Southern California. The seismic response of the benchmark bridge is investigated by nonlinear time-history analyses by adopting 16 real earthquake ground excitations. These accelerograms cover a wide variety of magnitudes, distances to fault and soil types. Possible errors on estimation of PGA provided by SEWS and their effects on the proposed control system are also considered. The results obtained confirm that unavoidable errors in the PGA estimates provided by the SEWS do not propagate to the seismic response. Conversely, the proposed strategy turns out to damp these errors, resulting in a robust seismic behaviour of the protected structure.  相似文献   

8.
基于欧美规范确定了坐落在深厚覆盖层上KH抽水蓄能电站上、下库场地基本运行和最大设计地震动峰值加速度、反应谱和时程等动参数。首先依据场地区域地震烈度区划图、特征周期区划图和依据场地地质地震条件选取的5条种子实测地震动确定场地基岩输入加速度时程、峰值加速度和设计反应谱,进而基于各土层地质参数和一维弹性波传播模拟程序确定覆盖层表面的平均峰值加速度、平均反应谱和5条地震动时程,对所得到的平均反应谱和峰值加速度进行光滑处理后确定可用于各建筑物结构抗震设计的地震动参数,包括覆盖层表面水平向动力响应加速度时程、峰值加速度和设计反应谱。该方法可较好地保留输入地震动的真实动力特性,如持时、相位和频率等,为我国规范中建议的确定场地地震动参数的方法提供有益的补充。  相似文献   

9.
Linear finite element analyses are commonly used to simulate the behaviour of gravity dam—foundation systems. However, the foundation is generally unable to develop any significant tensile stresses. Therefore any tension occurring in the vicinity of the dam—foundation interface is largely fictitious. Moreover, the traditional overturning and sliding stability criteria have little meaning in the context of the oscillatory response of dams during earthquakes. In this study, time domain analyses using non-linear contact elements located at the dam—foundation interface have been used to determine the dynamic sliding and uplifting response of gravity dam monoliths considering various elastic foundation properties. The magnitudes of the relative interface displacements, of the percentage of base not in contact (PBNC) and of the compressive stresses at the heel or toe of the dam have been used to monitor the seismic stability. The numerical results have shown that the non-linear behaviour of the dam—foundation interface reduces the seismic response of the system, indicating the possibility of more rational and economical designs. The PBNC was identified as the critical seismic stability response parameter for all analyses except for very flexible foundation conditions where the maximum values of relative interface displacements need to be considered.  相似文献   

10.
Peak ground acceleration (PGA), frequency content and time duration are three fundamental parameters of seismic loading. This study focuses on the seismic load frequency and its effect on the underground structures. Eight accelerograms regarding different occurred earthquakes that are scaled to an identical PGA and variation of ground motion parameters with ratio of peak ground velocity (PGV) to PGA, as a parameter related to the load frequency, are considered. Then, concrete lining response of a circular tunnel under various seismic conditions is evaluated analytically. In the next, seismic response of underground structure is assessed numerically using two different time histories. Finally, effects of incident load frequency and frequency ratio on the dynamic damping of geotechnical materials are discussed. Result of analyses show that specific energy of seismic loading with identical PGA is related to the seismic load frequency. Furthermore, incident load frequency and natural frequency of a system have influence on the wave attenuation and dynamic damping of the system.  相似文献   

11.
In this paper the seismic response of a well-documented Chinese rockfill dam, Yele dam, is simulated and investigated employing the dynamic hydro-mechanically (HM) coupled finite element (FE) method. The objective of the study is to firstly validate the numerical model for static and dynamic analyses of rockfill dams against the unique monitoring data on the Yele dam recorded before and during the Wenchuan earthquake. The initial stress state of the dynamic analysis is reproduced by simulating the geological history of the dam foundation, the dam construction and the reservoir impounding. Subsequently, the predicted seismic response of the Yele dam is analysed, in terms of the deformed shape, crest settlements and acceleration distribution pattern, in order to understand its seismic behaviour, assess its seismic safety and provide indication for the application of any potential reinforcement measures. The results show that the predicted seismic deformation of the Yele dam is in agreement with field observations that suggested that the dam operated safely during the Wenchuan earthquake. Finally, parametric studies are conducted to explore the impact of two factors on the seismic response of rockfill dams, i.e. the permeability of materials comprising the dam body and the vertical ground motion.  相似文献   

12.
Major damage has been reported in hilly areas after major earthquakes,primarily because of two special conditions:the variation in the seismic ground motion due to the inclined ground surface and the irregularities caused by a stepped base level in the structure.The aim of this study is to evaluate possible differences in the responses of Chilean hillside buildings through numerical linear-elastic and nonlinear analyses.In the first step,a set of response-spectrum analyses were performed on four simplified 2D structures with mean base inclination angles of 0°,15°,30°,and 45°.The structures were designed to comply with Chilean seismic codes and standards,and the primary response parameters were compared.To assess the seismic performance of the buildings,nonlinear static(pushover)and dynamic(time-history)analyses were performed with SeismoStruct software.Pushover analyses were used to compare the nonlinear response at the maximum roof displacement and the damage patterns.Time-history analyses were performed to assess the nonlinear dynamic response of the structures subjected to seismic ground motions modified by topographic effects.To consider the topographic modification,acceleration records were obtained from numerical models of soil,which were calculated using the rock acceleration record of the Mw 8.01985 Chilean earthquake.Minor differences in the structure responses(roof displacements and maximum element forces and moments)were caused by the topographic effects in the seismic input motion,with the highly predominant ones being the differences caused by the step-back configuration at the base of the structures.High concentrations of shear forces in short walls were observed,corresponding to the walls located in the upper zone of the foundation system.The response of the structures with higher angles was observed to be more prone to fragile failures due to the accumulation of shear forces.Even though hillside buildings gain stiffness in the lower stories,resulting in lower design roof displacement,maximum roof displacements for nonlinear time-history analyses remained very close for all the models that were primarily affected by the drifts of the lower stories.Additionally,vertical parasitic accelerations were considered for half the time-history analyses performed here.The vertical component seems to considerably modify the axial load levels in the shear walls on all stories.  相似文献   

13.
The problem of amplification of seismic waves by surface topographic irregularities is addressed through analytical and numerical investigations. First, a closed‐form expression for estimating the fundamental vibration frequency of homogeneous triangular mountains is obtained, using Rayleigh's method. Subsequently, numerical modelling based on the spectral element approximation is used to study the 3D seismic response of several real steep topographic irregularities excited by vertically propagating plane S‐waves. A topographic amplification factor is obtained for each case, by a suitable average of the ratio of acceleration response spectra of output vs input motion. The 3D amplification factors are then compared with those derived by 2D analyses as well as with the topographic factors recommended in Eurocode 8 for seismic design. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
An analysis of the influence that reservoir levels and bottom sediment properties (especially on the degree of saturation) have on the dynamic response of arch dams is carried out. For this purpose, a Boundary Element Model developed by the authors that allows the direct dynamic study of problems that incorporate scalar (dammed up water), viscoelastic (dam and soil site) and poroelastic media (bottom sediments in the reservoir) is used. All of the regions are discretized using boundary elements, later formulating equations of compatibility and equilibrium that allow their interaction to be rigorously established. The seismic excitation consists in plane longitudinal waves (P waves) and shear waves (S waves) impinging the dam site with an angle of vertical incidence. The analysis is carried out in the frequency domain, and the time response is obtained, for synthesized artificial accelerograms defined in terms of the elastic response spectrum taken from Eurocode 8, using a FFT algorithm. The variables used to characterize the response are: Amplitude of the complex-valued frequency-response function, acceleration response spectra and the integral of velocity of points located at the structure. These variables clearly indicate the importance that the factors analyzed have on the dynamic response.  相似文献   

15.
A regression analysis was made on 277 acceleration response spectra computed from Japanese accelerograms by subdividing the data into discrete categories. Five magnitude and distance categories, and four ground condition categories were used. The maximum absolute acceleration amplitude is predicted as a product of three factors, each representing a weighting factor for magnitude, distance and ground condition category at each of the 18 response spectrum periods from 0·1 s to 4 s at a damping value of 5 per cent of critical. A method was then developed to evaluate seismic hazard in terms of acceleration response spectrum by using the prediction model and the seismicity data, and it was applied to obtain seismic macro-zoning maps of Japan which are dependent on the natural period of a structure. The results of the analysis indicated that a single seismic zoning map may not be sufficient to cover a variety of structures with a wide range of periods because the expected spectral shape differs according to the seismicity of the area.  相似文献   

16.
A new analytical development of the seismic hydrodynamic pressure inside pre-existing cracks on the upstream face of concrete dams is presented. The finite control volume approach is utilized to derive an expression for the seismic hydrodynamic pressure using the continuity principle and the linear momentum theorem for the fluid inside the crack. The derived pressure expression is a function of the relative crack-opening acceleration and velocity. The acceleration and velocity terms are then recast in the form of added mass and damping matrices which can then be included at the nodes inside the discrete crack of a finite element model. This procedure linearizes the solution of the problem. A dam, 55 m high and having an initial crack opening of 2 mm at the base or near the crest and subjected to two different accelerograms, is analysed. For high-frequency ground motion, the seismic hydrodynamic pressure inside the crack, at the base of the dam, appears to be 50 per cent higher than the corresponding hydrostatic pressure.  相似文献   

17.
Conventional seismic analysis of gravity dams assumes that the behaviour of the dam–water–soil system can be represented using a 2‐D model since dam vertical contraction joints between blocks allow them to vibrate independently from each other. The 2‐D model assumes the reservoir to be infinite and of constant width, which is not true for certain types of reservoirs. In this paper, a boundary element method (BEM) model in the frequency domain is used to investigate the influence of the reservoir geometry on the hydrodynamic dam response. Important conceptual conclusions about the dam–reservoir system behaviour are obtained using this model. The results show that the reservoir shape influences the seismic response of the dam, making it necessary to account for 3‐D effects in order to obtain accurate results. In particular, the 3‐D pressure and displacement responses can be substantially larger than those computed with the 2‐D model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
为了研究混凝土重力坝在地震动荷载作用下的潜在失效模式,以金安桥碾压混凝土重力坝5号非溢流坝段为例,运用粘弹性边界法和流固耦合法建立了反映重力坝在地震动作用下动力响应特征的坝体-地基-库水抗震分析模型。基于增量动力分析(IDA)法:绘制了以相对位移转角为x轴(损伤指标,DM)和峰值地面加速度为y轴(强度指标,IM)的IDA曲线簇;分析了金安桥大坝在极端荷载作用下的潜在失效模式和其在不同峰值地面加速度下重力坝的损伤破坏过程。结果表明:金安桥大坝在地震动荷载作用下,可能发生功能失效的地方多出现在坝体折坡处、碾压分区交界处、坝踵与坝基交界处、廊道顶等应力集中处。因此,加强对这些区域的抗震防护有利于提高大坝整体的抗震水平。  相似文献   

19.
Concrete dams suffering from alkali-aggregate reaction (AAR) exhibit swelling and deterioration of concrete or even cracking over a long period. The deterioration of concrete may significantly affect the dynamic behavior of the structures, and it is necessary to estimate seismic safety of the deteriorated dams subjected to strong earthquakes. A unified approach is presented in this paper for long-term behavior and seismic response analysis of AAR-affected concrete dams by combining AAR kinetics, effects of creep and plastic-damage model in the finite element method. The proposed method is applied to a gravity dam and an arch dam. The long-term behavior of the AAR-affected dams is first predicted in terms of anisotropic swelling, spatially non-uniform deterioration of concrete, and cracking initiation and propagation with the development of AAR. The seismic response of the deteriorated dams is subsequently analyzed based on the state of the structures at the end of the long-term analysis. The AAR-induced expansion displacements obtained from the proposed method are in good agreement with the measured ones in the long-term operation. The simulated cracking patterns in the dams caused by the continuing AAR are also similar to the field observation. The results from the seismic analysis show that AAR-induced deterioration of concrete and cracking may lead to more severe damage cracking in the dams during earthquake. The dynamic displacements are also increased compared with the dams that are not suffering from AAR. The seismic safety of the AAR-affected concrete dams is significantly reduced because of the AAR-induced deterioration of concrete and cracking.  相似文献   

20.
The seismic ground rotations are important with respect to spatial structural models, which are sensitive to the wave propagation. The rotational ground motion can lead to significant increasing of structural response, instability and unusual damages of buildings. Currently, the seismic analyses often take into account the rocking and torsion motions separately using artificial accelerograms. We present an exact analytical method, proposed by Nazarov [15] for computing of three rotational accelerograms simultaneously from given translational records. The method is based on spectral representation in the form of Fourier amplitude spectra of seismic waves, corresponding to the given three-component translational accelerogram. The composition, directions and properties of seismic waves are previously determined in the form of a generalized wave model of ground motion. It is supposed that seismic ground motion can be composed by superposition of P, SV, SH- and surface waves. As an example, the dynamic response analysis of 25-story building is presented. Here recorded (low-frequency) and artificial (high-frequency) accelerograms were used; each of them includes three translational and three rotational components. In this structural analysis, we have clarified primarily conditions under which rotational ground motion should be taken into account. Next, we have calculated three rotational components of seismic ground motion. Then they were taken as additional seismic loads components for further seismic analysis of the building. Note, soil–structure interaction (SSI) is not considered in this study. For computing, we use the special software for structural analyses and accelerogram processing (FEA Software STARK ES and Odyssey software, Eurosoft Co., Russia). It was developed and is used in engineering practice in the Central Research Institute of Building Constructions (TsNIISK, Moscow, Russia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号