首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

2.
The Wingellina Hills intrusion is a small composite gabbroic/ultramaficintrusion and forms a tectonically dismembered segment of theUpper Proterozoic Giles complex in central Australia. Its 1600m of exposed magmatic stratigraphy formed in a continuouslyfractionating, periodically replenished magma chamber. Olivinegabbro and gabbronorite units alternate with lenticular strataboundintercalations of ultramafic (peridotite and pyroxenite) cumulates.A well-developed hybrid footwall zone of intermingled gabbroand pyroxenite underlies each ultramafic unit and demonstratesthe intrusive relationships of ultramafics into gabbroic cumulatemembers. The limited range of mg-number [100 ? Mg/(Mg+Fe)] of ferromagnesiansilicates indicates that the magmatic sequence covers a rathersmall spectrum in chemical fractionation and that the WingellinaHills intrusion represents the basal portion of a formerly largerlayered complex. The mg-number of olivine ranges from 89 to77, below which olivine is replaced by cumulus orthopyroxene.Clinopyroxene covers a wider mg-number range from 91 to 77 andis systematically enriched in MgO relative to coexisting orthopyroxeneand olivine. Anorthite content in plagioclase generally correlatespositively with mg-number changes of coexisting ferromagnesiansilicates. Interstitial plagioclase in clinopyroxenites containsexsolution lamellae of pure orthoclase. These antiperthitesare among the most calcic recorded, with plagioclase hosts betweenAn60 and An80. Bulk antiperthite compositions range around An65–Ab15–Or20and straddle a high-temperature (Or20) solvus in the plagioclasetriangle. The extent of former solid solution between calcicplagioclase and orthoclase indicates crystallization and coolingof the cumulates under moderate pressure and anhydrous conditions. Cryptic mg-number variations show that the intrusion experiencedweak iron enrichment with stratigraphic height. Normal fractionationis confined to the gabbroic members of the sequence, whereasultramafic intercalations are associated with sharp chemicalreversals toward more refractory mineral compositions. Reversalsof mg-number are considerably displaced into the underlyinggabbroic units by up to 50 m relative to the basis of ultramaficintercalations, which indicates extensive postcumulus infiltrationmetasomatism following the emplacement of fresh magma. The trivalentoxides in clinopyroxene have retained their pristine stratigraphicvariation patterns through later metasomatic events and stillcoincide with the cumulus layering. Macroscopic and cryptic layering in the Wingellina Hills intrusionare consistent with a continuously fractionating magma chamberwhose differentiation path was repeatedly reset by periodicinfluxes of primitive parent melt. Ultramafic and gabbroic cumulatemembers can be derived from a single olivine-saturated parentmelt by sequential separation of olivine, olivine-clinopyroxene,and finally olivine/orthopyroxene-clinopyroxene-plagioclase.A series of orthopyroxene-rich cumulates in the mixing zonesof the two melts crystallized from hybrids of the most primitiveand most evolved end-member compositions. Liquidus temperatures calculated for the resident and replenishingmelt components yield 1250 and 1350?C, respectively. As a resultof this temperature difference, fresh influxes of hot parentliquid crystallized rapidly under strongly undercooled conditionsas they ponded on, and quenched against,the chamber floor. Rapidcooling caused a temporary acceleration of the crystallizationfront and formation of impure cumulates with high trapped meltproportions, which resulted in a close coincidence of orthocumulateunits with stratigraphic levels of primitive melt addition.Grain sizes in orthocumulates vary with the cooling rate andpass through a maximum as the degree of undercooling increases.High cooling rates also influenced the composition of some cumulusphases. Clinopyroxenes from ultramafics in the mixing zonesare enriched in iron and aluminium (despite a more primitiveparent melt) and fall outside the fractionation path, especiallyif the batch of new hot magma was small compared with the poolof cooler resident liquid. Aluminous cumulus spinel is partof a metastable crystallization sequence and only crystallizedin the most magnesian ultramafics after episodes of intraplutonicquenching.  相似文献   

3.
Petrogenesis of Mafic Inclusions in Granitoids of the Adamello Massif, Italy   总被引:16,自引:7,他引:9  
ABSTRACT The Tertiary Adamello calc-alkaline batholith in the ItalianAlps is characterized by tonalite and granodiorite plutons associatedwith small mafic/ultramafic intrusions, syn-plutonic mafic dykesand sills, and ubiquitous mafic inclusions. In the southernmostVal Fredda Complex, syn-plutonic hornblende-gabbro and dioritesheets pass laterally into swarms of mafic inclusions intermingledwith tonalite. Petrological and geochemical data show that themafic sheets represent hydrous mafic magmas derived by fractionalcrystallization from parental hydrous basalt and picro-basalt.The fractionation process is recorded by inclusions of spinel,olivine, and pyroxenes in the cores of hornblende phenocrystsand by the widespread occurrence of calcic plagioclase. Fractionationoccurred at high pressure (Ptoul = 8–10 kb) before intrusionat shallow depths (Ptotal 2 kb). Geothermometry and meltingexperiments at PH2O= 1 kb, combined with textural evidence,indicate that the mafic sheets were emplaced at temperaturesof 1050–1100C into hot, but consolidated, granitoid hostrocks. Transfer of heat and hydrous fluids from the sheets remobilizedthe host rocks into crystal-mush, which in turn disrupted thesheet margins to form mafic inclusions. Dynamic crystallizationexperiments indicate that the mafic inclusions and sheet marginswere quenched to temperatures below 970 C, resulting in thefailure of the high-temperature liquidus phases olivine andclinopyroxene to nucleate and the formation of acicular hornblendeand plagioclase. Several other Adamello plutons display syn-plutonicintrusions and mafic inclusions with comparable features tothe Val Fredda Complex. The Adamello mafic inclusions show pronounced enrichments incertain trace elements compared with values expected by fractionalcrystallization and magma mixing. K, Rb, Ba, Y, heavy REE, Mn,and Nb have absolute abundances in the inclusions greater thanthe interiors of neighbouring mafic sheets and, in some cases,than the host granitoids. Many inclusions also display leucocratichaloes, margins rich in ferromagnesian minerals and abundantgroundmass biotite. These features are interpreted in termsof a three-stage evolution. (1) A blob of mafic magma is quenchedby the felsic host to form a rigid crystal-rich inclusion containingan interstitial melt phase. Leucocratic haloes and crenulatemargins to the inclusions form as a result of volume contractionon cooling. (2) The more mobile elements (notably the alkalisand H2O) diffuse between the melt phases of host and inclusion.Using published experimental data on the variation of melt fractionwith temperature in hydrous basic and acid magmas, it is arguedthat the observed diffusion of K from host to inclusion requiresinteraction temperatures of >900C. Reaction of K-enrichedmelt with existing hornblende in the inclusion forms biotite,which sequesters and concentrates further K2O and other alkalineelements. (3) During protracted cooling the mafic inclusionsequilibrate with interstitial melt in the host granitoid. Equilibriumpartitioning of heavy REE and Y into the mafic minerals in theinclusion results in the observed enrichments. Magnetite likewiseconcentrates Nb and Mn. It is proposed that mafic inclusions form in the waning stageof pluton evolution when the granitoid magma is sufficientlyconsolidated to allow the penetration of mafic intrusions, butsufficiently hot to be readily remobilized and disrupt theseintrusions to form mafic inclusions. Subsequent chemical equilibrationof mafic inclusions with their host can have a marked impacton the trace element chemistry of both rock types. Granitoidswhich have experienced extensive interaction with mafic inclusion-formingmagmas may undergo significant depletion in those trace elementswhich partition strongly into the minerals of the mafic inclusion.  相似文献   

4.
Troctolitic gabbros from Valle Fértil and La Huerta Ranges, San Juan Province, NW‐Argentina exhibit multi‐layer corona textures between cumulus olivine and plagioclase. The corona mineral sequence, which varies in the total thickness from 0.5 to 1 mm, comprises either an anhydrous corona type I with olivine|orthopyroxene|clinopyroxene+spinel symplectite|plagioclase or a hydrous corona type II with olivine|orthopyroxene|amphibole|amphibole+spinel symplectite|plagioclase. The anhydrous corona type I formed by metamorphic replacement of primary olivine and plagioclase, in the absence of any fluid/melt phase at <840 °C. Diffusion controlled metamorphic solid‐state replacement is mainly governed by the chemical potential gradients at the interface of reactant olivine and plagioclase and orthopyroxene and plagioclase. Thus, the thermodynamic incompatibility of the reactant minerals at the gabbro–granulite transition and the phase equilibria of the coronitic assemblage during subsequent cooling were modelled using quantitative μMgO–μCaO phase diagrams. Mineral reaction textures of the anhydrous corona type I indicate an inward migration of orthopyroxene on the expense of olivine, while clinopyroxene+spinel symplectite grows outward to replace plagioclase. Mineral textures of the hydrous corona type II indicate the presence of an interstitial liquid trapped between cumulus olivine and plagioclase that reacts with olivine to produce a rim of peritectic orthopyroxene around olivine. Two amphibole types are distinguished: an inclusion free, brownish amphibole I is enriched in trace elements and REEs relative to green amphibole II. Amphibole I evolves from an intercumulus liquid between peritectic orthopyroxene and plagioclase. Discrete layers of green amphibole II occur as inclusion‐free rims and amphibole II+spinel symplectites. Mineral textures and geochemical patterns indicate a metamorphic origin for amphibole II, where orthopyroxene was replaced to form an inner inclusion‐free amphibole II layer, while clinopyroxene and plagioclase were replaced to form an outer amphibole+spinel symplectite layer, at <770 °C. Calculation of the possible net reactions by considering NCKFMASH components indicates that the layer bulk composition cannot be modelled as a ‘closed’ system although in all cases the gain and loss of elements within the multi‐layer coronas (except H2O, Na2O) is very small and the main uncertainties may arise from slight chemical zoning of the respective minerals. Local oxidizing conditions led to the formation of orthopyroxene+magnetite symplectite enveloping and/or replacing olivine. The sequence of corona reaction textures indicates a counter clockwise P–T path at the gabbro–granulite transition at 5–6.5 kbar and temperatures below 900 °C.  相似文献   

5.
The Marum ophiolite complex in northern Papua New Guinea includesa thick (3–4 km) sequence of ultramafic and mafic cumulates,which are layered on a gross scale from dunite at the base upwardsthrough wehrlite, lherzolite, plagioclase lherzolite, pyroxenite,olivine norite-gabbro and norite-gabbro to anorthositic gabbroand ferrogabbro at the top. Igneous layering and structures,and cumulus textures indicate an origin by magmatic crystallizationin a large magma chamber(s) from magma(s) of evolving composition.Most rocks however show textural and mineralogical evidenceof subsolidus re-equilibration. The cumulate sequence is olivine and chrome spinel followedby clinopyroxene, orthopyroxene and plagioclase, and the layeredsequence is similar to that of the Troodos and Papuan ophiolites.These sequences differ from ophiolites such as Vourinos by thepresence of cumulus magnesian orthopyroxene, and are not consistentwith accumulation of low pressure liquidus phases of mid-oceanridge-type olivine tholeiite basalts. The cumulus phases show cryptic variation from Mg- and Ca-richearly cumulates to lower temperature end-members, e.g. olivineMg93–78, plagioclase An94–63. Co-existing pyroxenesdefine a high temperature solidus with a narrower miscibilitygap than that of pyroxenes from stratiform intrusions. Re-equilibratedpyroxene pairs define a low-temperature, subsolidus solvus.Various geothermometers and geobarometers, together with thermodynamiccalculations involving silica buffers, suggest the pyroxene-bearingcumulates crystallized at 1200 °C and 1–2 kb pressureunder low fO2. The underlying dunites and chromitites crystallizedat higher temperature, 1300–1350 °C. The bulk of thecumulates have re-equilibrated under subsolidus conditions:co-existing pyroxenes record equilibration temperatures of 850–900°C whereas olivine-spinel and magnetite-ilmenite pairs indicatefinal equilibration at very low temperatures (600 °C). Magmas parental to the cumulate sequence are considered to havebeen of magnesian olivine-poor tholeiite composition (>50per cent SiO2, 15 per cent MgO, 100 Mg/(Mg + Fe2+) 78) richin Ni and Cr, and poor in TiO2 and alkalies. Fractionated examplesof this magma type occur at a number of other ophiolites withsimilar cumulate sequences. Experimental studies show that suchlavas may result from ial melting of depleted mantle lherzoliteat shallow depth. The tectonic environment in which the complexformed might have been either a mid-ocean ridge or a back-arebasin.  相似文献   

6.
Thermodynamic calculations based on addition of mass balanceequations to the Gibbs Method (Spear, 1986) are used to modelthe cordierite-producing reaction in pelitic gneiss from theMcCullough Range, southern Nevada. Calculations which treatthe model paragenesis as a system open to transfer of H2O areconsistent with textural relations. Results indicate that cordieritegrew by the continuous net-transfer reaction: 0?76 BIO+1?72 SILL+3? 55 QTZ+0?27 PLG+0?005 GRT +0?06Al2R2+–1Si–1[BIO]1?02 KSP+0?76 H2O +0?30 FeMg–1[CRD]+0?15FeMg–1[BIO]+0?0005 FeMg–1[GRT] +0?005 CaNaAl–1Si–1[PLG] with decreasing P, decreasing T, and increasing aH2O The steepretrograde dP/dT path for these low-pressure granulites contrastswith isobaric cooling paths typical of higher pressure granulites,and suggests uplift and erosion were active during Proterozoicgranulite-grade metamorphism in this area.  相似文献   

7.
Orthopyroxene and olivine exposed along the rim of a harzburgite xenolith from La Palma (Canary Islands) show polycrystalline selvages and diffusion zones that result from contact with mafic, alkaline, silica-undersaturated melts during at least 10-100 years before eruption. The zoned selvages consist of a fine-grained reaction rim towards the xenolith and a coarser grained, cumulate-like layer towards the melt contact. The diffusion zones are characterized by decreasing magnesium number from about 89-91 in the xenolith interior to 79-85 at the rims, and clearly result from Fe-Mg exchange with surrounding mafic melt. The width of the diffusion zones is 80-200 µm in orthopyroxene and 1,020-1,730 µm in olivine. Orthopyroxene also shows decreasing Al2O3 and Cr2O3 and increasing MnO and TiO2 towards the reaction rims. Textural relations and comparisons with dissolution experiments suggest that orthopyroxene dissolution by silica-undersaturated melt essentially ceased after days to weeks of melt contact, possibly because of decreasing temperature and formation of the reaction rims. The short dissolution phase was followed by prolonged growth of diffusion zones through cation exchange between xenolith minerals and melt across the reaction rims, and by the growth of cumulus crystals. The observations indicate that orthopyroxene xenocrysts and harzburgite xenoliths can survive in mafic, silica-undersaturated, subliquidus magmas at 1,050-1,200 °C and 200-800 MPa for tens of years. Modeling and comparison of the diffusion zones indicate that the average Fe-Mg interdiffusion coefficient DFeMg in orthopyroxene is 2 log units lower than that in olivine; at 1,130 °C and QFM-buffered oxygen fugacity, DFeMgopx = 3 ×10 - 19  m2  s- 1D_{FeMg}^{opx} = 3 \times 10^{ - 19} \,{\rm m}^2 \,{\rm s}^{{\rm - 1}} . The new data overlap well with recently published data for DFeMg in diopside, and indicate that DFeMg opxD_{FeMg\,}^{opx} (as predicted by previous authors) may be extrapolated to higher temperatures and oxygen fugacities. It is suggested that DFeMg opx D_{FeMg\,}^{opx} and DFeMg in Mn-poor ferromagnesian garnet are similar within 0.5 log units at temperatures between 1,050 and 1,200 °C.  相似文献   

8.
Evidence is presented for the primary high pressure crystallization of the Ewarara, Kalka and Gosse Pile layered intrusions which form part of the Giles Complex in central Australia. These pressures are estimated at 10 to 12 kb. The high pressure characteristics include subsolidus reactions between olivine and plagioclase, orthopyroxene and plagioclase, and orthopyroxene and spinel; spinel and rutile exsolution in both ortho- and clino-pyroxene; spinel exsolution in plagioclase; high Al2O3 and Cr2O3 contents of both ortho- and clinopyroxene; high AlVI in clinopyroxene; dominance of orthopyroxene as an early crystallizing phase; high distribution coefficients for co-existing pyroxene pairs; and thin chilled margins. Such phenomena are rare in documented layered basic intrusions.  相似文献   

9.
Ultramafic xenoliths (harzburgite, olivine-orthopyroxenite,orthopyroxenite, websterite and clinopyroxenite) in a Plio-Quaternarystrombolian cone near Tissemt (Egg?r?, Hoggar, Algerian Sahara)contain large (up to 1 mm in diameter) euhedral flakes of graphite.These xenoliths are associated with mafic granulites free ofgraphite. Petrological, mineralogical, and geochemical dataindicate that these rocks have been scavenged from a Precambrianlayered intrusion emplaced in the deep crust. Textural evidencesuggests that the graphite could have crystallized relativelyearly from a silica-saturated melt: following cumulus crystallizationof olivine and orthopyroxene, the graphite crystallized, togetherwith olivine, orthopyroxene, and spinel, as a component of theintercumulus assemblage. The crystallization of graphite directlyfrom the melt is related to relatively high pressure (c. 5 kb)of carbon-rich fluid (CO+CO2+H2O) at relatively low oxygen fugacity(–logfo2, 10 at 1200 ?C).  相似文献   

10.
Numerous lenticular bodies of ultramafic rocks occur withinthe upper amphibolite- to granulitefacies metamorphic terraneof the Austrides between the Non and Ultimo valleys (Nonsbergregion), northern Italy. The ultramafic rocks are divided intotwo textural types: (a) coarse-type; and (b) finetype. The coarse-typerocks have the protogranular texture and are predominantly spinellherzolite. Some coarse-type spinel lherzolites have partlytransformed to garnet lherzolite. The fine-types are consideredto be metamorphic derivatives of the former, and the observedmineral assemblages are: (1) olivine + orthopyroxene + clinopyroxene+ garnet + amphibole ? spinel, (2) olivine + orthopyroxene +garnet + amphibole + spinel; (3) olivine + orthopyroxene + amphibole+ spinel; and (4) olivine+ orthopyroxene + amphibole + chlorite.Based on the microprobe analyses of constituent minerals fromten representative peridotite samples, physical conditions ofthe metamorphism, particularly that of the spinel to garnetlherzolite transformation, are estimated. Applications of pyroxenegeothermometry yield temperature estimates of 1100–1300?Cfor the formation of the primary spinel lherzolite, and 700–800?Cfor that of the fine-type peridotites. A pressure range of 16–28kb is obtained for the garnet lherzolite crystallization dependingon the choice of geobarometers. Two alternative P-T paths, i.e.(1) isobaric cooling or (2) pressure-increase and temperaturedecrease are considered and their geodynamic implications discussed.  相似文献   

11.
In the system CaO-MgO-Al2O3-SiO2-Na2O-H2O under 5 kb pressurethe invariant equilibrium forsterite-orthopyroxene-Ca-rich clinopyroxene-amphibole-plagioclase-liquid-vapourhas been identified at 960?12 ?C. A similar invariant assemblagewith spinel replacing Ca-rich clinopyroxene exists at 950?8?C. The liquid in the former equilibrium contains 16.5 per cent(wt.) normative quartz and 3 per cent Na2O; the plagioclaseis more calcic than An87; the pyroxenes contain about 3 percent Al2O3 and the amphibole is hypersthene-normative. Two anhydrousthermal maxima, the olivine-Ca-rich clinopyroxene-plagioclaseand the orthopyroxene-Ca-rich clinopyroxene-plagioclase dividezones are not encountered in this system, and nepheline-normativeliquids may crystallize amphibole?olivine?Ca-rich clinopyroxeneto produce quartz-normative residual liquids of andesite-typecomposition. A thermal maximum involving amphibole-olivine-Ca-richclinopyroxene-liquid-vapour exists for liquids containing approximately11 per cent normative nepheline and liquids more undersaturatedthan this will crystallize these phases to produce extremelynephelinitic liquids. Phase diagrams are presented which facilitate the predictionof crystallization sequences and liquid evolution paths forany basic or intermediate composition under the conditions employedhere.  相似文献   

12.
BARSDELL  M. 《Journal of Petrology》1988,29(5):927-964
The mineralogy, petrography and geochemistry of a suite of clinopyroxene-richolivine tholenite lavas from Merelava island, Vanuatu are described.Located at the southern end of the Northern Trough back-arcbasin, this suite displays all the characteristics of primitiveisland arc lavas: flat REE patterns, depleted HFSE, enrichmentin K-group elements relative to LREE, highly calcic plagioclase(to An9 3 and Cr-rich spinels (cr-number80) Analysis of groundmasscompositions demonstrates that the variation in MgO within thelava suite (from 13?7 to 4?3% MgO) represents only a small departurefrom a liquid line of descent. Some of the more primitive lavas contain low-Al2O3 clinopyroxenemegacrysts (mg-number = 100Mg/(Mg+Fe2 + and ultramafic xenoliths,the latter ranging from fine-grained, tectonite wehrlites andchnopyroxene-bearing harzburgites, to coarse-grained cumulatewehrlites. The cumulate nodules, megacrysts and phenocrysts are shown tobe co-magmatic, and an empirical compositional relationshipis demonstrated for equilibrium olivine-clinopyroxene pairs,covering the observed fractionation range (mg-numberCpx=0?6375mg-numberO1 + 35?3). On the basis that the most primitive olivine(mg-number 91 7) is close to the liquidus composition, thiscompositional relationship demonstrates that clinopyroxene (mg-number=94,and containing no Fe3+) was also a liquidus phase. Clinopyroxeneswith mg-number>94 are the product of local oxidation duringmixing of primitive, relatively reduced magmas, and more evolved,oxidized magmas. This mixing also gave rise to relatively narrow,reversely zoned, internal rims on many clinopyroxene and olivinephenocrysts, cumulus crystals, and clinopyroxene megacrysts. Fractionation modelling demonstrates that the most differentiatedsample with 19 wt.% Al2O3 can be derived from the most primitivesample with 10?3% Al2O3 by removal of 48% crystals of clinopyroxeneand olivine in the proportions 73:27 Plagioclase is a late crystallizingphase and has an insignificant role in the fractionation process. The parent melt composition (mg-number=77) is deduced from themost primitive olivine composition and the liquid line of descent,and is shown to contain equal amounts of MgO and CaO (137 wt.%),a high CaO/Al2O3 ratio of 1?3 and an unusually low Ni contentof 137 ppm. Data from published high pressure (8–20 kb)experiments on melting of peridotite and pyrolite do not providean explanati in for the large normative diopside component inthis parent melt (38 mol.%), and a hypothesis is proposed wherebyhigh degrees of melting of refractory Iherzolite or harzburgite+acomponent of lower crustal pyroxenite and/or wehrlite takesplace at the base of the crust (5–55 kb). At this depth,and initially under hydrous conditions, high degrees of meltingwould progressively eliminate orthopyroxene and then clinopyroxeneto produce a dunite residue. The liquid produced near the pointof clinopyroxene elimination would be compatible with the highCaO and Sc contents, and high Sc/Ni, Cr/Ni and D1/Hy ratiosof the lavas, and the refractory nature of the phenocrysts.  相似文献   

13.
Experimental Petrology of Melilite Nephelinites   总被引:3,自引:1,他引:3  
Experimental study of natural melilite nephelinite lavas ofintermediate K/Na ratio at low pressure (fo2 reveals the presenceof a peritectic ‘point’ of distributary type (1090?C)for liquids saturated with leucite, nepheline, and spinel. Withdecreasing temperature on the olivine + melilite cotectic, botholivine and melilite react with such liquids to produce high-calciumpyroxene at the peritectic. Both the olivine + high-calciumpyroxene and melilite + high-calcium pyroxene cotectics arestable at temperatures below the peritectic. Olivines coexistingwith such liquids are much more magnesian than those in comparabletholeiitic liquids. The olivine-liquid Fe-Mg distribution coefficient is a monotonically increasing function of silica activity over the composition range spannedby melilite nephelinite, ugandite, alkali basalt, and tholeiitebasalt liquids. The analogous Fe-Mg distribution coefficientfor melilite and liquid is effectively constant , while that for high-calcium pyroxene and liquidis highly dependent on the chemistry of high-calcium pyroxene(cf., Sack & Carmichael, 1984). Pseudoternary liquidus projectionsof multiply saturated liquids coexisting with nepheline, leucite,and spinel (?olivine?high-calcium pyroxene?melilite) have beenprepared to facilitate graphical analysis of the evolution oflava compositions during hypabyssal cooling. Major element chemicalanalyses and petrographic features of lavas from Mt. Nyiragongo,East Africa and Oahu, Hawaii (e.g., Denaeyer et al., 1965; Wilkinson& Stolz, 1983) confirm the validity of these diagrams andthe systematics established from the experimental data. *Reprint requests to R.O. Sack  相似文献   

14.
Anorthositic rocks compose 35–40% of the Middle Proterozoic(Keweenawan; 1?1 Ga) Duluth Complex—a large, compositemafic body in northeastern Minnesota that was intruded beneatha comagmatic volcanic edifice during the formation of the Midcontinentrift system. Anorthositic rocks, of which six general lithologictypes occur in one area of the complex, are common in an earlyseries of intrusions. They are characterized on a local scale(meters to kilometers) by nonstratiform distribution of rocktypes, variably oriented plagioclase lamination, and compositeintrusive relationships. Variably zoned, subhedral plagioclaseof nearly constant average An (60) makes up 82–98% ofthe anorthositic rocks. Other phases include granular to poikiliticolivine (Fo66–38), poikilitic clinopyrox-ene (En'73–37),subpoikilitic Fe-Ti oxides, and various late-stage and secondaryminerals. Whole-rock compositions of anorthositic rocks are modelled bymass balance to consist of three components: cumulus plagioclase(70–95 wt.%), minor cumulus olivine (0–5%), anda gabbroic postcumulus assemblage (5–27%) representinga trapped liquid. The postcumulus assemblage has textural andcompositional characteristics which are consistent with crystallizationfrom basaltic magma ranging from moderately evolved olivinetholeiite to highly evolved tholeiite (mg=60–25). Sympatheticvariations of mg in plagioclase and in mafic minerals suggestthat cumulus plagioclase, though constant in An, was in approximateequilibrium with the variety of basaltic magma compositionswhich produced the postcumulus assemblages. Standard models of mafic cumulate formation by fractional crystallizationof basaltic magmas in Duluth Complex chambers, although ableto explain the petrogenesis of younger stratiform troctoliticto gabbroic intrusions, are inadequate to account for the field,petrographic, and geochemical characteristics of the anorthositicrocks. Rather, we suggest an origin by multiple intrusions ofplagioclase crystal mushes—basaltic magmas charged withas much as 60% intratelluric plagioclase. The high concentrationsof cumulus plagioclase (70–95%) estimated to compose theanorthositic rocks may reflect expulsion of some of the transportingmagma during emplacement or early postcumulus crystallizationof only plagioclase from evolved hyperfeldspathic magma. Althoughthe evolved compositions of anorthositic rocks require significantfractionation of mafic minerals, geophysical evidence indicatesthat ultramafic rocks are, as exposure implies, rare in theDuluth Complex and implies that plagioclase crystal mushes werederived from deeper staging chambers. This is consistent withinterpretations of olivine habit and plagioclase zoning. Moreover,plagioclase could have been segregated from coprecipitatingmafic phases in such lower crustal chambers because of the buoyancyof plagioclase in basaltic magmas at high pressure. The geochemicaleffects of plagioclase suspension in basaltic magmas are consistentwith observed compositions of cumulus plagioclase in the anorthositicrocks and with the geochemical characteristics of many comagmaticbasalts. The petrogenesis of the anorthositic rocks and theoverall evolution of Keweenawan magmas can be related to thedynamics of intracontinental rift formation.  相似文献   

15.
The Shaw L-group chondrite differs from orthodox type 6 ordinary chondrites in ways which suggest that it experienced unusually high metamorphic temperatures and anatexis. Electron microprobe and single crystal X-ray diffraction data indicate that Shaw contains three pyroxenes: the augite (Fs11.3Wo38.2) and calcic orthopyroxene (Fs19.4WO4·5) reported by other workers and a second, Ca- and Al-poor orthopyroxene (Fs16·8Wo1·2) which we interpret as inverted protobronzite. Comparison of the Shaw assemblage with experimental data suggests that a two-phase (augite-protobronzite) assemblage developed at peak metamorphic temperatures of ~1250–1300°C, that partial reaction of augite and protobronzite produced calcic orthopyroxene and by-product spinel at temperatures approximately 150°C lower and that protobronzite inverted to bronzite free of stacking disorder during subsequent slow cooling. The intracrystalline distribution of Fe and Mg in the Ca-poor bronzite (KE + 0·07; determined by crystal structure analysis) indicates an equilibration temperature of ~500°C.Shaw differs sufficiently in texture and mineralogy from type 6 ordinary chondrites to justify its assignment to a separate petrologic type: L-7.  相似文献   

16.
The central portion of the system MgO–Al2O3–SiO2has been studied with the aim of determining the range of solidsolution, as well as the stability limits of the various structuralstates of the ternary compound cordierite. The previously suggestedlimited solid solution between cordierite of the composition2MgO? 2Al2O3? 5SiO2 (2: 2: 5) and SiO2 is now believed to existonly metastably. Between 800? and 1,300? C the composition ofcordierite was found to be invariably 2MgO. 2Al2O3 5SiO2. Above1,300?C, however, there is evidence for the existence of limitedsolid solution in cordierite (2: 2: 5) toward a theoreticalcompound ‘Mg-beryl’ (3: 1: 6). The existence ofcordierite solid solution at liquidus temperatures has an importantbearing on the melting relations of many compositions withinthe system. Because of this solid solution the courses of crystallizationof melts consisting of normative cordierite (2: 2: 5) and smallamounts of MgSiO3, for example, have to follow parts of theboundary curve between the cordierite and spinel fields withthese two phases coprecipitating over a limited range of temperatures.The dividing line between compositions which complete theircrystallization at the ternary eutectic forsterite+protoenstatite+cordierite+liquid,1,364? ?3? C, and those which complete their crystallizationat the ternary eutectic protoenstatite +cordierite+tridymite+liquid,1, 355??3? C was formerly considered to be the join MgSiO3-cordierite(2: 2: 5). Because of solid solution in cordierite coexistingwith liquid this dividing line is displaced slightly in thedirection toward more siliceous bulk compositions. Furthermore,the temperature maximum along the boundary curve cordierite+protoenstatite+liquid cannot lie at the intersection of this boundary curvewith the join MgSiO3–2: 2: 5, but with the tie line MgSiO3-cordieritess.The position of this temperature maximum thus moves closer tothe ternary eutectic protoenstatite+cordierite+tridymite+liquid.Temperatures and compositions of some of the invariant pointsin the system have been redeter-mined.  相似文献   

17.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2=43?7–45?7 wt. percent, Al2O3=1?6O–8?21 wt. per cent, CaO=0?70–8?12wt. per cent,alk=0?10–0?90 wt. per cent and Mg/(Mg+Fe2+)=0?94–0?85)have been investigated in the hypersolidus region from 800?to 1250?C with variable activities of H2O, CO2, and H2. Thevapor-saturated peridotite solidi are 50–200?C below thosepreviously published. The temperature of the beginning of meltingof peridotite decreases markedly with decreasing Mg/(Mg+Fe)of the starting material at constant CaO/Al2O3. Conversely,lowering CaO/Al2O3 reduces the temperature at constant Mg/(Mg+Fe)of the starting material. Temperature differences between thesolidi up to 200?C are observed. All solidi display a temperatureminimum reflecting the appearance of garnet. This minimum shiftsto lower pressure with decreasing Mg/(Mg+Fe) of the startingmaterial. The temperature of the beginning of melting decreasesisobarically as approximately a linear function of the mol fractionof H2O in the vapor (XH2O). The data also show that some CO2may dissolve in silicate melts formed by partial melting ofperidotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or coexist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aH2O conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. It is suggested that komatiite in Precambrian terrane couldform by direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of (). Such activities of H2Oresult in melting at depths ranging between 125 and 175 km inthe mantle. This range is within the minimum depth generallyaccepted for the formation of kimberlite.  相似文献   

18.
Subsolidus phase relations have been determined in the systemsSiO2-Cr-0 and MgO-SiO2-Cr-O in equilibrium with metallic Cr,at 1100–1500C and 0–288 kbar. There are no ternaryphases in the SiO2-Cr-O system at these conditions, ie. onlythe assemblage eskolaite + Cr-metal + SiO2 is found. However,in the MgO-containing system, extensive substitution of Cr2+for Mg is observed in (Mg,Cr2+)2SiO4 olivine, (Mg,Cr2+)2Si2O6pyroxene, and (Mg,Cr2+)Cr3+204 spinel. Cr 3+ levels in olivineand pyroxene are below detection limits. The pyroxene is orthorhombicat monoclinic at higher . The structure of the spinels becomestetragonally distorted at is limited by the breakdown of olivine to pyroxene + spinel+ metal. This maximum amount increases strongly with increasingtemperature, reaching >0.2 at 1500C and 48 kbar. Increasing pressure reduces the maximum. Increasing temperature also increases the maximum amounts of Cr2+ which substitute intopyroxene and spinel, indicating that end-member Cr2Si206 andCr3O4 may become stable above 1650C if melting does not intervene.Powder X-ray diffraction analysis of selected runs has beenused to extract molar volumes of the Mg-Cr2+ solid solutionsas a function of composition, which may be extrapolated to predictmolar volumes for Cr2SiO4 (olivine), Cr2Si2O6 (ortho- and clino-pyroxene)and Cr2O4 (cubic spinel) of 477, 680 and 449 cm3, respectively.The experimental data have been fitted to a thermodynamic model,including free energies of formation for end member Cr2SiO4,Cr2Si2O6 and Cr3O4. This model is then used to predict the amountsof Cr2+ which can be expected in olivine in equilibrium withCr-bearing spinel as a function of T, P and fo2. This amountincreases strongly with temperature along standard T-fo2 buffercurves, and is sufficient to explain the observed high Cr contentsof olivine from komatiites and diamond inclusions at reasonableterrestrial fo, values. The lower fo2 of the lunar environmentresults in significant Cr2+ in olivine being stable to muchlower temperatures. The tendency for the oxidation state ofCr, and hence its geochemical properties, to change with temperaturerelative to other redox reactions makes it a potentially usefulmonitor of the temperatures of uppermantle processes, and isa significant factor in the differing styles of igneous differentiationin the Earth and Moon. Corresponding author  相似文献   

19.
Abundant Fe–Ti oxide inclusions in cumulus olivine (Fo77–81) from the Panzhihua and Hongge intrusions, Emeishan large igneous province, SW China, document the first evidence for early crystallization of Fe–Ti oxides in ferrobasaltic systems in nature. The intrusions also contain significant stratiform Fe–Ti–V oxide ores. The oxide inclusions are sub-rounded or irregular, range from ∼5 to 50 μm in diameter, and are dominated by either titanomagnetite or ilmenite. The fact that the inclusions are either titanomagnetite- or ilmenite-dominant suggests that they are trapped crystals, instead of immiscible oxide melt, formed during growth of the host olivine. The absence of other silicate phases in the inclusion-bearing olivine is difficult to reconcile with a possible xenocrystic origin of the oxide inclusions. These oxide inclusions are thus interpreted to be cumulus minerals crystallized together and trapped in olivine from the same parental magma. In addition to Fe–Ti oxides, some inclusions contain amphibole + biotite ± fluorapatite that might have formed by reaction of trapped hydrous liquid with the host olivine. Numerical modeling of high-Ti Emeishan basalts using the MELTS program successfully simulates early crystallization of olivine (∼Fo81) and Fe–Ti spinel in the presence of a moderate amount of H2O (∼1.5 wt%) under pressure and fO2 conditions generally pertinent to the Panzhihua and Hongge intrusions. The modal mineralogy of the oxide inclusions is in good agreement with the bulk compositions of the ore, as inferred from whole-rock data, in a given intrusion. This is consistent with the interpretation that the stratiform oxide ores in the intrusions formed by accumulation of Fe–Ti oxide crystals that appeared on the liquidus with olivine and clinopyroxene.  相似文献   

20.
Three main groups of plutonic nodules are present in the LesserAntilles arc and are interpreted as (a) phenocryst clusters,(b) metamorphosed wallrock xenoliths and (c) cumulate texturedxenoliths. Large cumulate blocks display felsic-mafic layering,slump structures and auto-intrusive features. The majority ofspecimens are ad- and heteradcumulates with fewer ortho- andcrescumulates. Interstitial scoria and glass are present ina variety of samples. Plagioclase, amphibole, cino- and orthopyroxene,olivine, magnetite, biotite, ilmenite, quartz and apatite arepresent in various proportions in individual blocks. Plagioclaseand amphibole are modally predominant. Significant variationalong the arc is displayed in the rarity of orthopyroxene andabundance of amphibole in the southern islands compared withthe common presence of two pyroxenes in the northern islands. Plagioclase varies from An100–36 with very low orthoclasecomponent, and usually precedes amphibole in a given crystallizationsequence. Only on Grenada are plagioclase-free blocks present.Olivine is restricted to assemblages where coexisting plagioclaseis more calcic than An89 and its composition range is Fo90–59.Clinopyroxene is predominantly calcic augite and cinopyroxene,olivine and plagioclase all coexist stably with amphibole. Ageneral trend of decreasing Ca content in clinopyroxene fromsouth to north in the arc is present. Orthopyroxene ranges from En73–49 and is most common inassemblages where the coexisting plagioclase is more sodic thanAn83 Coexisting pyroxenes define temperatures in the range 800–1050?C. Amphibole compositions include pargasite, magnesiohastingsite,magnesio-hornblende and tschermakitic hornblende. The K contentof the amphiboles increases from north to south in the samesense as the general tholeiitic-calcalkalic-alkalic variationof parental magmas. Magnetite is the dominant spinel phase but ferrian chromiteand chromian magnetite are present in some Grenada cumulatesand pleonaste is found in rare St. Kitts samples. Ilmenite ispresent in blocks from several islands; coexisting Fe-Ti oxidesdefine a temperature range of 710?-950 ?C at of 15.5 to 10.0 bars. Biotite, quartz and apatiteare restricted to evolve cumulate types. Some modification of interstitial scoria/glass compositionsfrom equilibrium melts has occurred in the majority of samples,but general similarity with erupted lava types is importantevidence for the cognate relationship of the cumulate assemblages.The role of H2O is crucial in determining the calcic natureof island arc plutonic plagioclase when compared with relativelydry, layered tholeiitic plutons. Some modal and chemical featuresof cumulate-lava comparisons suggest plagioclase flotation maybe significant. A variety of thermodynamic calculations indicate temperaturesand pressures of crystallization in the range 850–1050?C, 4–10 kb. No evidence exists for systematic along-arcvariations in these parameters. Standard amphibole crystallinesolution models give unsatisfactory results for calculations. Some distinctive contrasts between cumulate and phenocryst modesare present. The abundance of amphibole in equilibrium withbasaltic melts in the plutonic situation compared with its rarityin lavas is striking. Plagioclase coexisting with a given meltis more anorthitic in the plutonic than the phenocryst mode. Least squares fractionation tests demonstrate the possibilityof relating basalt-andesite-dacite suites by fractional crystallizationof the cumulus phases. Trace element systematics of cumulate-lavasuites for individual islands also generally support this hypothesis.The suggestion of sole amphibole fractionation for the generationof andesite from basalt is discarded. * Present address: CRAE, Box 39598, Darwin, N.T. 5798, Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号