首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Intercomparison of three urban climate models   总被引:1,自引:0,他引:1  
An intercomparison of the surface energy budgets from three urban climate models was made to assess the comparability of results, and to evaluate the surface energy fluxes from each model. The three models selected spanned the continuum of approaches currently employed in the treatment of the effects of urban geometry. The first model was an urban canopy-layer model which explicitly examined urban canyon geometry. The second model treated the city as a warm, rough, moist plate but included greatly simplified parameterizations of urban geometry. Neither model included a dynamic link to the urban boundary-layer. The third model was a one-dimensional urban boundary-layer model which utilized a simple warm, rough, moist plate approach but included a dynamic coupling of the urban surface layer to the urban boundary-layer.Results showed considerable disagreement between the three models in regards to the individual energy fluxes. Average rankings of the energy fluxes in terms of comparability from high-to-low similarity were: (1) solar radiation, (2) sensible heat flux, (3) conduction, (4) latent heat flux, (5) longwave re-radiation, and (6) longwave radiation input. In general, the urban canopy-layer model provided more realistic results, although each model demonstrated strong and weak points. Results indicate that current urban boundary-layer models may produce surface energy budgets with lower sensible heat fluxes and substantially higher latent heat fluxes than is supported by field evidence from the literature.  相似文献   

3.
This heuristic study of the urban morphology influence on urban albedo is based on some 3,500 simulations with the Solene model. The studied configurations include square blocks in regular and staggered rows, rectangular blocks with different street widths, cross-shaped blocks, infinite street canyons and several actual districts in Marseilles, Toulouse and Nantes, France. The scanned variables are plan density, facade density, building height, layout orientation, latitude, date and time of the day. The sky-view factors of the ground and canopy surfaces are also considered. This study demonstrates the significance of the facade density, in addition to the built plan density, as the explanatory geometrical factor to characterize the urban morphology, rather than building height. On the basis of these albedo calculations the puzzling results of Kondo et al. (Boundary-Layer Meteorol 100:225–242, 2001) for the influence of building height are explained, and the plan density influence is quantitatively assessed. It is shown that the albedo relationship with plan and facade densities obtained with the regular square plot configuration may be considered as a reference for all other configurations, with the exception of the infinite street canyon that shows systematic differences for the lower plan densities. The curves representing this empirical relationship may be used as a sort of abacus for all other geometries while an approximate simple mathematical model is proposed, as well as relationships between the albedo and sky-view factors.  相似文献   

4.
Wind and temperature measurements from within and above a deep urban canyon (height/width = 2.1) were used to examine the thermal structure of air within the canyon, exchange of heat with the overlying atmosphere, and the possible impacts of surface heating on within-canyon air flow. Measurements were made over a range of seasons and primarily analysed for sunny days. This allowed the study of temperature differences between opposing canyon walls and between wall and air of more than 15°C in summer. The wall temperature patterns follow those of incoming solar radiation loading with a secondary daytime effect from the longwave exchange between the walls. In winter, the canyon walls receive little direct solar radiation, and temperature differences are largely due to anthropogenic heating of the building interiors. Cool air from aloft and heated air from canyon walls is shown to circulate within the canyon under cross-canyon flow. Roofs and some portions of walls heat up rapidly on clear days and have a large influence on heat fluxes and the temperature field. The magnitude and direction of the measured turbulent heat flux also depend strongly on the direction of flow relative to surface heating. However, these spatial differences are smoothed by the shear layer at the canyon top. Buoyancy effects from the heated walls were not seen to have as large an impact on the measured flow field as has been shown in numerical experiments. At night canyon walls are shown to be the source of positive sensible heat fluxes. The measurements show that materials and their location, as well as geometry, play a role in regulating the heat exchange between the urban surface and atmosphere.  相似文献   

5.
A new method is developed for solving the shortwave and longwave net radiative balance of a three-dimensional urban structure, represented by parallelepiped blocks uniformly distributed in each direction. The method is based on a novel approach to determine the shape factors among surfaces, which are estimated by Monte Carlo techniques due to the complex geometry associated with the three-dimensional urban structure. Then, a set of linear equations is solved to quantify the radiative balance, in order to obtain their exact solution, considering all the inter-reflections among surfaces. The comparison between the new and the ray-tracing tracking methods resulted in a Pearson correlation coefficient of 0.996. However, by integrating the linear equations’ exact solution with Monte Carlo techniques, the new method reduces by a factor of 36 the central processing unit (CPU) time used to perform the calculations of the ray-tracing tracking method. The use of the model for a sensitivity study allows us to verify the effective absorptance and emittance increases with the canyon aspect ratio of the urban layout. An urban structure formed by square cross-sectional blocks absorbs more solar radiation than an urban structure formed by rectangular cross-sectional blocks. The approximation of a specific geometry for an equivalent bi-dimensional infinite street can be applied for rectangular cross-sectional blocks, where the width is 11 times or more greater than the depth dimension.  相似文献   

6.
Radiative Exchange in an Urban Street Canyon   总被引:1,自引:4,他引:1  
The influence of building geometry on the radiation terms ofthe surface energy balance is a principal reason for surfacetemperature differences between rural and urban areas.Methods exist to calculate the radiation balance in an urban area,but their validity across the range of urban geometries andmaterials has not been carefully considered.Here the exchange of diffuse radiation in an urban street canyon isinvestigated using a method incorporating all reflections of radiation.This exact solution is compared to two commonly used approximationsthat retain either no reflections, or just one reflection of radiation.The area-averaged net radiative flux density from the facets of the canyondecreases in magnitude monotonically as the canyon aspect ratio increases.The two approximate solutions possess unphysical differences from thismonotonic decrease for high canyon aspect ratios or low materialemissivities/high material albedos.The errors of the two approximate solutions are small for near blackbodymaterials and small canyon aspect ratios but can be an order ofmagnitude for intermediate material properties and deep street canyons.Urban street canyon models need to consider at least one reflectionof radiation and multiple reflections are desirable for full applicability.  相似文献   

7.
An urban canopy model is developed for use in mesoscale meteorological and environmental modelling. The urban geometry is composed of simple homogeneous buildings characterized by the canyon aspect ratio (h/w) as well as the canyon vegetation characterized by the leaf aspect ratio (σ l ) and leaf area density profile. Five energy exchanging surfaces (roof, wall, road, leaf, soil) are considered in the model, and energy conservation relations are applied to each component. In addition, the temperature and specific humidity of canopy air are predicted without the assumption of thermal equilibrium. For radiative transfer within the canyon, multiple reflections for shortwave radiation and one reflection for longwave radiation are considered, while the shadowing and absorption of radiation due to the canyon vegetation are computed by using the transmissivity and the leaf area density profile function. The model is evaluated using field measurements in Vancouver, British Columbia and Marseille, France. Results show that the model quite well simulates the observations of surface temperatures, canopy air temperature and specific humidity, momentum flux, net radiation, and energy partitioning into turbulent fluxes and storage heat flux. Sensitivity tests show that the canyon vegetation has a large influence not only on surface temperatures but also on the partitioning of sensible and latent heat fluxes. In addition, the surface energy balance can be affected by soil moisture content and leaf area index as well as the fraction of vegetation. These results suggest that a proper parameterization of the canyon vegetation is prerequisite for urban modelling.  相似文献   

8.
Summary The effect of screening on road surface temperatures during day time conditions is studied. Data from the Swedish Road Weather Information System (VVIS) are used and differences in road surface temperature between sites screened from the sun and well exposed sites are analysed. Six stations in the counties of Skaraborg and Älvsborg are used. The main factors determining the shadow patterns analysed are type and orientation of the screening objects, solar elevation and cloudiness and sky-view factor. The solar elevation and cloudiness determine the potential maximum differences in road surface temperature, while shape and orientation of the screening obstacle determine the occurrence and duration of the shadow pattern. The study shows that the maximum differences in road surface temperature during the day at screened sites are strongly correlated to the daily maximum solar elevation during a given period. It is evident that, when the cloud cover increases, the temperature divergence at screened sites is progressively reduced. The maximum road surface temperature difference occurring during the day has also been shown to have a significant effect on the road surface temperature after sunset at the screened site. The road surface temperature at a screened site is kept at a low level compared with the well exposed station site till after sunset but if the sky-view factor is small the road surface temperature difference can be reduced.With 8 Figures  相似文献   

9.
Two techniques are analysed to derive mean street width and mean building width from morphological data of real cities: one based on a two-dimensional simplified morphology, and the other based on a three-dimensional regular simplified morphology. For each simplified morphology (two-dimensional and three-dimensional), the sky-view factors (street-to-sky) are computed and compared with the sky-view factors derived from the real morphology for selected districts of three European and two North American cities. The two-dimensional simplified morphology reproduces the real sky-view factors better than the three-dimensional morphology. Since many urban canopy parameterizations represent the city using simplified morphologies, this can be useful information for the derivation of input parameters for urban canopy parameterizations from real morphological data.  相似文献   

10.
A neighbourhood-scale multi-layer urban canopy model of shortwave and longwave radiation exchange that explicitly includes the radiative effects of tall vegetation (trees) is presented. Tree foliage is permitted both between and above buildings, and mutual shading, emission and reflection between buildings and trees are included. The basic geometry is a two-dimensional canyon with leaf area density profiles and probabilistic variation of building height. Furthermore, the model accounts for three-dimensional path lengths through the foliage. Ray tracing determines the receipt of direct shortwave irradiance by building and foliage elements. View factors for longwave and shortwave diffuse radiation exchange are computed once at the start of the simulation using a Monte Carlo ray tracing approach; for subsequent model timesteps, matrix inversion rapidly solves infinite reflections and interception of emitted longwave between all elements. The model is designed to simulate any combination of shortwave and longwave radiation frequency bands, and to be portable to any neighbourhood-scale urban canopy geometry based on the urban canyon. Additionally, the model is sufficiently flexible to represent forest and forest-clearing scenarios. Model sensitivity tests demonstrate the model is robust and computationally feasible, and highlight the importance of vertical resolution to the performance of urban canopy radiation models. Full model evaluation is limited by the paucity of within-canyon radiation measurements in urban neighbourhoods with trees. Where appropriate model components are tested against analytic relations and results from an independent urban radiation transfer model. Furthermore, system response tests demonstrate the ability of the model to realistically distribute shortwave radiation among urban elements as a function of built form, solar angle and tree foliage height, density and clumping. Separate modelling of photosynthetically-active and near-infrared shortwave bands is shown to be important in some cases. Increased canyon height-to-width ratio and/or tree cover diminishes the net longwave radiation loss of individual canyon elements (e.g., floor, walls), but, notably, has little effect on the net longwave loss of the whole urban canopy. When combined with parametrizations for the impacts of trees on airflow and hydrological processes in the urban surface layer, the new radiation model extends the applicability of urban canopy models and permits more robust assessment of trees as tools to manage urban climate, air quality, human comfort and building energy loads.  相似文献   

11.
A practical model is developed for the vertical flux of a scalar, such as heat, from an urban street canyon that accounts for variations of the flow and turbulence with canyon geometry. The model gives the magnitude and geometric dependence of the flux from each facet of the urban street canyon, and is shown to agree well with wind-tunnel measurements described in Part I. The geometric dependence of the flux from an urban street canyon is shown to be determined by two physical processes. Firstly, as the height-to-width ratio of the street canyon increases, so does the roughness length and displacement height of the surface. This increase leads to a reduction in the wind speed in the inertial sublayer above the street canyons. Since the speed of the circulations in the street are proportional to this inertial sublayer wind speed, the flux then reduces with the inertial sublayer wind speed. This process is dominant at low height-to-width ratios. Secondly, the character of the circulations within the street canyon also varies as the height-to-width ratio increases. The flow in the street is partitioned into a recirculation region and a ventilated region. When the street canyon has high height-to-width ratios the recirculation region occupies the whole street canyon and the wind speeds within the street are low. This tendency decreases the flux at high height-to-width ratios. These processes tend to reduce the flux density from the individual facets of the street canyon, when compared to the flux density from a horizontal surface of the same material. But the street canyon has an increased total surface area, which means that the total flux from the street canyon is larger than from a horizontal surface. The variations in scalar flux from an urban street canyon with geometry is over a factor of two, which means that the physical mechanisms responsible should be incorporated into energy balance models for urban areas.  相似文献   

12.
The longwave upward radiation was calculated for an urban canopy by using a Monte Carlo model. The effects of the urban geometry were examined in terms of the fractional roof area, the height of the buildings and the emissivity. The urban canopy consists of identically sized buildings and the ground surfaces. The model allows for the temperature differences between the buildings and the ground surface and for multiple reflections in the canyon.The Monte Carlo results show that neglect of the geometric effects causes significant errors in calculated upward radiation: calculations with area-weighting of the radiation emitted from flat homogeneous surfaces are not appropriate. The upward flux is a nonlinear function of the fractional roof area, which may be approximated by a function of the square or cube of the fractional roof area. Neglect of the reflections by non-black surfaces (emissivity<1) underestimates the upward flux by a few percent for a canopy of emissivity=0.9. Radiation effects due to multiple reflections in the canyon are parameterized by use of the view factor and the fractional roof area. The parameterization scheme yields accurate results.  相似文献   

13.
利用2009年7月在青藏高原理塘、林芝、海北、拉萨获得的气象观测资料,对比分析了这些地区近地层气象要素、辐射收支及湍流通量日变化特征。结果表明:无论是高原东部、中部还是北部,无论是高原台地还是高山峡谷区,7月份近地层各气象要素、湍流通量、辐射收支都有明显的日变化。各地区的地表辐射、感热、潜热等最高值都出现在中午,最低值出现在早晨。地表反照率日变化均呈早晚高中午低的"U"型分布。地面热源强度在白天均为热源,正午为强热源,在夜间表现为弱的冷、热源交替出现。7月份近地层地气热量交换中,感热输送作用小,潜热输送占主导地位。动量通量和摩擦速度均在风速较大的下午较大,风速小的早晨小。  相似文献   

14.
A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models   总被引:28,自引:1,他引:27  
An urban surface scheme for atmospheric mesoscale models ispresented. A generalization of local canyon geometry isdefined instead of the usual bare soil formulation currently usedto represent cities in atmospheric models. This allows refinement ofthe radiative budgets as well as momentum, turbulent heat and ground fluxes.The scheme is aimed to be as general as possible, in order to representany city in the world, for any time or weather condition(heat island cooling by night, urban wake, water evaporation after rainfalland snow effects).Two main parts of the scheme are validated against published data.Firstly, it is shown that the evolution of the model-predictedfluxes during a night with calm winds is satisfactory, considering both the longwave budget and the surface temperatures. Secondly, the original shortwave scheme is tested off-line and compared to the effective albedoof a canyon scale model. These two validations show that the radiative energy input to the urban surface model is realistic.Sensitivity tests of the model are performed for one-yearsimulation periods, for both oceanic and continental climates. The scheme has the ability to retrieve, without ad hoc assumptions, the diurnal hysteresis between the turbulent heat flux and ground heat flux. It reproduces the damping of the daytime turbulent heat flux by the heat storage flux observed in city centres. The latent heat flux is negligible on average,but can be large when short time scales are considered (especially afterrainfall). It also suggests that in densely built areas, domesticheating can overwhelm the net radiation, and supply a continuous turbulentheat flux towards the atmosphere. This becomes very important inwinter for continental climates. Finally, a comparison with a vegetation scheme shows that the suburban environment can be represented with a bare soil formulation for large temporal or spatial averages (typical of globalclimatic studies), but that a surface scheme dedicated to the urban surface is necessary when smaller scales are considered: town meteorological forecasts, mesoscale or local studies.  相似文献   

15.
Very few attempts have so far been made to quantify the momentum and turbulent kinetic energy (TKE) budgets within real urban canopies. In this study, sonic anemometer data obtained during the Joint Urban 2003 field campaign in Oklahoma City, U.S.A. were used for calculating the momentum and TKE budgets within a real-world urban street canyon. Sonic anemometers were deployed on multiple towers in the lower half of the canyon. Gradients in all three principal directions were included in the analyses. The storage and buoyancy terms were found to have negligible contributions to both the momentum and TKE budgets. The momentum budgets were generally found to be more complex than a simple balance of two physical processes. The horizontal terms were found to have significant and sometimes dominant contributions to the momentum and TKE budgets.  相似文献   

16.
Summary The paper focuses on the absorption of shortwave radiation in an urban street canyon. To test the effective albedo of the canyon an analytic solution of the multiple reflection problem is applied. The infinitesimally long canyon is divided into slices and a matrix of view factors for the slices is defined. Incoming shortwave radiation includes direct and diffuse parts and shadowing effects are included in the analysis. The model is validated against Aida’s (1982) scale model data and measurements in a real canyon. The results demonstrate a rapid decrease of the effective albedo as the canyon aspect ratio (its height to width, H/W) are increased. It is also shown that diurnal changes of the effective albedo can be very complex depending on the particular combination of H/W ratio, surface reflectivity and canyon orientation. Author’s address: Krzysztof Fortuniak, Department of Meteorology and Climatology, University of Łódź, Narutowicza 88, 09-139 Łódź, Poland.  相似文献   

17.
利用2009年7月在青藏高原理塘、林芝、海北、拉萨获得的气象观测资料,对比分析了这些地区近地层气象要素、辐射收支及湍流通量日变化特征。结果表明:无论是高原东部、中部还是北部,无论是高原台地还是高山峡谷区,7月份近地层各气象要素、湍流通量、辐射收支都有明显的日变化。各地区的地表辐射、感热、潜热等最高值都出现在中午,最低值出现在早晨。地表反照率日变化均呈早晚高中午低的“U”型分布。地面热源强度在白天均为热源,正午为强热源,在夜间表现为弱的冷、热源交替出现。7月份近地层地气热量交换中,感热输送作用小,潜热输送占主导地位。动量通量和摩擦速度均在风速较大的下午较大,风速小的早晨小。   相似文献   

18.
The urban canyon radiation model of Arnfield (1976, 1982) is validated using measurements of long-wave fluxes taken within a scaled down urban canyon constructed from concrete building blocks. A custom-designed traversing system allowed miniature radiometers to be automatically moved around the perimeter of a canyon cross-section, thereby providing for the validation of individual model grid-points. The agreement between measured and modelled radiation is generally very good. Some differences between the two over the canyon walls are attributed to difficulties in achieving precise instrument orientation. Model results derived from the measured surface temperature data are compared to results using various approximation schemes more likely to be used in practice. Approximations based on canyon surface temperatures are superior to those using air temperature.  相似文献   

19.
Two deterministic models were combined: one for canopy leaf energy budgets and one for street canyon energy budgets. The effects of street parks and roof gardens in contrast to non-vegetated city blocks were examined by the use of four typical urban morphologies, which were exposed latitudinally to summer and winter simulations. A variety of increases and decreases in shortwave radiation, net radiation, sensible heat flux, and system reradiation resulted. These changes appear to represent the generalized limits of the possible responses to the addition of vegetation to non-vegetated city blocks.  相似文献   

20.
The transfer processes within and above a simulated urban street canyon were investigated in a generic manner. Computational fluid dynamics (CFD) was used to aid understanding and to produce some simple operational parameterisations. In this study we addressed specifically the commonly met situation where buoyancy effects arising from elevated surface temperatures are not important, i.e. when mechanical forces outweigh buoyancy forces. In a geophysical context this requires that some suitably defined Richardson number is small. From an engineering perspective this is interpreted as the important case when heat transfer within and above urban street canyons is by forced convection. Surprisingly, this particular scenario (for which the heat transfer coefficient between buildings and the flow is largest), has been less well studied than the situation where buoyancy effects are important. The CFD technique was compared against wind-tunnel experiments to provide model evaluation. The height-to-width ratio of the canyon was varied through the range 0.5–5 and the flow was normal to the canyon axis. By setting the canyon’s facets to have the same or different temperatures or to have a partial temperature distribution, simulations were carried out to investigate: (a) the influence of geometry on the flow and mixing within the canyon and (b) the exchange processes within the canyon and across the canyon top interface. Results showed that the vortex-type circulation and turbulence developed within the canyon produced a temperature distribution that was, essentially, spatially uniform (apart from a relatively thin near-wall thermal boundary layer) This allowed the temperatures within the street canyon to be specified by just one value T can , the canyon temperature. The variation of T can with wind speed, surface temperatures and geometry was extensively studied. Finally, the exchange velocity u E across the interface between the canyon and the flow above was calculated based on a heat flux balance within the canyon and between the canyon and the flow above. Results showed that u E was approximately 1% of a characteristic wind velocity above the street canyon. The problem of radiative exchange is not addressed but it can, of course, be introduced analytically, or computationally, when necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号