首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Galactic winds and mass outflows are observed both in nearby starburst galaxies and in high-redshift star-forming galaxies. We develop a simple analytic model to understand the observed superwind phenomenon with a discussion of the model uncertainties. Our model is built upon the model of McKee & Ostriker for the interstellar medium. It allows one to predict how properties of a superwind, such as wind velocity and mass outflow rate, are related to properties of its starforming host galaxy, such as size, gas density and star formation rate. The model predicts a threshold of star formation rate density for the generation of observable galactic winds. Galaxies with more concentrated star formation activities produce superwinds with higher velocities. The predicted mass outflow rates are comparable to (or slightly larger than) the corresponding star formation rates. We apply our model to both local starburst galaxies and high-redshift Lyman break galaxies, and find its predictions to be in good agreement with current observations. Our model is simple and so can be easily incorporated into numerical simulations and semi-analytical models of galaxy formation.  相似文献   

4.
We present V -band surface photometry and major-axis kinematics of stars and ionized gas of three early-type spiral galaxies, namely NGC 772, 3898 and 7782. For each galaxy we present a self-consistent Jeans model for the stellar kinematics, adopting the light distribution of bulge and disc derived by means of a two-dimensional parametric photometric decomposition. This allows us to investigate the presence of non-circular gas motions, and derive the mass distribution of luminous and dark matter in these objects.
NGC 772 and 7782 have apparently normal kinematics with the ionized gas tracing the gravitational equilibrium circular speed. This is not true in the innermost region (| r |≲8 arcsec) of NGC 3898, where the ionized gas is rotating more slowly than the circular velocity predicted by dynamical modelling. This phenomenon is common in the bulge-dominated galaxies for which dynamical modelling enables us to make the direct comparison between the gas velocity and the circular speed, and it poses questions about the reliability of galaxy mass distributions derived by the direct decomposition of the observed ionized-gas rotation curve into the contributions of luminous and dark matter.  相似文献   

5.
6.
7.
There is considerable evidence that the circumnuclear regions of galaxies are intimately related to their host galaxies, most directly through their bars. There is also convincing evidence for relations between the properties of supermassive black holes in the nuclei of galaxies and those of their host galaxies. It is much less clear, however, how stellar (starburst) and non-stellar (AGN) activity in the nuclear regions can be initiated and fuelled. Here, we review the evidence for gas transport from the disk to the nuclear and circumnuclear regions of galaxies, as well as the statistical relationships between the occurrence of nuclear activity and mechanisms which can cause central gas concentration. In particular, I explore the roles played by bars and interactions, and conclude that in specific, mostly extreme, cases bars and interactions are indeed observed to be connected to nuclear activity. The overall lack of observational evidence for direct causal relationships between the presence of bars and interactions on the one hand, and starburst or Seyfert activity on the other could, however, easily be due to the possibility that we are not yet considering the correct spatial- or time-scales.  相似文献   

8.
9.
10.
11.
Photometry and long-slit spectroscopy are presented for a sample of six galaxies with a low surface-brightness stellar disc and a bulge. The characterizing parameters of the bulge and disc components were derived by means of a two-dimensional photometric decomposition of the images of the sample galaxies. Their surface-brightness distribution was assumed to be the sum of the contribution of a Sérsic bulge and an exponential disc, with each component being described by elliptical and concentric isophotes of constant ellipticity and position angle. The stellar and ionized-gas kinematics were measured along the major and minor axes in half of the sample galaxies, whereas the other half was observed only along two diagonal axes. Spectra along two diagonal axes were obtained also for one of the objects with major and minor axis spectra. The kinematic measurements extend in the disc region out to a surface-brightness level  μ R ≈ 24  mag arcsec−2, reaching in all cases the flat part of the rotation curve. The stellar kinematics turns out to be more regular and symmetric than the ionized-gas kinematics, which often shows the presence of non-circular, off-plane and non-ordered motions. This raises the question about the reliability of the use of the ionized gas as the tracer of the circular velocity in the modelling of the mass distribution, in particular in the central regions of low surface-brightness galaxies.  相似文献   

12.
13.
We have carried out the harmonic analysis of the atomic hydrogen (H  i ) surface density maps and the velocity fields for 11 galaxies belonging to the Ursa Major group, over a radial range of 4–6 disc scalelengths in each galaxy. This analysis gives the radial variation of spatial lopsidedness, quantified by the Fourier amplitude A 1 of the   m = 1  component normalized to the average value. The kinematical analysis gives a value for the elongation of the potential to be ∼10 per cent. The mean amplitude of spatial lopsidedness is found to be ∼0.14 in the inner disc, similar to the field galaxies, and is smaller by a factor of ∼2 compared to the Eridanus group galaxies. It is also shown that the average value of A 1 does not increase with the Hubble type, contrary to what is seen in field galaxies. We argue that the physical origin of lopsidedness in the Ursa Major group of galaxies is tidal interactions, albeit weaker and less frequent than in Eridanus. Thus systematic studies of lopsidedness in groups of galaxies can provide dynamical clues regarding the interactions and evolution of galaxies in a group environment.  相似文献   

14.
The velocity field of large‐scale non‐Hubble galaxy motion recovered from peculiar velocities of spiral galaxies is distorted due to measurement errors and deviations from Tully‐Fisher relationship. To figure out how this affects the multipole structure we use the Monte‐Carlo approach and simulate errors and deviations. We use the galaxies from the Revised Flat Galaxy Catalogue subsample and the generalized Tully‐Fisher relationship in the ‘H I line width–angular diameter’ version. The analysis of the multipole structure has shown that the dipole velocity component (bulk motion) is underestimated, and the characteristic values of the quadrupole component are overestimated. The directions of the quadrupole component's eigenvectors can be determined precisely enough. Typical deviation angles of bulk motion apices lie between 17 and 40.. The main input is caused by errors in the measurement of the angular diameter. The probability of the quadrupole component being incidental can be estimated at the 4 per cent level. For the octopole component, it can be estimated at the 7–10 per cent level. This is essentially higher than the estimations less than 1 per cent due to the Fisher test. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present a stable procedure for defining and measuring the two point angular autocorrelation function,   w (θ) =[θ/θ0( V )]−Γ  , of faint  (25 < V < 29)  , barely resolved and unresolved sources in the Hubble Space Telescope Great Observatories Origins Deep Survey and Ultra Deep Field data sets. We construct catalogues that include close pairs and faint detections. We show, for the first time, that, on subarcsec scales, the correlation function exceeds unity. This correlation function is well fit by a power law with index  Γ≈ 2.5  and a  θ0= 10−0.1( V −25.8) arcsec  . This is very different from the values of  Γ≈ 0.7  and  θ0( r ) = 10−0.4( r −21.5) arcsec  associated with the gravitational clustering of brighter galaxies. This observed clustering probably reflects the presence of giant star-forming regions within galactic-scale potential wells. Its measurement enables a new approach to measuring the redshift distribution of the faintest sources in the sky.  相似文献   

16.
We present spectra of six type 1 and two type 2 Seyfert galaxies, a starburst galaxy and a compact narrow-line radio galaxy, taken in two spectral ranges centred around the near-infrared Ca  ii triplet (∼8600 Å), and the Mgb stellar feature at 5180 Å. We measured the equivalent widths (EWs) of these features and the Fe52 and Fe53 spectral indices.
We found that the strength of the infrared Ca  ii triplet (CaT) in type 1 Seyfert galaxies with prominent central point sources is larger than what would be expected from the observed strength of the blue indices. This could be explained by the presence of red supergiants in the nuclei of Seyfert 1 galaxies. On the other hand, the blue indices of these galaxies could also be diluted by the strong Fe  ii multiplets that can be seen in their spectra.
We have also measured the stellar‐ and gas-velocity dispersions of the galaxies in the sample. The stellar velocity dispersions were measured using both the Mgb and CaT stellar features. The velocity dispersion of the gas in the narrow-line region (NLR) was measured using the strong emission lines [O  iii ] λλ 5007, 4959 and [S  iii ] λ 9069. We compare the gas- and star-velocity dispersions and find that the magnitudes of both are correlated in Seyfert galaxies.
Most of the Seyfert 1 galaxies that we observe have stellar‐velocity dispersions somewhat greater than that of the gas in the NLR.  相似文献   

17.
We present observations ( B, R, K , Hα and H  i ) of six nearby low surface brightness galaxies (LSBGs). They show an astonishing amount of variety; while some systems appear smooth and featureless, others resolve into loose assemblies of gas clouds. We have derived rotation curves, gas surface density profiles and star formation thresholds for three of the galaxies.
The results have been used to test two ideas describing their star formation: one in which star formation depends solely on the H  i gas surface density, and one that depends on differential rotation. We find that a critical H  i surface density criterion in the range  2.6–12.6 × 1020 cm−2 (2.1–10.1 M pc−2)  best describes the star-forming ability of these galaxies on local and global scales. A critical gas surface density based on the rotation of the gas is also able to describe the results on a global scale for two of the three galaxies for which we were able to derive rotation curves.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号