首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西太平洋暖池(Western Pacific warm pool)是全球海温最高的海域,汇聚了巨大的热能,在地球气候系统中具有非常重要的作用。本文综述了近30年来有关西太平洋暖池的研究进展,包括西太平洋暖池的维持机制、不同时间尺度下西太平洋暖池的变异特征和物理机制,以及西太平洋暖池的观测和数值模拟等领域的研究进展。西太平洋暖池的维持是现有地形下大气过程和海洋过程相互作用导致的,在季节内到世纪尺度均存在很强的变化。其中,季节内变化的驱动机制主要包括与大气季节内振荡(Madden-Julian oscillation)相关的对流和海表面热通量变化,以及海洋波动等海洋动力过程;季节变化主要是由太阳辐射的季节变化所导致的;在年际尺度上,西太平洋暖池作为厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation,ENSO)的一部分,其振荡具有显著的年际变化;太平洋代际振荡(Pacific decadal oscillation,PDO)和大西洋代际振荡(Atlantic multi-decadal oscillation,AMO)驱动着西太平洋暖池的年代际变化;世纪尺度的变化显示全球变暖背景下西太平洋暖池存在扩张趋势。人类对西太平洋暖池的系统观测始于海洋观测卫星的使用,随后历经TOGA、TAO/TRITON、TOGA-COARE、WOCE、Argo、SPICE、NPOCE等多个观测计划,极大地促进了西太平洋暖池的研究。但截止到第五次耦合模式比对计划(Coupled Model Intercomparison Project 5),多数气候模式仍未能克服热带模拟偏差,对西太平洋暖池的模拟效果较差,表明在西太平洋暖池动力学的理解和模拟方面仍有较大的进步空间。  相似文献   

2.
西太平洋暖池研究综述   总被引:2,自引:0,他引:2  
西太平洋暖池(Western Pacific Warm Pool)是全球海温最高的海域,汇聚了巨大的热能,在地球气候系统中具有非常重要的作用。本文综述了近30年来有关西太平洋暖池的研究进展,包括西太平洋暖池的维持机制、在不同时间尺度西太平洋暖池的变异特征和物理机制,以及西太平洋暖池的观测和数值模拟等领域的研究进展。西太平洋暖池的维持是现有地形下大气过程和海洋过程相互作用导致的,在季节内到世纪尺度均存在很强的变化。其中:季节内变化的驱动机制主要包括与大气季节内振荡(Madden Julian Oscillation)相关的对流和海表面热通量变化,以及海洋波动等海洋动力过程;季节变化主要是太阳辐射的季节变化导致;在年际尺度上,西太平洋暖池作为El Ni?o-Southern Oscillation的一部分而振荡具有显著年际变化;太平洋代际振荡(Pacific Decadal Oscillation)和大西洋代际振荡(Atlantic Multi-decadal Oscillation)驱动着西太平洋暖池的年代际变化;世纪尺度的变化显示全球变暖背景下西太平洋暖池存在扩张趋势。人类对西太平洋暖池的系统观测始于海洋观测卫星的使用,随后历经WCRP/TOGA、TAO/TRITON、TOGA-COARE、WOCE、Argo、SPICE、NPOCE等多个观测计划,极大促进了西太平洋暖池的研究。但截止到第五次耦合模式比对计划(Coupled Model Intercomparison Project 5),多数气候模式仍未能克服热带模拟偏差,对西太平洋暖池的模拟效果较差,表明在西太平洋暖池动力学的理解和模拟方面仍有较大进步空间。  相似文献   

3.
海洋与大气相互作用及其对天气气候影响的研究工作已取得了一些令人满意的成果。研究表明,海洋异常信号,不仅存在于全球热带的温面温度、气压、风和云量以及洋流强度等气象要素场中,而且反映在世界许多地区的大气环流和气候年际变化中。 本文通过西太平洋西北海域1954—1976年海温资料与北半球500hPa副高和极涡等  相似文献   

4.
利用经验正交函数方法,分析了1961—1974年期间,西太平洋热带海面总热量交换的分布情况及其年际变化。分析结果表明,西太平洋热带地区海-气热量交换,存在着一种与El Ni(?)o/SO(南方涛动)关系十分密切的分布形式。在El Ni(?)o期间,赤道太平洋日界线附近海洋向大气释放热量明显增多,而其西部则正相反。文章认为这种大尺度海面热收支的年际变化,是该地区风场、温度场及大洋热含量异常变化的综合影响结果,这些变化会对一些气候因子的波动产生一定的影响。  相似文献   

5.
应用海洋表层水温资料(COADS资料),分析研究了对全球气候有重要影响的热带西太平洋、印度洋海洋表层水温的年变化和年际变化的特性,探讨了与ENSO和南极冰面积变化之间的联系。结果表明,热带西太平洋及印度洋表层水温具有明显的年变化和年际变化而且它们之间存在不同的变化趋势。这种结果是两大洋的水温振荡周期不同有较大关系。热带印度洋表层水温的年际变化与E1 Ni ̄/no和La Ni ̄/na的发生年份存在较  相似文献   

6.
一、前言水团特征年际变化的研究,对于探讨海洋大尺度热动力状况的变化规律及其与大气的相互关系,具有重要的意义.而对于西太平洋来说,这里终年存在着高于28℃的赤道表层水团,并在整个太平洋的"热机"里起着加热器的作用,对太平洋区域乃至全球海洋和大气异常现象的产生和发展,扮演着重要角色.因此,该海区是太平洋海——气相互  相似文献   

7.
基于1980~2015年的全球简单海洋资料同化分析系统(SODA)、全球海气通量(OAFlux)和全球降水气候学计划(GPCP)等海洋、大气观测再分析资料,采用线性拟合、经验正交函数(EOF)分解、相关分析和波谱分析等数理统计方法,分析了热带西太平洋海表盐度(SSS)和淡水通量时空变化特征及其关系.结果表明,SSS与淡水通量的气候态及长期线性变化趋势有较好的空间对应关系,两者均有多种时间尺度的EOF模态,其年代际变化模态有较好的正相关关系,并与太平洋年代际振荡(PDO)有密切的滞后相关.分析表明,PDO可能通过影响Walker环流的变化来影响热带西太平洋的淡水通量分布,从而影响SSS的时空格局.  相似文献   

8.
采用复EOF分析方法,对全年热带太平洋海域的上层洋流异常做了统计动力诊断,主要结论有:热带太平洋上层洋流异常复EOF分解第一、二模态的空间场均为赤道所俘获,并在赤道南北方向均呈迅速衰减的态势,其表现为赤道陷波的形式。第一、二模态时间系数为复数,其辐角均集中在两个状态,其模则表示了流场异常的大小。该时间系数均有年际变化和年代际变化,其年际变化的周期均与ENSO相同;在冬季,其年代际变化周期分别与北太平洋主要气候模态PDO和NPGO,以及热带外北太平洋流场异常复EOF分解前两模态的周期相同或相近,这反映了热带与中纬度各大气、海洋系统之间的相互耦合。由各模态流场异常可得相应的垂直运动异常,从而可估计SSTA的动力变化;第一模态在赤道东、西太平洋处呈现东西向的跷跷板变化;第二模态则在西太平洋赤道上以及其北侧的西太平洋暖池处,呈现南北向的跷跷板变化。第一模态的性质为海洋赤道Kelvin波的异常,可称之为ENSO的主要模态;第二模态的性质为海洋混合Rossby-重力惯性波的异常,可称之为ENSO的次要模态。  相似文献   

9.
海温距平的ENSO模和类ENSO模的三维结构   总被引:2,自引:0,他引:2  
用美国马里兰大学提供的海洋同化(SODA)月平均资料,深入揭示了ENSO模的海洋三维结构及其年际和年代际变率。研究结果指出,ENSO海洋模随深度呈明显规律变化。在热带太平洋,它由热带中东太平洋表层显著海温异常分布型随深度增加逐渐过渡为热带西太平洋次表层显著反号海温异常分布型;在赤道太平洋以赤道西太平洋暖池次表层海温显著异常与赤道中东太平洋表层海温反号显著异常为主要特征。El Nino期间,热带中东太平洋表层为强海温正距平中心,西太平洋暖池次表层为强海温负距平中心,在年际尺度上,160°E以西的西北太平洋副热带海域还存在一个与西太平洋海温异常变化反号、与热带东太平洋同号的区域;La Nina期间正好相反。ENSO循环主要由ENSO年际变率所决定,年际ENSO模具有东部型ENSO事件的海温异常分布特征,其循环是东部型冷暖事件之间的转换,在200m以浅,它具ENSO模相同的三维结构和3-5年的显著年际变化周期;年代际类ENSO模具有中部型ENSO事件的海温异常分布特征,年代际ENSO循环是中部型冷暖事件之间的转换,其影响主要限制在200m以浅的海洋上层,具有ENSO模相似的三维结构和9-23年的显著周期。  相似文献   

10.
利用1993年ENSO事件爆发(4月)前酝酿时期“热带大洋与全球大气-海洋耦合响应试验”强化观测阶段“向阳红五号”科学考察船155°E,2°S定点海洋气象和高空大气探测资料,分析了赤道西太平洋大气边界层特征。结果表明:赤道西太平洋上空辐合对流区边界层内也有等温或逆温层存在,大气边界层物理参数变化与大尺度海-气变异有密切关系,赤道太平洋沃克环流加强、东移,边界层上部逆温层出现概率明显增大,边界层内高湿层湿度减小。另外,边界层内实测风速、风向廓线随高度的变化基本上不服从Ekman规律,但由其平均,分量合成得到的平均风随高度的变化却基本符合Ekman规律。  相似文献   

11.
南海暖池初探(Ⅰ)   总被引:3,自引:0,他引:3  
南海暖池是西太平洋-南海-印度洋热库的重要组成部分。与SST比较,次表层水中表层至100m的垂直平均温度(TAV)是描述南海暖池特征的较好工具,因此采用TAV变化来讨论南海海温的时空变化特征。南海暖池有显著的季节和年际变化,其上层海洋热力结构年际变化与赤道西太平洋的变化趋势相反,是独立于“西太暖池”的暖水体。  相似文献   

12.
探究海气CO2交换有助于解析全球碳循环和全球气候变化。由于海水和大气的直接接触,研究表层海水碳酸盐系统变化成为探究海气碳交换的关键。基于已有热带西太平洋表层海水碳酸盐系统研究成果,本文总结了有孔虫壳体B/Ca和δ11B指标重建碳酸盐系统参数的原理、方法及优缺点。然后,从厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation, ENSO)、东亚季风以及大气桥梁和海洋隧道三方面综述了晚第四纪热带西太平洋海气CO2交换影响因素的研究现状。结果显示,类ENSO通过横向平流和垂向变化分别影响热带西太平洋东端和西端的海气碳交换。东亚夏季风对热带西太平洋海气碳交换具有较强的调控作用,而东亚冬季风的调控作用较弱或不明显。冰消期南大洋深部流通状况增强,可通过大气桥梁(大气CO2)和海洋隧道(南极中层水)影响热带西太平洋海气碳交换。然而,为了更准确清晰地了解全球碳循环变化,还需针对指标记录的可靠性、覆盖范围以及海气碳交换在更长时间尺度的变化机理等方面开展更多研究。  相似文献   

13.
全球表面水温的年际变化   总被引:1,自引:3,他引:1       下载免费PDF全文
于惠苓  蒲书箴 《海洋学报》1988,10(6):687-694
本文利用后延相关法、频率响应函数和凝聚函数计算并分析了COADS(综合海洋、大气)数据库(1948—1979年)的表面水温资料,探讨了全球表面水温的年际变化及其与东太平洋冷水域的关系,结果表明,印度洋的表面水温与东太平洋的表面水温相关性最好,那里的水温变化与东太平洋冷水域的表面水温变化之间的凝聚性最高,而热带西太平洋则与热带东太平洋的变化恰好相反,但是印度洋表面水温年际变化的振幅远远小于东太平洋的振幅,在高凝聚的频率域内,两者相比的增益因子约为3.5倍左右,相角因子约为4个月,为了解释上述结果,进行了讨论.  相似文献   

14.
本文通过分析,指出长江中、下游汛期降水与西太平洋副热带高压的脊线和西伸脊点的位置有密切的关系,而副热带高压的脊线异常变化,则受到南海加热场的影响,并发现南海夏季热交换值与前期叹季)海温场的异常变化有联系,该区海温场的年际变化与黑潮区域的海温场变化非常一致,因此。指出南海区域冬季海温场及其影响的热交换值,对大气环流和汛期降水的影响是不可忽视的一个重要因子,在研究海洋与大气间的相互作用过程中应引起注意。  相似文献   

15.
热带西太平洋潜热显热通量及其与ENSO的关系   总被引:1,自引:2,他引:1  
龙宝森 《海洋学报》1990,12(3):298-305
本文根据综合海洋大气资料(COADS),用块体动力学公式计算了热带西太平洋潜热、显热通量以及风场的季节变化和年际变化,发现研究区域海气热交换与ENSO现象有密切联系.平均而言,从埃尔尼诺开始(3月)至当年7月,热通量及风速标量均为正距平,8月至翌年3月埃尔尼诺结束为负距平;历年3月至7月热通量和组成的时间序列(30年)与赤道东太平洋SST指数成正相关(相关系数为0.56);3月至7月的正距平是由经向风速异常造成的,而8月至翌年3月的负距平是纬向风速异常造成的.热带西太平洋的热通量异常是ENSO现象在这一区域内的一种反应,而这种反应又会对这一区域的海洋和大气产生一定的反馈作用.本文认为埃尔尼诺年8—12月海气间水汽、热通量输送偏少可能是同期台风减少的一种机制.  相似文献   

16.
太平洋是海表温度年际变化和年代际变化发生的主要区域,但对太平洋海洋热含量变化的研究相对较少。为此, 本文分析了1980—2020年太平洋上层(0~300 m)热含量的时空变化特征。基于IAP数据,本文首先利用集合经验模态分解法(EEMD)提取不同时间尺度的海洋热含量信号,并利用正交经验分解法(EOF)对不同时间尺度的海洋热含量进行时空特征分析,得到了太平洋0~300 m海洋热含量的年际变化、年代际变化以及长期变暖的时空特征。结果表明,除了年际变化之外,热带西北太平洋上层热含量还存在明显的年代际变化和长期变暖趋势。在东太平洋和高纬度西太平洋,热含量的年代际变化特征并不突出。热带西北太平洋热含量的年代际变化在1980—1988年和1999—2013年较高,而在1989—1998年和2014—2020年期间较低。此外,针对热带西北太平洋热含量的经向、纬向和垂向特征分析,发现这种年代际变化主要发生在5°N—20°N,120°E—180°E,次表层50~200 m范围内。热带西北太平洋热含量的年代际变化对全球海表温度的年代际变化有着重要作用。  相似文献   

17.
利用复EOF分析,将热带太平洋5月份的大气风场和海洋上层流场看作1个整体,对其作了动力统计诊断,用以揭示热带太平洋5月份大气、海洋环流异常与长江流域梅雨丰欠的关系并考察其年际和年代际变化.诊断结果表明:在同一EOF模态中,大气部分和海洋部分的结构有很大不同,海洋模态表现出较强的赤道陷波特征;在南、北纬5°之外,海洋流场已大幅衰减掉了,而大气风场该现象不明显.EOF第1模态模的时间系数振幅从1994年起增大趋势明显,这表明气候变化剧烈程度在加大;前2个EOF模态的时间系数均具有明显的年际和年代际变化.EOF第1模态为长江流域梅雨丰欠异常模态,大气存在经圈环流异常.EOF第2模态为ENSO模态,大气存在纬圈环流异常.黑潮因处5°N以北,已离开赤道,故其流速虽大,但流场偏差则很小,即其流速异常不明显.  相似文献   

18.
综述了近20年来国内外在有关西太平洋暖池热含量、热带西太平洋上层热含量与西太平洋年际变化事件(ENSO)的关系、热带太平洋上层热含量变化的主要模态以及热含量估算等方面所取得的主要研究成果。研究表明:(1)热带西太平洋暖池区是太平洋上层热含量异常变化最大的区域,上层热含量异常影响了暖池上空的环流(如南海夏季风、副热带高压系统)特征,进而影响气候;(2)赤道西太平洋温跃层以浅的热含量在ENSO发生之前有明显的积聚,其变化明显领先于赤道东太平洋SSTA的变化,领先时间可达数月之久,从而使热含量与ENSO的相关性,以及利用热含量的变异对ENSO进行更长时间的预报成为可能;(3)西太平洋上层热含量存在纬向变异和经向变异两种模态,其中纬向变异模态占主导地位,且超前经向变异模态;(4)由于海洋深层资料难以获取,各种仪器本身存在系统误差,以及采用不同的计算方法,对海洋上层热结构分布与变异的研究受到了一定的限制。随着由3000多个浮标组成的全球Argo实时海洋观测网的建成,Argo数据库每年可以提供多达10万个剖面(0~2000m层)的温、盐数据。Argo资料与其它海洋资料的结合,有助于研究全球海洋温、盐度和海流场结构及其变化规律,准确估算逐月甚至逐年的全球海洋热含量及其季节和年际变化将成为现实。  相似文献   

19.
利用卫星遥感资料反演出的海洋大气参数,应用目前世界较为先进的通量算法(CORAER 3.0),计算了西太平洋区域海-气热通量(感热通量和潜热通量)。首先分析了海-气热通量的多年平均场和气候场变化的基本特征,以及年际和年代际变化特征;进而对其与南海夏季风爆发之间的关系进行了初步探讨。结果表明,西太平洋海-气热通量具有明显的时空分布特征,感热通量的最大值出现在黑潮区域,潜热通量的最大值出现在北赤道流区和黑潮区域。在气候平均场中,黑潮区域的感热通量和潜热通量最大值均出现在冬季,最小值出现在夏季;暖池区域感热通量除了春季较小外,冬、夏和秋季基本相同,而潜热通量最大值出现在秋、冬季,最小值出现在春、夏季。另外,海-气热通量还具有显著的年际变化和年代际变化,感热通量和潜热通量均存在16 a周期,与南海夏季风爆发存在相同的周期。由相关分析可知,4月份暖池区域的海-气热通量与滞后3 a的南海夏季风爆发之间存在密切相关关系,这种时滞相关性,可以用于进行南海夏季风爆发的预测,为我国汛期降水预报提供科学依据。基于以上结论,建立多元回归方程对2012年的南海夏季风爆发进行了预测,预测2012年南海夏季风爆发将偏晚1~2候左右。  相似文献   

20.
太平洋次表层海温异常年际变率的信号通道与ENSO循环   总被引:1,自引:1,他引:0  
利用SODA海洋同化资料,分析了太平洋次表层海温异常(SOTA)年际信号变异特征与ENSO循环的联系。结果表明,热带太平洋的年际变率表现为以160°W为纵轴的东西向和以6°—8°N为横轴的南北向的跷跷板分布,南太平洋和北太平洋中高纬度海洋的SOTA则与热带西太平洋SOTA同号,但强度较弱,这些变化都与ENSO事件密切相关,是ENSO事件的两个主要模态,具57和44个月显著周期。ENSO循环期间,热带西太平洋SOTA强信号中心沿赤道东传,到达赤道东太平洋后加强并北扩,导致ElNi?o或LaNi?a事件,同时从热带西太平洋有较弱SOTA信号向东北和西南传播,在南、北太平洋中高纬度海域产生弱SOTA;同期位于热带东太平洋反号的SOTA强信号中心沿10°—15°N(平均12°N)西传,至热带西太平洋后加强并南扩,为下次LaNi?a或ElNi?o事件准备条件,同时在北太平洋中高纬度海洋还存在着反号弱的SOTA。如此周而复始,完成ENSO循环。太平洋次表层海温年际变化信号除在赤道及以北的热带太平洋存在一个逆时针方向的传播通道外,同时在热带西太平洋有异常信号向南、北太平洋中高纬度海域传播,并指出ENSO循环期间太平洋次表层海温异常年际变率信号传播的可能通道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号