首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Major and trace element data for a sequence of peralkaline silicic lavas and pyroclastic flows, exposed in the caldera wall of the Paisano volcano, west Texas, document systematic fractional crystallization during magmatic evolution and an open system, magma mixing event in the upper parts of the sequence. Stratigraphically lowest flows are comendite and comenditic quartz trachyte lavas and ash flow tufts. Overlying these units is a trachyte with compositional, textural and mineralogical features indicating that it is the product of magma-mixing; similar flows occur in other parts of the volcano at the same stratigraphic level. This composite trachyte is considered to be a mixture of mugearitic or mafic trachytic magma, derived from a similar source region which yielded the earlier caldera wall flows. Trace element concentrations of the post-trachyte comenditic quartz trachyte lavas suggest they were erupted from a chamber whose magma was diluted by an influx of mugearitic or mafic trachytic magma during a magma mixing event.Rayleigh fractionation calculations show that the comendites and comenditic quartz trachytes can be derived from a parental mugearite magma by 88% to 93% fractionation of dominantly plagioclase and alkali feldspar, with lesser amounts of clinopyroxene, magnetite and apatite. Zircon was not a significant fractionating phase. The composition, mineralogy and depth of the source region(s) which generated these magmas cannot be constrained from the present data set.  相似文献   

2.
The Trans-Pecos Magmatic Province (TPMP) is an alkalic field that was active between 48-17 Ma. Rocks of two subprovinces in the eastern alkalic belt of the TPMP, the Big Bend region and the Davis Mountains, have been analyzed for major and trace element concentrations in order to determine what magmatic processes operated to influence the compositional evolution of the magmas, and to explore what relationship existed between the silica-oversaturated evolved rocks and the silica-undersaturated mafic rocks. Similar compositional trends exist in both subprovinces, implying that the evolved rocks are genetically related to the mafic rocks, and that the differentiation processes were broadly reproducible spatially and temporally.Four stages of evolution have been identified: Stage I, alkali basalt to trachyte; stage II, trachyte to quartz trachyte; stage III, quartz trachyte to rhyolite/comendite; and stage IV, rhyolite/comendite to high-silica rhyolite/comendite. These stages were identified by discontinuities in trends on variation diagrams; within stages I and II, more than one subtrend exist.Stage I can best be modeled as the result of simple crystal fractionation with minor magma replenishment. Two subtrends within this stage indicate that variations in the processes or their rates may have occurred. Stage II exhibits both closed- and open-system behavior. The open system behavior consists of combined fractionation-assimilation and episodic mixing of stage II and stage I magmas. Stages III and IV evolved under open system processes of combined fractionation-assimilation, with the assimilant having compositional characteristics of a shale-dominated sedimentary assemblage.The four stages and subtrends within the stages occur in both subprovinces. Further, some subtrends comprise rocks that differ in age by as much as 10 m.y. In each subprovince, the stratigraphy indicates a random interlaying of rocks of the different stages, generally erupted from more than one center. That contemporaneous magmas of different stages existed in a given subprovince is indicated by the interfingering of their erupted products. These constraints argue against a single magma production-evolution scheme. Rather, the data suggest that magmas of the different stages were produced more than once during the evolution of the eastern TPMP, and that during any given time, production and evolution of magma of all stages were occurring.  相似文献   

3.
Postcollapse lavas of the Infiernito caldera grade stratigraphically upward from nearly aphyric, high-silica rhyolite (76% SiO2) to highly prophyritic trachyte (62% SiO2). Plagioclase, clinopyroxene, orthopyroxene, magnetite, ilmenite, and apatite occur as phenocrysts throughout the sequence. Sanidine, biotite, and zircon are present in rocks with more than about 67% SiO2. Major and trace elements show continuous variations from 62 to 76% SiO2. Modeling supports fractional crystallization of the observed phenocrysts as the dominant process in generating the chemical variation.Temperatures calculated from coexisting feldspars, pyroxenes, and Fe-Ti oxides agree and indicate crystallization from slightly more than 1100° C in the most mafic trachyte to 800° C in high-silica rhyolite. The compositional zonation probably arose through crystallization against the chilled margin of the magma chamber and consequent rise of more evolved and therefore less dense liquid.Mineral compositions vary regularly with rock composition, but also suggest minor mixing and assimilation of wall rock or fluids derived from wall rock. Mixing between liquids of slightly different compositions is indicated by different compositions of individual pyroxene phenocrysts in single samples. Liquid-solid mixing is indicated by mineral compositions of glomerocrysts and some phenocrysts that apparently crystallized in generally more evolved liquids at lower temperature and higher oxygen fugacity than represented by the rocks in which they now reside. Glomerocrysts probably crystallized against the chilled margin of the magma chamber and were torn from the wall as the liquid rose during progressive stages of eruption. Assimilation is indicated by rise of oxygen fugacity relative to a buffer from more mafic to more silicic rocks.Calculation of density and viscosity from the compositional and mineralogical data indicates that the magma chamber was stably stratified; lower temperature but more evolved, thus less dense, rhyolite overlay higher temperature, less evolved, and therefore more dense, progressively more mafic liquids. The continuity in rock and mineral compositions and calculated temperature, viscosity, and density indicate that compositional gradation in the magma chamber was smoothly continuous; any compositional gaps must have been no greater than about 2% SiO2.  相似文献   

4.
Explosive eruptions at Mauna Loa summit ejected coarse-grained blocks (free of lava coatings) from Moku'aweoweo caldera. Most are gabbronorites and gabbros that have 0–26 vol.% olivine and 1–29 vol.% oikocrystic orthopyroxene. Some blocks are ferrogabbros and diorites with micrographic matrices, and diorite veins (≤ 2 cm) cross-cut some gabbronorites and gabbros. One block is an open-textured dunite.

The MgO of the gabbronorites and gabbros ranges  7–21 wt.%. Those with MgO > 10 wt.% have some incompatible-element abundances (Zr, Y, REE; positive Eu anomalies) lower than those in Mauna Loa lavas of comparable MgO; gabbros (MgO < 10 wt.%) generally overlap lava compositions. Olivines range Fo83–58, clinopyroxenes have Mg#s  83–62, and orthopyroxene Mg#s are 84–63 — all evolved beyond the mineral-Mg#s of Mauna Loa lavas. Plagioclase is An75–50. Ferrogabbro and diorite blocks have  3–5 wt.% MgO (TiO2 3.2–5.4%; K2O 0.8–1.3%; La 16–27 ppm), and a diorite vein is the most evolved (SiO2 59%, K2O 1.5%, La 38 ppm). They have clinopyroxene Mg#s 67–46, and plagioclase An57–40. The open-textured dunite has olivine  Fo83.5. Seven isotope ratios are 87Sr/86Sr 0.70394–0.70374 and 143Nd/144Nd 0.51293–0.51286, and identify the suite as belonging to the Mauna Loa system.

Gabbronorites and gabbros originated in solidification zones of Moku'aweoweo lava lakes where they acquired orthocumulate textures and incompatible-element depletions. These features suggest deeper and slower cooling lakes than the lava lake paradigm, Kilauea Iki, which is basalt and picrite. Clinopyroxene geobarometry suggests crystallization at < 1 kbar P. Highly evolved mineral Mg#s, < 75, are largely explained by cumulus phases exposed to evolving intercumulus liquids causing compositional ‘shifts.’ Ferrogabbro and diorite represent segregation veins from differentiated intercumulus liquids filter pressed into rigid zones of cooling lakes. Clinopyroxene geobarometry suggests < 300 bar P. Open-textured dunite represents olivine-melt mush, precursor to vertical olivine-rich bodies (as in Kilauea Iki). Its Fo83.5 identifies the most primitive lake magma as  8.3 wt.% MgO. Mass balancing and MELTS show that such a magma could have yielded both ferrogabbro and diorite by ≥ 50% fractional crystallization, but under different fO2: < FMQ (250 bar) led to diorite, and FMQ (250 bar) yielded ferrogabbro. These segregation veins, documented as similar to those of Kilauea, testify to appreciable volumes of ‘rhyolitic’ liquid forming in oceanic environments. Namely, SiO2-rich veins are intrinsic to all shields that reached caldera stage to accommodate various-sized cooling, differentiating lava lakes.  相似文献   


5.
The island of Lundy forms the southernmost igneous complex of the British Tertiary Volcanic Province (BTVP) and consists of granite (≈ 90%) emplaced into deformed Devonian sedimentary rocks (Pilton Shale) and associated with a swarm of dykes of dolerite/basalt, minor trachyte and rhyolite composition. The dolerites are of varied olivine basalt composition and are associated with peralkaline trachyte and subalkaline/peralkaline rhyolite with alkali feldspar and quartz ± alkali amphibole ± pyroxene mineralogy. The dyke swarm is therefore an anorogenic bimodal dolerite/basalt–trachyte/rhyolite BTVP association. Although the dyke association is bimodal in major element terms between dolerite/basalt and minor trachyte/rhyolite, the mineralogy and trace element geochemistry indicate that the dykes may be regarded as a cogenetic dolerite—peralkaline trachyte/rhyolite association with minor subalkaline rhyolites. Sr and Nd isotope data indicate derivation of these magmas from a similar BTVP mantle source (with or without minor contamination by Pilton Shale, or possibly Lundy granite). The petrogenesis of the Lundy dyke association is therefore interpreted in terms of extensive fractional crystallization of basaltic magma in a magma chamber of complex geometry below the (exposed) Lundy granite. Fractional crystallization of a representative dolerite magma (olivine ± clinopyroxene ± plagioclase) yields trachyte magma from which the crystallization of alkali feldspar (anorthoclase) ± plagioclase (oligoclase) + Fe–Ti oxide + apatite results in peralkaline rhyolite. Rarer subalkaline rhyolites result from fractionation from a similar dolerite source which did not achieve a peralkaline composition so allowing the crystallization and fractionation of zircon. The basalt–(minor trachyte)/rhyolite bimodality reflects rapid crystallization of basalt magma to trachyte (and rhyolite) over a relatively small temperature interval (mass fraction of melt, F = ≈ 0.15). The rapid high level emplacement of basalt, trachyte and rhyolite dyke magmas is likely to have been associated with the development of a substantial composite bimodal basalt–(minor trachytel)/rhyolite volcano above the BTVP Lundy granite in the Bristol Channel.  相似文献   

6.
Locally, voluminous andesitic volcanism both preceded and followedlarge eruptions of silicic ash-flow tuff from many calderasin the San Juan volcanic field. The most voluminous post-collapselava suite of the central San Juan caldera cluster is the 28Ma Huerto Andesite, a diverse assemblage erupted from at least5–6 volcanic centres that were active around the southernmargins of the La Garita caldera shortly after eruption of theFish Canyon Tuff. These andesitic centres are inferred, in part,to represent eruptions of magma that ponded and differentiatedwithin the crust below the La Garita caldera, thereby providingthe thermal energy necessary for rejuvenation and remobilizationof the Fish Canyon magma body. The multiple Huerto eruptivecentres produced two magmatic series that differ in phenocrystmineralogy (hydrous vs anhydrous assemblages), whole-rock majorand trace element chemistry and isotopic compositions. Hornblende-bearinglavas from three volcanic centres located close to the southeasternmargin of the La Garita caldera (Eagle Mountain–FourmileCreek, West Fork of the San Juan River, Table Mountain) definea high-K calc-alkaline series (57–65 wt % SiO2) that isoxidized, hydrous and sulphur rich. Trachyandesitic lavas fromwidely separated centres at Baldy Mountain–Red Lake (westernmargin), Sugarloaf Mountain (southern margin) and Ribbon Mesa(20 km east of the La Garita caldera) are mutually indistinguishable(55–61 wt % SiO2); they are characterized by higher andmore variable concentrations of alkalis and many incompatibletrace elements (e.g. Zr, Nb, heavy rare earth elements), andthey contain anhydrous phenocryst assemblages (including olivine).These mildly alkaline magmas were less water rich and oxidizedthan the hornblende-bearing calc-alkaline suite. The same distinctionscharacterize the voluminous precaldera andesitic lavas of theConejos Formation, indicating that these contrasting suitesare long-term manifestations of San Juan volcanism. The favouredmodel for their origin involves contrasting ascent paths anddifferentiation histories through crustal columns with differentthermal and density gradients. Magmas ascending into the mainfocus of the La Garita caldera were impeded, and they evolvedat greater depths, retaining more of their primary volatileload. This model is supported by systematic differences in isotopiccompositions suggestive of crust–magma interactions withcontrasting lithologies. KEY WORDS: alkaline; calc-alkaline; petrogenesis; episodic magmatism; Fish Canyon system  相似文献   

7.
W.B. Jones 《Lithos》1979,12(2):89-97
The trachyte caldera volcanoes Kilombe and Londiani have abundant syenite boulders lying on their surfaces. Kilombe also has a syenite inclusions in post-caldera flows and tuffs. Petrographic and chemical investigations show that most of the syenites are very similar to the associated lavas. An origin by almost complete crystallization of batches of trachytic liquid in magma chambers under each volcano is proposed for these. Separation of a small amount of residual melt gives rise to a few melasyenites strongly enriched in Na, Fe and lanthanides.  相似文献   

8.
Pleistocene lavas from Monte S. Angelo and Chiesa Vecchia volcanoes on Lipari contain two suites of inclusions. A metapelitic suite consists of gneisses and granulites with combinations of cordierite, garnet, corundum, hercynite, andalusite, sillimanite, orthopyroxene, ilmenite, magnetite, biotite, plagioclase, and quartz. A gabbroic suite has cumulus texture and contains plagioclase, orthopyroxene, clinopyroxene, and magnetite. All megacryst phases in the lavas appear to be derived from rock fragments, with the exception of euhedral strongly zoned calcic plagioclase, and none has grown by homogeneous nucleation from liquid represented by the groundmass, which is peraluminous rhyolite (>70 wt% SiO2, >6 wt% K2O). Ground-mass microcrysts were nearly all derived from disaggregated metapelites; overgrowths of alkali feldspar on plagioclase and of orthopyroxene on clinopyroxene, and quartz intergrown with alkali feldspar, are the only phases that grew from the rhyolitic liquid. Euhedral cordierite, hercynite, and plagioclase at the margins of some rock fragments grew by reaction of metapelite with liquid.For grains in contact within metapelite inclusions, geothermometers and geobarometers yield estimates of equilibration conditions in the range of 800±100° C and 5±1 kbar. Compositions of phases in the same thin section, but not in the same inclusion, yield broadly erratic P and T estimates indicating disequilibrium among metapelite inclusions. Pyroxene thermometry in the gabbro suite indicates a crystallization temperature of 1020±50° C and a lack of subsequent thermal equilibration with the rhyolitic liquid.The metapelite suite may partly be restite, but much is xenolithic, derived from a vertical interval of perhaps several kilometers, and may have undergone a much earlier episode of melting. The gabbro fragments are accidental xenoliths incorporated as the magma rose. Contaminants (metapelite and gabbro) account for 50 vol.% of the lavas, and cause them to be classified as high-K andesite according to whole-rock major element analysis.The rhyolitic liquid may have originated by partial fusion of metapelites in the lower crust, or by fractional crystallization of mafic mantle-derived magma combined with assimilation of metapelite; the bulk of the evidence favors assimilation-fractional crystallization. Miocene and younger metapelite-contaminated rhyolites also occur in Tuscany, SE Spain, E Morocco, and NW Tunisia, and are associated in each region with mafic silica-undersaturated lavas, implying crustal underplating around the western Mediterranean before, during, and after formation of the Tyrrhenian basin.  相似文献   

9.
The Huerto Andesite is the largest of several andesite sequences interlayered with the large-volume ash-flow tuffs of the San Juan volcanic field, Colorado. Stratigraphically this andesite is between the region's largest tuff (the 27.8 Ma, 3,000 km3 Fish Canyon Tuff) and the evolved product of the Fish Canyon Tuff (the 27.4 Ma, 1,000 km3 Carpenter Ridge Tuff), and eruption was from vents located approximately 20–30 km southwest and southeast of calderas associated with these ashflow tuffs. Olivine phenocrysts are present in the more mafic, SiO2-poor samples of andesite, hence the parent magma was most likely a mantle-derived basaltic magma. The bulk compositions of the olivine-bearing andesites compared to those containing orthopyroxene phenocrysts suggest the phenocryst assemblage equilibrated at 2–5 kbar. Two-pyroxene geothermometry yields equilibrium temperatures consistent with near-peritectic magmas at 2–5 kbar. Fractionation of phenocryst phases (olivine or orthopyroxene + clinopyroxene + plagioclase + Ti-magnetite + apatite) can explain most major and trace element variations of the andesites, although assimilation of some crustal material may explain abundances of some highly incompatible trace elements (Rb, Ba, Nb, Ta, Zr, Hf) in the most evolved lavas. Despite the great distance of the San Juan volcanic field from the inferred Oligocene destructive margin, the Huerto Andesite is similar to typical plate-margin andesites: both have relatively low abundances of Nb and Ta and similar values for trace-element ratios such as La/Yb and La/Nb.Deriving the Fish Canyon and Carpenter Ridge Tuffs by crystal fractionation from the Huerto Andesite cannot be dismissed by major-element models, although limited trace-element data indicate the tuffs may not have been derived by such direct evolution. Alternatively, heat of crystallization released as basaltic magmas evolved to andesitic compositions may have caused melting of crust to produce the felsic-ash flows. Mafic magmas may have been gravitationally trapped below lighter felsic magmas; mafic magmas which ascended to the surface probably migrated upwards around the margins of silicic chambers, as suggested by the present-day outcrops of andesitic units around the margins of recognized ash-flow calderas.  相似文献   

10.
Ryuichi Shinjo  Yuzo Kato   《Lithos》2000,54(3-4):117-137
The magmatism at the axial zone of the middle Okinawa Trough, a young continental back-arc basin, comprises a bimodal basaltic–rhyolitic suite, accompanied by minor intermediate rocks. We report major and trace element and Sr–Nd isotopic data for the intermediate to silicic suites, to provide constraints on their petrogenesis. The rhyolites, recovered as lava and pumice, fall into three geochemical groups (type 1, 2, and 3 rhyolites). Type 1 rhyolites have 87Sr/86Sr (0.7040–0.7042) and 143Nd/144Nd (0.5128–0.5129) identical to those of associated basalts, and are characterized by highly fractionated REE patterns. Petrogenesis of type 1 rhyolites is explicable in terms of fractional crystallization of the associated basalt. In contrast, type 2 rhyolites and andesite have slightly higher 87Sr/86Sr (0.7044–0.7047) but similar 143Nd/144Nd (0.5128) compared to those of the basalts. The compositions of type 2 rhyolite and andesite can be explained by assimilation and fractional crystallization (AFC) processes of the basalt magma; quantitative analysis suggests assimilation/fractional crystallization (Ma/Mc) ratios of ≤0.05. Hybrid andesite generated by mixing of evolved basalt and type 1 rhyolite is also present. We emphasize that mechanical extension in this part of the Okinawa Trough involves gabbroic lower crust that resulted from fractionation of mantle-derived basaltic magmas. Type 3 rhyolite occurs only as pumice, which makes its derivation questionable. This rhyolite has major and trace element compositions and Sr–Nd isotopic ratios, which suggests that it may be derived from volcanic activity on the southern Ryukyu volcanic front, and arrived in the Okinawa Trough by drifting on the Kuroshio Current.  相似文献   

11.
The Toquima caldera complex (TCC) lies near the middle of a west-northwest-trending belt of Oligocene to early Miocene volcanic rocks that stretches from southwestern Utah to west-central Nevada. Three overlapping to eccentrically nested calderas, called Moores Creek, Mt. Jefferson, and Trail Canyon, comprise the TCC. The calderas formed due to eruption of the tuffs of Moores Creek, Mt. Jefferson, and Trail Canyon at 27.2 Ma, 26.4 Ma, and 23.6 Ma, respectively. In total, 900+ km3 of magma was erupted from the complex. The high-silica rhyolite tuff of Moores Creek is the least strongly zoned in silica (78.0–76.8 wt% SiO2), and the tuff of Mt. Jefferson is the most strongly zoned (77.5–65.3 wt% SiO2); the tuff of Trail Canyon is moderately zoned (75.9–70.4 wt% SiO2). All eruptive products contain plagioclase, sanidine, quartz, biotite, Fe–Ti oxides, and accessory zircon, allanite, and apatite. Amphibole and clinopyroxene join the assemblage where compositions of bulk tuff are 74 wt% SiO2 and 70 wt% SiO2 respectively. Proportions and compositions of phenocrysts vary systematically with composition of the host tuff. Compositional zoning trends of sanidine and biotite suggest the presence of a high Ba-bearing magmatic component at depth or its introduction into the Mt. Jefferson and Trail Canyon magma chambers at a late stage of magmatic evolution. Rocks of the complex constitute a high-K, calc-alkaline series.Empirical data from other systems and results of published phase-equilibria and thermo-chemical studies suggest that magma erupted from the TCC was oxidized ( 1.5 to 2.0 log units above NNO), thermally zoned ( 700–730° C for high-silica rhyolite to 800–840° C for dacite) and water-rich (5.0–5.5. wt% H2O for highsilica rhyolite to 4.0 wt% H2O for dacite). Geologic relations and amphibole compositional data are consistent with total pressures of 1.5 to 2 kbars.Onset of mid-Tertiary magmatism in vicinity of the TCC began with intrusion of a small granodioritic stock and a northeast-trending dike swarm at 37–34 Ma. The dikes are broadly bimodal assemblage of silicic andesite and rhyolite. Voluminous ash-flow-tuff magmatism commenced at 32.3 Ma and persisted for 9 m.y. without eruption of intermediate to mafic magmas (<62 wt% SiO2). As such, the TCC is probably a remnant of a more extensive complex of calderas whose identities are obscured by recurrent volcanism and by late Tertiary basin-range block faulting. The change from small-volume, broadly bimodal volcanism to voluminous outpourings of silicic magma is similar to that which occurred in east-central Nevada, where magmatism and rapid crustal extension overlapped in space and time. Although supracrustal extension at the time of formation of the TCC apears limited, the comparable magmatic histories and compositional characteristics of rocks erupted from east-central Nevada and the TCC suggest that fundamentally similar magmatic processes acted at depth and that extension may have been more pronounced in the lower and middle crust below the TCC and vicinity. Because strain is partitioned heterogeneously in the upper crust, the magmatic record, rather than surface structural features, may reflect better the actual state of crustal stress during volcanism.Mid-Tertiary magmatism in the TCC and vicinity probably began with intrusion of mantle-derived basalt into the lower crust, which led to crustal heating, local partial melting of crustal rocks, and intrusion of rhyolitic melts and contaminated basaltic differentiates (alkalirich andesite) into the upper crust. With time, intrusion to extrusion ratios increased as silicic melts retarded the rise of mafic magmas and mixing between mafic magmas and crustal partial melts occurred. The oxidized, water-rich, and low-temperature nature of these magmas reflects protracted crustal residence and interaction prior to eruption. The resulting hybridized and differentiated magmas ultimately erupted to form extensive deposits of silicic ash-flow tuff. By contrast, silicic lavas are scarce possibly because of coherent roof rocks that limited volatile degassing between major pyroclastic eruptions.  相似文献   

12.
Late Neoproterozoic bimodal dyke suites are abundant in the Arabian–Nubian Shield. In southern Israel this suite includes dominant alkaline quartz porphyry dykes, rare mafic dykes, and numerous composite dykes with felsic interiors and mafic margins. The quartz porphyry chemically corresponds to A-type granite. Composite dykes with either abrupt or gradational contacts between the felsic and mafic rocks bear field, petrographic and chemical evidence for coexistence and mixing of basaltic and rhyolitic magmas. Mixing and formation of hybrid intermediate magmas commenced at depth and continued during emplacement of the dykes. Oxygen isotope ratios of alkali feldspar in quartz porphyry (13 to 15‰) and of plagioclase in trachydolerite (10–11‰) are much higher than their initial magmatic ratios predicted by equilibrium with unaltered quartz (8 to 9‰) and clinopyroxene (5.8‰). The elevation of δ18O in alkali feldspar and plagioclase, and extensive turbidization and sericitization call for post-magmatic low-temperature (≤ 100 °C) water–rock interaction. Hydrous alteration of alkali feldspar, the major carrier of Rb and Sr in the quartz–porphyry, also accounts for the highly variable and unusually high I(Sr) of 0.71253 to 0.73648.

The initial 143Nd/144Nd ratios, expressed by εNd(T) values, are probably unaltered and show small variation in mafic and felsic rocks within a narrow range from + 1.4 to + 3.3. The Nd isotope signature suggests either a common mantle source for the mafic and silicic magmas or a juvenile crustal source for the felsic rocks (metamorphic rocks from the Elat area). However, oxygen isotope ratios of zircon in quartz porphyry [δ18O(Zrn) = 6.5 to 7.2‰] reveal significant crustal contribution to the rhyolite magma, suggesting that mafic and A-type silicic magmas are not co-genetic, although coeval. Comparison of 18O/16O ratios in zircon allows to distinguish two groups of A-type granites in the region: those with mantle-derived source, δ18O(Zrn) ranging from 5.5 to 5.8‰ (Timna and Katharina granitoids) and those with major contribution of the modified juvenile crustal component, δ18O(Zrn) varying from 6.5 to 7.2‰ (Elat quartz porphyry dykes and the Yehoshafat alkaline granite). This suggests that A-type silicic magmas in the northern ANS originated by alternative processes almost coevally.  相似文献   


13.
The Coso and Big Pine volcanic fields of eastern California exhibit different magmatic histories. The Big Pine field erupted only basalt lavas, some of which bear mantle xenoliths, whereas the Coso field erupted both basalt and rhyolite and is a major geothermal resource. These different magmatic products could be explained if Coso basalts stalled in the crust before erupting, providing heat to generate silicic magma, whereas Big Pine basalts erupted directly from mantle depths. Clinopyroxene–liquid thermobarometry indicates an average clinopyroxene crystallization depth of 45 km for Big Pine basalts and 19 km for Coso basalts, consistent with this hypothesis. Differences in crustal density, crustal structure, and prior magmatic history may have contributed to the different magmatic processes operating at each field. Our results indicate that the effects of analytical error, crystal zoning, and correlated errors on estimated temperatures and pressures from the thermobarometer are relatively small compared to intersample differences.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
The Dokhan volcanics are represented by a thick stratified lava flows succession of basalt, andesite, imperial porphyry, dacite, rhyodacite, rhyolite, ignimbrites, and tuffs. These lavas are interbanded with their pyroclastics in some places including banded ash flow tuffs, lithic tuffs, crystal lapilli tuffs, and agglomerates. They are typical calc–alkaline and developed within volcanic arc environment. All rocks show moderate enrichment of most large ion lithophile elements relative to high field strength elements (HFSE). The incompatible trace elements increase from basalt through andesite to rhyolite. The felsic volcanics are characterized by moderate total rare earth elements (REE) contents (162 to 392 ppm), less fractionated patterns {(Ce/Yb)N = (1.24 to 10.93)}, and large negative Eu anomaly {(Eu/Eu*) = (0.15 to 0.92)}. The mafic volcanics have the lowest REE contents (61 to 192 ppm) and are relatively steep {(Ce/Yb)N = (3.2 to 8.5)}, with no negative Eu anomalies {(Eu/Eu*) = (0.88 to 1)}. The rhyolite displays larger negative Eu anomaly (Eu/Eu* = 0.28) than those of other varieties, indicating that the plagioclase was an early major fractionating phase. The mineralogical and chemical variations within volcanics are consistent with their evolution by fractional crystallization of plagioclase and clinopyroxene.  相似文献   

15.
Highly evolved rhyolite glass plus near-solidus mineral assemblages in voluminous, dacitic, crystal-rich ignimbrites provide an opportunity to evaluate the late magmatic evolution of granodiorite batholiths. This study reports laser-ablation ICP-MS analyses of trace element concentrations in feldspars, hornblende, biotite, titanite, zircon, magnetite, and interstitial glass of the crystal-rich Fish Canyon Tuff. The high-silica rhyolite glass is characterized by relatively high concentrations of feldspar-compatible elements (e.g., 100 ppm Sr and 500 ppm Ba) and low concentrations of Y (<7 ppm) and HREE (~1 ppm Yb), hence high LREE/HREE (Ce/Yb >40) compared to many well-studied high-silica rhyolite glasses and whole-rock compositions. Most minerals record some trace element heterogeneities, with, in particular, one large hornblende phenocryst showing four- to six-fold core-to-rim increases in Sr and Ba coupled with a decrease in Sc. The depletions of Y and HREE in the Fish Canyon glass relative to the whole-rock composition (concentrations in glass ~30% of those in whole rocks) reflect late crystallization of phases wherein these elements were compatible. As garnet is not stable at the low-P conditions at which the Fish Canyon magma crystallized, we show that a combination of modally abundant hornblende (~4%) + titanite (~0.5–1%) and the highly polymerized nature of the rhyolitic liquid led to Y and HREE depletions in melt. Relatively high Sr and Ba contents in glass and rimward Sr and Ba increases in euhedral, concentrically zoned hornblende suggest partial feldspar dissolution and a late release of these elements to the melt as hornblende was crystallizing, in agreement with textural evidence for feldspar (and quartz) resorption. Both observations are consistent with thermal rejuvenation of the magma body prior to eruption, during which the proportion of melt increased via feldspar and quartz dissolution, even as hydrous and accessory phases were crystallizing. Sr/Y in Fish Canyon glass (13–18) is lower than the typical adakitic value (>40), confirming that high Sr/Y is a reliable indicator of high-pressure magma generation and/or differentiation wherein garnet is implicated.  相似文献   

16.
Bruno Scaillet  Ray Macdonald 《Lithos》2006,91(1-4):95-108
The phase relationships and compositions of a pantellerite from the Eburru complex in the Kenya Rift Valley have been determined at 150 MPa and under reducing conditions, 2 log units below the Ni–NiO solid buffer. The effects of temperature and melt water content on phase relationships have been explored. Alkali feldspar and quartz crystallise alone at temperatures above 700 °C, irrespective of melt water content. Below 700 °C, sodic amphibole and clinopyroxene also crystallise; the amphibole being the liquidus phase under water-rich conditions. The coexistence of amphibole phenocrysts with alkali feldspar and quartz in a crystal-poor pantellerite implies temperatures below 700 °C and melt water contents higher than 4 wt.%, possibly up to 5–6 wt.%. Pantellerites have lower liquidus temperatures than associated comendites, which supports a parent–daughter relationship between the two magma types. The melts produced in the experiments extend the compositional trend displayed by the natural rock series, and reproduce some extreme compositions occasionally observed in alkaline volcanic series, with FeO contents above 12 wt.% and Na2O contents approaching 10 wt.%. Pantellerites are therefore the true near-minimum melt compositions of alkaline oversaturated magma series.  相似文献   

17.
The mechanisms and the timescales of magmatic evolution were investigated for historical lavas from the Askja central volcano in the Dyngjufjöll volcanic massif, Iceland, using major and trace element and Sr, Nd, and Pb isotopic data, as well as 238U-230Th-226Ra systematics. Lavas from the volcano show marked compositional variation from magnesian basalt through ferrobasalt to rhyolite. In the magnesian basalt-ferrobasalt suite (5-10 wt% MgO), consisting of lavas older than 1875 A.D., 87Sr/86Sr increases systematically with increasing SiO2 content; this suite is suggested to have evolved in a magma chamber located at ∼600 MPa through assimilation and fractional crystallization. On the other hand, in the ferrobasalt-rhyolite suite (1-5 wt% MgO), including 1875 A.D. basalt and rhyolite and 20th century lavas, 87Sr/86Sr tends to decrease slightly with increasing SiO2 content. It is suggested that a relatively large magma chamber occupied by ferrobasalt magma was present at ∼100 MPa beneath the Öskjuvatn caldera, and that icelandite and rhyolite magmas were produced by extraction of the less and more evolved interstitial melt, respectively, from the mushy boundary layer along the margin of the ferrobasalt magma chamber, followed by accumulation of the melt to form separate magma bodies. Ferrobasalt and icelandite lavas in the ferrobasalt-rhyolite suite have a significant radioactive disequilibrium in terms of (226Ra/230Th), and its systematic decrease with magmatic evolution is considered to reflect aging, along with assimilation and fractional crystallization processes. Using a mass-balance model in which simultaneous fractional crystallization, crustal assimilation, and radioactive decay are taken into account, the timescale for the generation of icelandite magma from ferrobasalt was constrained to be <∼3 kyr which is largely dependent on Ra crystal-melt partition coefficients we used.  相似文献   

18.
We have examined Re, Platinum-Group Element (PGE) and Os-isotope variations in suites of variably fractionated lavas from Kohala Volcano, Hawaii, in order to evaluate the effects of melt/crust interaction on the mantle isotopic signature of these lavas. This study reveals that the behavior of Os and other PGEs changes during magma differentiation. The concentrations of all PGEs strongly decrease with increasing fractionation for melts with MgO < 8 wt.%. Fractionation trends indicate significantly higher bulk partition coefficients for PGEs in lavas with less than 8 wt.% MgO (DPGE = 35–60) when compared to values for more primitive lavas with MgO > 8 wt.% (DPGE ≤ 6). This sudden change in PGE behavior most likely reflects the onset of sulfur saturation and sulfide fractionation in Hawaiian magmas at about 8 wt.% MgO.

The Os-rich primitive lavas (≥ 8 wt.% MgO, > 0.1 ppb Os) display a narrow range of 187Os/188Os values (0.130–0.133), which are similar to values in high-MgO lavas from Mauna Kea and Haleakala Volcanoes and likely represent the mantle signature of Kohala lavas. However, Os-isotopic ratios become more radiogenic with decreasing MgO and Os content in evolved lavas, ranging from 0.130 to 0.196 in the shield-stage Pololu basalts and from 0.131 to 0.223 in the post-shield Hawi lavas. This reflects assimilation of local oceanic crust material during fractional crystallization of the magma at shallow level (AFC processes). AFC modeling suggests that assimilation of up to 10% upper oceanic crust could produce the most radiogenic Os-isotope ratios recorded in the Pololu lavas. This amount of upper crust assimilation has a negligible effect on the Sr and Nd-isotopic compositions of Kohala lavas. Thus, these isotopic compositions likely represent the composition of the mantle source of Kohala lavas.  相似文献   


19.
The rock names keratophyre and quartz keratophyre are beset by confusion and ambiguity. This is due in part to the notion that these sodic rock types originated by albitization of potassic rocks (trachyte and rhyolite) and in part to the existence of two varieties of quartz keratophyre, one with and one without quartz phenocrysts. Though both types of quartz keratophyre are felsic rocks, they are often confused with keratophyre, an intermediate rock. Generally, keratophyre is not albitized trachyte but the sodic-plagioclase counterpart of trachyte. Similarly, quartz keratophyre is not albitized rhyolite but its sodic-plagioclase complement. Keratophyre is less common than quartz keratophyre and the spilite-keratophyre suite is more often a spilite-quartz keratophyre association. Keratophyre and the two types of quartz keratophyre are leucocratic sodic albite-phyric volcanics, the former intermediate and the latter felsic.  相似文献   

20.
Geochemistry of the Hawi lavas,Kohala Volcano,Hawaii   总被引:1,自引:0,他引:1  
Hawi lavas form the late stage alkalic cap on Kohala Volcano and range in composition from hawaiite to trachyte. New, detailed field mapping of Kohala and reinterpretation of previously published age data suggest that there was no significant eruption hiatus between the Hawi and underlying Pololu shield lavas as was previously suggested. Mineral and whole-rock chemical data are consistent with a crystal fractionation origin for the hawaiite to trachyte compositional variation observed within the Hawi lavas. Plagioclase, clinopyroxene, Ti-magnetite, olivine and apatite fractionation are needed to explain this variation. The clinopyroxene fractionation may have occurred at moderate pressure because it is virtually absent in these lavas and is not a near liquidus phase at pressures of less than 8 Kb. Plagioclase would be buoyant in the Hawi hawaiite magmas so a mechanism like dynamic flow crystallization is needed for its fractionation and to account for the virtual absence of phenocrysts in the lavas. Hawi lavas are distinct in Sr and Nd isotopic ratios and/or incompatible element ratios from the Pololu lavas. Thus they were derived from compositionally distinct sources. Compared to other suites of Hawaiian alkalic cap lavas, Hawi lavas have anomalously high concentrations of phosphorus and rare earth elements. These differences could be due to greater apatite content in the source for the Hawi lavas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号