首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present high-precision JHK photometry with the 3.8-m UK Infrared Telescope (UKIRT) of 82 standard stars, 28 from the widely used preliminary list known as the 'UKIRT Faint Standards', referred to here as the Fundamental List, and 54 additional stars referred to as the Extended List. The stars have 9.4< K <15.0 and all or most should be readily observable with imaging array detectors in normal operating modes on telescopes of up to 10-m aperture. Many are accessible from the southern hemisphere. Arcsec-accuracy positions (J2000, epoch ∼1998) are given, together with optical photometry and spectral types from the literature, where available, or inferred from the J − K colour. K -band finding charts are provided for stars with proper motions exceeding 0.3 arcsec yr−1. We discuss some pitfalls in the construction of flat-fields for array imagers and a method to avoid them. On 30 nights between late 1994 and early 1998 the stars from the Fundamental List, which were used as standards for the whole programme, were observed on an average of 10 nights each, and those from the Extended List on an average of six nights. The average internal standard error of the mean results for the K magnitudes is 0.005 mag; for the J − H colours it is 0.003 mag for the Fundamental List stars and 0.005 mag for those of the Extended List; for H − K the average is 0.004 mag. The results are on the natural system of the IRCAM3 imager, which used a 256×256 InSb detector array with 'standard' JHK filters, behind gold-coated fore-optics and a gold- or silver-dielectric coated dichroic. We give colour transformations on to the CIT, Arcetri and LCO/Palomar NICMOS systems, and preliminary transformations on to the system defined by the new Mauna Kea Observatory near-infrared filter set.  相似文献   

3.
Systematic variability in stellar magnitudes, as derived from profile fitting to CCD images, may in some instances be due to variable seeing. It is suggested that this happens in cases where the stars are unresolved pairs, typically with sub-arcsecond separation between the components. It is shown that the fitting of suitable Generalised Additive Models to time series photometry can disentangle intrinsic stellar variability and seeing-induced brightness changes. It is possible that there will be a fixed seeing response associated with a given star which exhibits the effect: estimation of this response from several long photometric runs is demonstrated.  相似文献   

4.
We present a new method for determining physical parameters of RRab variables exclusively from multicolour light curves. Our method is an inverse photometric Baade–Wesselink analysis which, using a non-linear least-squares algorithm, searches for the effective temperature ( T eff) and pulsational velocity ( V p) curves and other physical parameters that best fit the observed light curves, utilizing synthetic colours and bolometric corrections from static atmosphere models. The T eff and V p curves are initially derived from empirical relations then they are varied by the fitting algorithm. The method yields the variations and the absolute values of the radius, the effective temperature, the visual brightness and the luminosity of individual objects. Distance and mass are also determined. The method is tested on nine RRab stars subjected to Baade–Wesselink analyses earlier by several authors. The physical parameters derived by our method using only the light-curve data of these stars are well within their possible ranges defined by direct Baade–Wesselink and other techniques. A new empirical relation between the I C magnitude and the pulsational velocity is also presented, which allows to construct the V p curve of an RRab star purely from photometric observations to an accuracy of about 3.5 km s−1.  相似文献   

5.
We report variation of K-band infrared(IR) emission in the vicinity of the G025.65+1.05 water and methanol maser source. New observational data were obtained with the 2.5 m telescope at the Caucasian Mountain Observatory(CMO) of Moscow State University on 2017–09–21 during a strong water maser flare. We found that the IR source situated close to the maser position had decreased brightness in comparison to archive data. This source is associated with a massive young stellar object(MYSO) corresponding to the compact IR source IRAS 18316–0602(RAFGL 7009 S). A similar decrease in K-brightness of the IR source close to the maser position was observed in March 2011 when the water maser experienced a period of increased activity. The dips in MYSO brightness can be related to the maser flare phases. Maser flares that are concurrent with dips in the IR emission can be explained if the lower IR radiation field enables a more efficient sink for the pumping cycle by allowing IR photons to escape the maser region.  相似文献   

6.
7.
The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, was awarded almost 450 observing nights and accumulated almost 100000 raw data frames with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automatic data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e., ≥1 %) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, CAFOS@2.2m in Calar Alto, BFOSC@Cassini in Loiano, and LaRuca@1.5m in San Pedro Mártir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct for the relevant effects which can be applied to a wide range of observational projects at similar instruments. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
10.
11.
We derive an empirical effective temperature and bolometric luminosity calibration for G and K dwarfs, by applying our own implementation of the Infrared Flux Method to multiband photometry. Our study is based on 104 stars for which we have excellent   BV ( RI )C JHK S  photometry, excellent parallaxes and good metallicities.
Colours computed from the most recent synthetic libraries (ATLAS9 and MARCS) are found to be in good agreement with the empirical colours in the optical bands, but some discrepancies still remain in the infrared. Synthetic and empirical bolometric corrections also show fair agreement.
A careful comparison to temperatures, luminosities and angular diameters obtained with other methods in the literature shows that systematic effects still exist in the calibrations at the level of a few per cent. Our Infrared Flux Method temperature scale is 100-K hotter than recent analogous determinations in the literature, but is in agreement with spectroscopically calibrated temperature scales and fits well the colours of the Sun. Our angular diameters are typically 3 per cent smaller when compared to other (indirect) determinations of angular diameter for such stars, but are consistent with the limb-darkening corrected predictions of the latest 3D model atmospheres and also with the results of asteroseismology.
Very tight empirical relations are derived for bolometric luminosity, effective temperature and angular diameter from photometric indices.
We find that much of the discrepancy with other temperature scales and the uncertainties in the infrared synthetic colours arise from the uncertainties in the use of Vega as the flux calibrator. Angular diameter measurements for a well-chosen set of G and K dwarfs would go a long way to addressing this problem.  相似文献   

12.
The dichotomy between a universal mass function (IMF) and a variable IMF which depends on local physical parameters characterises observational and theoretical stellar astronomy. In this contribution the available distributions of probability are briefly reviewed. The physical nature of two of them, gamma variate and lognormal, is then explained once the framework of the fragmentation is introduced. Interpolating techniques are then applied to the sample of the first 10 pc and to the open cluster NGC 6649: in both cases lognormal distribution produces the best fit. The three power law function has also been investigated and visual comparison with an artificially generated sample of 100000 stars suggests that the variations in the spectral index are simply due to the small number of stars available in the observational sample. In order to derive the sample of masses, a new formula that allows us to express the mass as a function of the absolute magnitude and (B‐V) for MAIN V, GIANTS III and SUPERGIANTS I is derived. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
15.
16.
17.
We present a first overview of variable stars in the Bochum Galactic Disk Survey (GDS) with emphasis on eclipsing binaries (EBs). This ongoing survey is performed by a robotic twin refractor at the Universitätssternwarte Bochum located near Cerro Armazones in Chile. It comprises a mosaic of 268 fields in a stripe of Δb = ±3° along the Galactic plane observed once per month simultaneously in the Sloan r and i filters with a detection limit of rs ∼ 16 mag and is ∼ 15 mag. The data from the first three years until the end of February 2014 yields a total of 41718 variable stars with variability amplitudes between 0.1–6 mag. A cross‐match with SIMBAD identified 11 465 of these variables unambiguously, while 2184 had multiple matches; most of the remaining stars could be matched with 2MASS objects. Among the SIMBAD‐listed objects with single matches, only 1982 turned out as known variables while a further 256 are suspected of variability. That leaves a total of 39480 potentially new variables. The group of known variables comprises 419 stars (21 %) that are classified as EBs while 443 (22%) are of other types; for the remaining 1120 catalogued variables (57 %) the type is unknown. Investigating variability as a function of spectral type, we find that SIMBAD provides spectral types for 2811 (25 %) of the identified stars. Spectral classes B (26 %), A (20 %), and M (25%) contain the most numerous variables, while all other classes contribute less than 10% each. More than half of the B (55 %) and A (56%) stars are designated as EBs, suggesting that hundreds of new B‐ and A‐type EBs may be contained in the GDS archive. In contrast, among the numerous M stars no EBs are known. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
19.
The search of roAp stars at Mt. Dushak-Erekdag Observatory was started in 1992 using the 0.8 m Odessa telescope equipped with a two-star high-speed photometer. We have observed more than a dozen stars so far and discovered HD 99563 as roAp star while BD+8087 is suspected to have rapid oscillations. Negative results of our observations for the search of rapid oscillations in four stars in NGC 752 are also discussed.  相似文献   

20.
We report the discovery of WASP-10b, a new transiting extrasolar planet (ESP) discovered by the Wide Angle Search for Planets (WASP) Consortium and confirmed using Nordic Optical Telescope FIbre-fed Echelle Spectrograph and SOPHIE radial velocity data. A 3.09-d period, 29 mmag transit depth and 2.36 h duration are derived for WASP-10b using WASP and high-precision photometric observations. Simultaneous fitting to the photometric and radial velocity data using a Markov Chain Monte Carlo procedure leads to a planet radius of  1.28 R J   , a mass of  2.96 M J   and eccentricity of ≈0.06. WASP-10b is one of the more massive transiting ESPs, and we compare its characteristics to the current sample of transiting ESP, where there is currently little information for masses greater than ≈  2 M J   and non-zero eccentricities. WASP-10's host star, GSC 2752−00114 (USNO-B1.0 1214−0586164) is among the fainter stars in the WASP sample, with   V = 12.7  and a spectral type of K5. This result shows promise for future late-type dwarf star surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号