首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
New isotope and mineral data on manganese carbonates of the Mazul deposit (Krasnoyarsk region) in combination with morphology of ore bodies suggest that the ores were formed in several stages with the involvement of meteoric solutions through infiltration and, possibly, exfiltration mechanisms. Based on the geological–geochemical data, manganese carbonates of the Mazul deposit may be ascribed to a new genetic subtype of the catagenesis (epigenesis) zone.  相似文献   

2.
The results of isotope-geochemical studies of carbonates of different mineral types from manganese and host rocks of the Famennian manganiferous formation of Pai-Khoi are reported. Kutnahorite ores are characterized by δ13C values from–6.6 to 1.3‰ and δ18O from 20.0 to 27.4‰. Rhodonite–rhodochrosite rocks of the Silovayakha ore occurrence have δ13C from–5.2 to–2.9 and δ18O from 25.4 to 24.3‰. Mineralogically similar rocks of the Nadeiyakha ore occurrence show the lighter carbon and oxygen isotopic compositions: δ13C from–16.4 to–13.1 and δ18O from 24.8 to 22.5‰. Similar isotopic compositions were also obtained for rhodochrosite–kutnahorite rocks of this ore occurrence: δ13C from–13.0 to–10.4‰ and δ18O from 24.6 to 21.7‰. Siderorodochrosite ores differ in the lighter oxygen and carbon isotopic compositions: δ18O from 18.7 to 17.6‰ and δ13C from–10.2 to–9.3‰, respectively. In terms of the carbon and oxygen isotopic compositions, host rocks in general correspond to marine sedimentary carbonates. Geological-mineralogical and isotope data indicate that the formation of the manganese carbonates was related to the hydrothermal ore-bearing fluids with the light isotopic composition of oxygen and carbon dissolved in CO2. The isotopic features indicate an authigenic formation of manganese carbonates under different isotopegeochemical conditions.  相似文献   

3.
The Cenomanian–Turonian transition marks one of the most important extinction episodes of the Mesozoic era. This extinction event was associated with the development of widespread oceanic anoxia and pronounced stable carbon isotopic excursion. Despite its importance, the effects of the perturbation on higher latitude biotas, and from the Baltic region in particular, are currently underexplored. Therefore, in this contribution we present the fossil record of a foraminifera succession integrated with δ13C trends from two deep cores: Bliūdsukiai-19 from western Lithuania and Balta?i?k?-267 from southern Lithuania. Two foraminiferal zones were distinguished: Rotalipora cushmani from the upper Cenomanian and Whiteinella archaeocretacea from the boundary strata between the Cenomanian and Turonian in the Balta?i?k?-267 core section, and a W. archaeocretacea Zone in the Bliūdsukiai-19 core section. A chemostratigraphical analysis of the stable carbon isotopes revealed a positive Cenomanian–Turonian δ13C anomaly, with maximum values reaching 3.57‰ in the upper part of the Bliūdsukiai-19 core section. A non-metric multidimensional scaling analysis of the foraminifera communities revealed that the major changes in their assemblages were strongly temporally organized and associated with the changes in the stable carbon isotopic ratios. This fact points to the significant effects of the C–T extinction event on the northern Neotethys paleocommunities.  相似文献   

4.
5.
With depleted coal resources or deteriorating mining geological conditions, some coal mines have been abandoned in the Fengfeng mining district, China. Water that accumulates in an abandoned underground mine (goaf water) may be a hazard to neighboring mines and impact the groundwater environment. Groundwater samples at three abandoned mines (Yi, Er and Quantou mines) in the Fengfeng mining district and the underlying Ordovician limestone aquifer were collected to characterize their chemical and isotopic compositions and identify the sources of the mine water. The water was HCO3·SO4-Ca·Mg type in Er mine and the auxiliary shaft of Yi mine, and HCO3·SO4-Na type in the main shaft of Quantou mine. The isotopic compositions (δD and δ18O) of water in the three abandoned mines were close to that of Ordovician limestone groundwater. Faults in the abandoned mines were developmental, possibly facilitating inflows of groundwater from the underlying Ordovician limestone aquifers into the coal mines. Although the Sr2+ concentrations differed considerably, the ratios of Sr2+/Ca2+ and 87Sr/86Sr and the 34S content of SO42? were similar for all three mine waters and Ordovician limestone groundwater, indicating that a close hydraulic connection may exist. Geochemical and isotopic indicators suggest that (1) the mine waters may originate mainly from the Ordovician limestone groundwater inflows, and (2) the upward hydraulic gradient in the limestone aquifer may prevent its contamination by the overlying abandoned mine water. The results of this study could be useful for water resources management in this area and other similar mining areas.  相似文献   

6.
This work reports the results of lithological and isotopic study of carbonate rocks from the Pechishchi stratotype section (Kazan) and three adjacent sections of Kazanian rocks of the Volga-Vyatka region at the eastern Russian Platform. These sections were recovered by the Kremeshki, Popovtsevo, and Chimbulat quarries (near the town of Sovetsk, southeastern Kirov district). Lithological features and wide variations of δ13C (from −6.0 to 6.8‰) and δ18 O (from 22.9 to 33.4 ‰) indicate that the rocks were formed in a shallow-marine basin with rapidly varying conditions of sedimentation which characterize different facies (and/or paleoecological) zones: lagoonal, supralittoral, littoral, shoal. They also suggest processes of postsedimentary alteration (mainly, under supergene conditions). Numerous short-term hiatuses are also recorded.  相似文献   

7.
New 87Sr/86Sr, δ13C, and δ18О chemostratigraphic data were obtained for carbonate rocks of the Lower Riphean Yusmastakh and the Vendian Starorechenskaya formations. The δ13С values in dolomites of the Yusmastakh Formation varies from–0.6 to–0.1‰ and in dolomites and dolomitic limestones of the Starorechenskaya Formation, from–1.2 to–0.4‰ PDB, and δ18О values, from 24.4 to 26.4‰ and from 25.3 to 27.6‰ SMOW, respectively. The Rb–Sr systematics of carbonate rocks was studied using the refined method of stepwise dissolution of samples in acetic acid, including chemical removal of up to one-third of the ground sample by preliminary acid leaching and subsequent partial dissolution of the rest of the sample. Owing to this procedure, secondary carbonate material is removed, which enables one to improve the quality of the Sr-chemostratigraphic data obtained. The initial 87Sr/86Sr ratios in carbonate rocks of the Yusmastakh (0.70468–0.70519) and Starorechenskaya (0.70832–0.70883) formations evidence the Riphean–Vendian boundary in the Precambrian sequence of the Anabar Uplift.  相似文献   

8.
Isotopic compositions of carbon (δ13C from −51.4 to −10.8 PDB) and oxygen (δ18O from 14.4 to 21.4 SMOW) were studied in rhodochrosite and calcite from manganese ores in the South Faizuly and Kyzyltash deposits of the southern Urals. The geological, petrographic, and isotopic data indicate that the studied carbonates are diagenetic formations. It is suggested that the main ore element (Mn) was delivered to the marine basin with hydrothermal solutions percolating in the oceanic crust. Manganese precipitated on the oceanic bottom as oxides near solution discharge zones. Manganese carbonates formed in sediments as a result of the oxidation of organic matter by manganese oxides. High biological productivity of the environment was caused by proximity to the hydrothermal vent that provided favorable biogeochemical conditions for the development of biocoenosis. Anomalously low 13C values in the South Faizuly deposit testify to the large-scale oxidation of methane in the course of manganese carbonate formation.__________Translated from Litologiya i Poleznye Iskopaemye, No. 4, 2005, pp. 416–429.Original Russian Text Copyright © 2005 by Kuleshov, Brusnitsyn.  相似文献   

9.
The paper presents the results of study of the Sr, C, and O isotope compositions in Upper Jurassic carbonate rocks of the Baidar Valley and Demerdzhi Plateau in the Crimean Mountains represented by different facies of the carbonate platform at the northern active margin of the Tethys. The 87Sr/86Sr value in them varies from 0.70699 to 0.70728. Based on the Sr chemostratigraphic correlation, the age of massive and layered limestones in the western part of the Ai-Petri and Baidar yailas (pastures) is estimated as late Kimmeridgian–early Tithonian, whereas the age of flyschoids of the Baidar Valley are estimated as late Tithonian–early Berriasian. The nearly synchronous formation of carbonate breccias of the Baidar Valley and Demerdzhi Plateau in late Tithonian–early Berriasian is substantiated. A summary section of Upper Jurassic rocks is compiled based on the Sr chemostratigraphic data. It has been established that δ18O values in the studied carbonate sediments vary from–2.9 to 1.3‰ (V-PDB). At the same time, shallow-water sediments in the internal part and the edge of the Crimean carbonate platform are depleted in 18O (–2.9 to +0.1‰) relative to sediments on the slope and foothill (–0.5 to +1.3‰). It is demonstrated that δ13C values do not depend on the facies properties and decrease in younger carbonate sediments from 3–3.5‰ to 1–1.5‰ in line with the Late Jurassic general trend. The δ13C values obtained for the Crimean carbonate platform turned out to be 0.5–1‰ higher than the values typical of the deep-water marine setting at the western margin of the Tethys. These discrepancies are likely related to peculiarities of water circulation and high bioproductivity in marine waters of the northern Peri-Tethys.  相似文献   

10.
Chemistry of major and minor elements, 87Sr/86Sr, δD, δ18O and δ34S of brines were measured from Tertiary strata and Quaternary salt lakes in the western Qaidam Basin. The water chemistry data show that all oilfield brines are CaCl2 type. They were enriched in Ca2+, B3+, Li+, Sr2+, Br, and were depleted in Mg2+, SO4 2−, which indicated that these brines had the characteristics of deeply circulated water. The relationship between δD and δ18O shows that all data of these brines decline towards the Global Meteoric Water Line (GWL) and Qaidam Meteoric Water Line (QWL), and that the intersection between oilfield brines and Meteoric Water Lines was close to the local spring and fresh water in the piedmont in the western Qaidam Basin. The results suggest that oilfield brines has initially originated from meteoric water, and then might be affected by water-rock metamorphose, because most oilfield brines distribute in the range of metamorphosing water. The 87Sr/86Sr values of most oilfield brines range from 0.71121 to 0.71194, and was less than that in salt lake water (>0.712), but close to that of halite in the study area. These imply that salt dissolution occurred in the process of migration. In addition, all oilfield brines have obviously much positive δ34S values (ranging from 26.46‰ to 54.57‰) than that of salt lake brines, which was caused by bacterial sulfate reduction resulting in positive shift of δ34S value and depleteed SO4 2− in oilfield brines. Combined with water chemical data and δD, δ18O, 87Sr/86Sr, δ34S values, we concluded that oilfield brines mainly originate from the deeply circulated meteoric waters, and then are affected by salt dissolution, water-rock metamorphose, sulfate reduction and dolomitization during the process of migration. These processes alter the chemical compositions of oilfield brines and accumulate rich elements (such as B, Li, Sr, Br, K and so on) for sustainable utilization of salt lake resources in the Qaidam Basin.  相似文献   

11.
The uneven character of the distribution of 18O/16O and 234U/238U values was established in the vertical cross section of the productive sequence of the Dybryn uranium deposit (Vitim uranium-ore region, Buryatia). Both a deficiency and an excess of 234U in relation to the equilibrium 234U/238U ratio in the vertical sequence may provide evidence for the extremely low rate of the infiltration water flow. The behavior of oxygen isotope characteristics for different size fractions of terrigenous rocks provides evidence for active uranium redistribution and openness of the isotope system of this element during interaction of terrigenous–sedimentary rocks with infiltration waters.  相似文献   

12.
Study of carbonate inclusions in the Mamatwan-type oxide ores (braunite lutites) made it possible to reveal residual microbial structures in them. Their presence in manganese ores, the type of manganese oxide mineralization, isotope signatures of manganese carbonates, and available literature data on the geology of the Kalahari manganese field suggest that manganese ore formation was widespread at the postsedimentary stage of transformation of the primary microbial sediment. The deposit can be referred to the hydrothermal-metasomatic type.  相似文献   

13.
The Ethiopian Rift (a major portion of the Great East African Rift) is characterized by a narrow elongated depression bounded by highlands from both sides. This topographic configuration leads to a monsoon redistribution which resulted in an arid rift floor and humid high rainfall highlands. The rifting and associated volcanism also caused a thinning of the crust and facilitates influx of CO2 and other mantle gases as diffuse sources or along faults from deeper sources. Groundwaters in the rift floor are usually of high mineral content (high F, U, As and salinity) while those on the plateau are of low mineral content. Among many factors, groundwater availability and quality in the rift floor aquifers is the function of their connection to the aquifers in the high rainfall plateau and the residence time of groundwater prior to reaching the rift floor. This entails the need for addressing one basic hydrologic question in such a setting: at what depth and rate does recharge from the high rainfall highland reach the lowland rift aquifers? This study uses spatial variations in trace elements and relates them to 14C variations, thereby investigating the suitability of using trace elements as proxies for residence time estimation of groundwaters of relatively short (1,000–2,000 years) residence time. This work also investigates the behavior of trace element trends along the groundwater flow path in a rifted setting and compares them with such trends in sedimentary aquifers elsewhere. The comparison shows a clear difference in behavior of trace elements along the groundwater flow path when compared with such variations in big sedimentary basins with no prominent rifting and volcanism, suggesting the need of calibrating the relation between trace elements and any direct residence time indicators. An integrated use of major elements, trace elements, and environmental isotopes reveals that the main recharge of the aquifers originates from mountain blocks and that recharge takes place via fractures with no evidence of evaporation prior to recharge. Redox processes appear to play a limited role in trace element geochemistry of groundwaters in the region. Progressive trends in trace element composition along the groundwater flow path suggest continuous groundwater flow from the plateau.  相似文献   

14.
The results of experimental measurements of atmospheric methane concentrations and its isotopic composition in the Russian Arctic seas in the summer and autumn of 2015 are discussed. The Keeling plot method and inverse number simulation were used for revealing the factors responsible for elevated methane concentrations over the sea surface. Its maximum concentrations (up to 2050 ppb) were measured over the Kara and Laptev seas, as well as in the port area of Arkhangel’sk. It is shown that tundra and bog ecosystems of Siberia serve as the main sources of methane in the measurement zone (except for the area adjacent to large ports). As a whole, the share of methane from microbiological sources is as high as approximately 43% of the total methane concentrations along the ship route.  相似文献   

15.
Deep-seated landslides are complex systems. In many cases, multidisciplinary studies are necessary to unravel the key hydrological features that can influence their evolution in space and time. The deep-seated Berceto landslide, in the northern Apennines of Italy, has been investigated in order to define the origin and geochemical evolution of groundwater (GW), to identify the slope system hydrological boundary, and to highlight the GW flow paths, transit time and transfer modalities inside the landslide body. This research is based on a multidisciplinary approach that involves monitoring GW levels, obtaining analyses of water chemistry and stable and unstable isotopes (δ18O-δ2H, 3H, 87Sr/86Sr), performing soil leaching tests, geochemical modelling (PHREEQC), and principal component analysis (PCA). The results of δ18O-δ2H and 87Sr/86Sr analyses show that the source of GW recharge in the Berceto landslide is local rainwater, and external contributions from a local stream can be excluded. In the landslide body, two GW hydrotypes (Ca-HCO3 and Na-HCO3) are identified, and the results of PHREEQC and PCA confirm that the chemical features of the GW depend on water–rock interaction processes occurring inside the landslide. The 3H content suggests a recent origin for GW and appears to highlight mixing between shallow and deep GW aliquots. The 3H content and GW levels data confirm that shallow GW is mainly controlled by a mass transfer mechanism. The 3H analyses with GW levels also indicate that only deep GW is controlled by a pressure transfer mechanism, and this mechanism is likely the main influence on the landslide kinematics.  相似文献   

16.
Oxygen and hydrogen isotope analysis was performed to study the processes of distribution of water masses and modification of their salinity in the Russian Arctic seas. A wealth of new isotopic data was obtained for freshwater (river runoff, Novaya Zemlya glaciers) and seawater samples collected along a set of extended 2D profiles in the Barents, Kara, and Laptev Seas. The study presents the first δD values measured for the Northeast Atlantic Deep Water NEADW dominated the water column of the Barents Sea (S = 34.90 ± 0.05, δD = +1.55 ± 0.4‰, δ18O = +0.26 ± 0.1‰, n = 44). This water mass is present in the Kara Sea and western Laptev Sea. The relationship between δD, δ18О, and salinity data was used to calculate the fractions of waters of different origin, including the fractions of continental runoff in waters of the Barents, Kara, and Laptev Seas. It was shown that the relationships between the isotopic parameters (δD, δ18О) and salinity in waters of the Kara and Laptev Seas is controlled by the intensity of continental runoff and sea ice processes. Sea ice formation is the main factor controlling the formation of the water column on the Laptev Sea shelf, whereas the surface waters of the middle Kara Sea are dominated by the contribution of river runoff. A very strong stratification in the Kara Sea is caused by the presence of a relatively fresh surface layer mostly contributed by estuarine water inputs from the Ob and Yenisei Rivers. The contribution of river waters reaches 40–60% in the surface layer in the central part of the sea and decreases to a few percent down 100 m water depth. Stratification in the western part of the Laptev Sea is controlled by the contribution of freshwater input from the Lena River and modification of salinity by sea ice formation.  相似文献   

17.
The Warburton Basin of central Australia has experienced a complex tectonic and fluid-flow history, resulting in the formation of various authigenic minerals. Geochemical and geochronological analyses were undertaken on vein carbonates from core samples of clastic sediments. Results were then integrated with zircon U–Pb dating and uraninite U–Th–total Pb dating from the underlying granite. Stable and radiogenic isotopes (δ18O, Sr and εNd), as well as trace element data of carbonate veins indicate that >200 °C basinal fluids of evolved meteoric origin circulated through the Warburton Basin. Almost coincidental ages of these carbonates (Sm–Nd; 432 ± 12 Ma) with primary zircon (421 ± 3.8 Ma) and uraninite (407 ± 16 Ma) ages from the granitic intrusion point towards a substantial period of active tectonism and an elevated thermal regime during the mid Silurian. We hypothesise that such a thermal regime may have resulted from extensional tectonism and concomitant magmatic activity following regional orogenesis. This study shows that the combined application of geochemical and geochronological analyses of both primary and secondary species may constrain the timing of tectonomagmatic events and associated fluid flow in intraplate sedimentary basins. Furthermore, this work suggests that the Sm–Nd-isotopic system is surprisingly robust and can record geologically meaningful age data from hydrothermal mineral species.  相似文献   

18.
The results of study of the isotopic-lithological compositions of carbonate and terrigenous-carbonate rocks in the Soyana River section (northern East European Platform, Arkhangel’sk district) are presented. The results make it possible to identify 10 main lithotypes and show a wide variation range of δ13C (from −2.2 to +3.6‰, PDB) and δ18O (from 22.5 to 30.5‰, SMOW). These lithological features and isotopic compositions suggest that the rocks were formed in a shallow-marine setting characterized by rapidly changing sedimentation conditions in various facies (and/or paleoecological) zones: inlets, lagoons, supralittoral, littoral, and shoals. Periods of aridization and humidization are recorded. The results also indicate numerous synsedimentary short-term hiatuses and stages of increased continental runoff—episodic pulsatory input of clastic material with the continental paleoflows.  相似文献   

19.
The conditions of formation of massive ice near the South Tambey gas-condensate field in northern Yamal Peninsula are studied. It is shown that massive ice bodies up to 4.5 m thick occur in the Holocene deposits of the high laida and the first terrace. Therefore, they cannot be the remains of glaciers; they are ground ice formations. All three types of massive ice have quite various isotopic compositions: the values of δD range from–107 to–199.7, and δ18O from–15.7 to–26.48‰. Such a significant differentiation in isotopic composition is a result of cryogenic fractionation in a freezing water-saturated sediment. The most negative isotope values are even lower in this Holocene massive ice than in the Late Pleistocene ice-wedge ice of Yamal Peninsula.  相似文献   

20.
Groundwater is of utmost significance to socio-economic development and ecological recovery for the Loess Plateau. However, studies regarding the mechanism governing groundwater recharge over this area appear to be inadequate. This study is to examine the spatio-temporal variations of δ2H and δ18O in precipitation and shallow groundwater. On the basis of this, the mechanisms governing shallow groundwater recharge were explored. Precipitation and groundwater were sampled monthly from May to October during the period 2004–2006 at 13 sites in the Chabagou Catchment (187 km2). In the Caopingxigou Experimental Watershed (0.1 km2), meteorological variables were observed and rainfall larger than 5 mm was sampled immediately after each rain event. Across the area, 90% of the precipitation occurred from May to September primarily in the form of heavy rains or rainstorms with great spatial variability. There were about 30 localized rains in each year. It was indicated that there existed notable seasonality and pronounced spatial variability in precipitation isotopic compositions. Contributing factors and indications of isotopic compositions, as well as their climatic indications such as monsoon intensities and mixing processes of water vapor, were investigated. The δ2H–δ18O relation of groundwater was found to be δ2H = 3.22 × δ18O − 38.1, deviating from the local meteoric water line δ2H = 7.57 × δ18O + 3.9. The range of δ values in groundwater is shrunken to be 15–21% of that in individual precipitations, and groundwater in the middle reaches shows a wider range of δ values. Isotopic results showed that groundwater originates from precipitation with hydrogen and oxygen isotopic compositions being −69 and −9.7‰, respectively, and most groundwater experiences serious evaporation and adequate mixing with old water during infiltration or percolation in the aerated zone. It was also founded that obvious fluctuations of isotopic compositions in groundwater mainly appear in the middle reaches especially at sites that are close to valleys, suggesting varying sources of groundwater from precipitation, precipitation runoff, isotopically enriched surface water and/or lateral recharge of adjacent groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号