首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A syenite gneiss associated with biotite pyroxenite and biotite-muscovite gneiss forms an elongated mass covering about 150 km2 in the basement complex around Shaki in Western Nigeria. It lies conformably in the biotite-museovite gneiss to which it is similar in texture. The biotite pyroxenite occurs as patches of varying sizes widely distributed throughout the syenite but is not found in any of the surrounding rocks.18 chemical analyses and 62 modal analyses show that the syenite is composed essentially of microcline (in places slightly perthitic), albite, quartz, diopsidic augite and hornblende and is chemically characterised by the unusual combination of very high K2O with high MgO, FeO and CaO contents. The biotite pyroxenite and the syenite contain high amounts of the trace elements characteristic of both magnesian ultra-basic rocks and granitic rocks.The syenite and the biotite pyroxenite are believed to have originated through two metasomatic alteration processes; one characterised by CaO+FeO+MgO and the other by K2O. The two processes are believed to have been simultaneous and related. The process may be analogous to that obtaining during fenitisation.  相似文献   

2.
王競繁  王继春  周路路  赵鑫  秦江东  郭文军  韩宏雨  张晓欣  刘洋 《地质论评》2021,67(Z1):67z1163-67z1166
正研究区位于内蒙古苏尼特右旗温都尔庙地区(图1),是古生代存在于西伯利亚板块与华北板块之间的古亚洲洋闭合之后形成的索伦山-西拉木伦对接带的重要组成部分(Zhang et al.,2014;潘桂棠等,2016)。本文是在1∶5万区调工作的基础上~(1),应用洋板块地质学(OPG)理论及造山带填图方法,  相似文献   

3.
Summary ?The Ditrau complex in eastern Transsylvania, Romania is a large (ca. 18 km diameter) Mesozoic alkaline igneous complex generated in an extensional environment associated with a rifted continental margin. It comprises an eccentric arcuate suite of intrusions in which there was a generalised migration of focus from west to east. Whereas most of the complex consists of salic rocks (syenites, nepheline syenites and alkali granites) a spectrum of intermediate rock types (monzonites, monzodiorites and alkali diorites) grades to alkali gabbros. Isolated masses of ultramafic rocks may represent autoliths derived from early cumulates. The earliest components appear to be the ultramafic, gabbroic and dioritic rocks of the north-west whereas the large area of nepheline syenites in the east of the complex represents the youngest large-scale intrusive event. An interval of dyke intrusion and widespread hydrothermal alteration marked the end of activity. Rocks of contrasted composition commonly show intricate and complex geometric relationships. Those between mafic (especially alkali gabbroic and dioritic) facies and salic (syenite and quartz syenite) facies display pillowy forms suggesting synchronous emplacement of mafic and salic magmas with the former intruded into, and chilled against, the latter. Mixing, mingling and hybridisation in these pillowed associations has been widespread. Olivine is confined to some of the ultramafic rocks. The basic rocks contain diopsidic pyroxene and amphibole ranging from kaersutite through ferroan pargasite to hastingsite although edenitic and actinolitic varieties occur. Titanite is ubiquitous and is a major component in some facies of the basic rocks. The syenites consist of sodic plagioclase, alkali feldspar and hastingsite whereas the nepheline syenites comprise alkali feldspar, nepheline and aegirine-augite with accessory cancrinite, scapolite and sodalite. The complex is deduced to have been generated from primitive basanitic magmas, formed as small-fraction asthenospheric melts, with progressive evolution through to phonolitic residues. Fractional crystallisation is inferred to have involved olivine and spinel in the early stages, followed by the incoming of clinopyroxene and amphibole (with loss of olivine in increasingly hydrous residual melts). A generalised increase in Nb/Ta from basic to nepheline syenite compositions is ascribed to titanite fractionation. The divergence towards silica oversaturated products is attributed to crustal assimilation and concomitant fractional crystallisation of the basic magmas at a relatively early stage in the development of the complex. An overall rise in δ18O with increasing SiO2 supports this conclusion. Evidence from the broad metamorphic aureole around the complex, the importance of amphiboles and extensive late-stage alteration of many of the rocks (with formation of e.g. scapolite, sodalite and cancrinite), suggests that the Ditrau magmas were notably volatile-rich. Factors responsible for the upwardly concave (chondrite-normalised) REE patterns exhibited by the salic rocks may include fractionation of minerals (kaersuite, titanite, apatite) preferentially removing MREE, accumulation of HREE-rich phases (zircon) and interaction with late-stage fluids enriched in HREE. The intrusive sequence and the inter-relationships of the basic and salic rocks suggest that stratified magma bodies may have been generated, with salic melts overlying denser basaltic melts. Mixing is inferred to have taken place during subsequent emplacement.
Zusammenfassung ?Petrologie des Alkali-Komplexes von Ditrau in den Ost-Karpaten Der Ditrau-Komplex im ?stlichen Transsylvanien, Rum?nien, ist ein gro?er (ca. 18 km Durchmesser) mesozoischer Alkali-Komplex, der in einem extensionalen Umfeld im Zusammenhang mit dem Aufbrechen eines Kontinentalrandes entstanden ist. Es liegt eine bogenf?rmige, exzentrische Gruppe von Intrusionen vor, innerhalb derer der Fokus von West nach Ost gewandert ist. W?hrend der Gro?teil des Komplexes aus salischen Gesteinen (Syeniten, Nephelin-Syeniten und Alkali Graniten) besteht, liegen auch intermedi?re Gesteine (Monzonite, Monzodiorite und Alkali Diorite) vor, die in Alkaligabbros übergehen. Isolierte Massen von ultramafischen Gesteinen k?nnten Autolithe, die aus frühen Kumulaten abstammen, darstellen. Die ?ltesten Komponenten scheinen die ultramafischen, gabbroischen und dioritischen Gesteine des Nordwestens zu sein, w?hrend das gro?e Gebiet von Nephelin-Syeniten im Osten des Komplexes das jüngste Intrusionsstadium darstellt. Ein Intervall mit Gang-Intrusion und verbreiteter hydrothermaler Umwandlung markiert das Ende dieser Aktivit?t. Gesteine von gegens?tzlicher Zusammensetzung zeigen h?ufig komplizierte geometrische Beziehungen. Diejenigen zwischen mafischen (besondern alkaligabbroischen und dioritischen) Typen und salischen (Syeniten und Quarz-Syeniten) zeigen polsterartige Formen, die auf m?glicherweise gleichzeitige Platznahme von mafischen und salischen Magmen hinweisen; dabei dürften die ersteren die letzteren intrudiert haben. Mischung, Mingling und Hybridisation ist in diesen polsterf?rmigen Assoziationen weit verbreitet. Olivin ist auf einige der ultramafischen Gesteine beschr?nkt. Die basischen Gesteine enthalten diopsidischen Pyroxen und Amphibole, die von Kaersutit über “ferroan” Pargasit zu Hastingsit übergehen, obwohl auch edenitische und aktinolitische Variet?ten vorkommen. Titanit ist weit verbreitet und eine Hauptkomponente in einigen Typen der basischen Gesteine. Die Syenite bestehen aus sodischem Plagioklas, Alkali-Feldspat und Hastingsit, w?hrend Nephelin-Syenite, Alkali-Feldspat, Nephelin und Aeginin-Augit mit akzessorischem Cancrinit, Skapolith und Sodalit umfassen. Der Ditrau-Komplex dürfte aus primitiven basanitischen Magmen entstanden sein, die sich als “small-fraction” asthenosph?rischer Schmelzen bildeten, mit progressiver Evolution bis hin zu phonolitischen Residuen. Fraktionierte Kristallisation dürfte Olivin und Spinell in den Frühstadien betroffen haben, gefolgt vom Auftreten des Klinopyroxen und Amphibol (wobei Olivin in den zunehmend wasserreichen Restschmelzen verlorengeht). Eine allgemeine Zunahme in Nb/Ta von basischen zu nephelinsyenitischen Zusammensetzungen wird auf Titanit-Fraktionierung zurückgeführt. Die Entwicklung in Richtung Silika-übers?ttigter Produkte geht auf krustale Assimilation und fraktionelle Kristallisation des basischen Magmas in einem relativ frühen Stadium der Entwicklung des Komplexes zurück. Ein allgemeiner Anstieg in δ18O mit zunehmendem SiO2 unterstützt diese Schlu?folgerung. Daten aus der breiten metamorphen Aureole des Komplexes, die Bedeutung der Amphibole und extensive Alteration im Sp?tstadium der Entwicklung vieler Gesteine (mit Bildung von Skapolith, Soldalit und Cancrinit) weist darauf hin, dass die Ditrau-Magmen sehr reich an volatilen Phasen waren. Die nach oben zu konkaven (Chondrit-normalisierten) SEE-Verteilungsmuster in den salischen Gesteinen dürften auf Mineralfraktionierung (Kaersuit, Titanit, Apatit) die vorzugsweise MSEE entfernt hat, Ansammlung von HSEE-reichen Phasen (Zirkon) und Wechselwirkungen mit sp?ten Fluiden, die an HSEE angereichert waren, zurückgehen. Die intrusive Abfolge und die Wechselbeziehungen zwischen den basischen und salischen Gesteinen legt nahe, dass geschichtete Magmenk?rper entstanden sind, wobei salische Schmelzen die dichteren basaltischen Schmelzen überlagert haben. W?hrend der darauf folgenden Platznahme dürfte Magmamixing stattgefunden haben.


Received October 20, 1998;/revised version accepted July 16, 1999  相似文献   

4.
Summary Platinum-group mineral, silicate and other solid and fluid inclusions occur in disseminated and massive chromite in a variety of lithologies from ophiolitic and other mafic-ultramafic complex-types. The inclusions are small (<250 microns) and randomly distributed throughout their host. Silicate inclusions are modally more abundant than the other inclusion types. Platinum-group mineral phases are ruthenium-rich sulphides and PGE alloys are osmium-rich. Mafic silicates (olivine, pyroxenes, pargasitic-amphiboles, micas) are magnesium-, titanium-, and alkali-rich and felsic silicates are sodium-rich (albite, nepheline).The intimate association of these inclusions with chromite suggests that their origin must be considered within a chromite crystallization model. A hypothesis of origin is suggested wherein the platinum-group minerals and silicates are trapped as discrete, crystalline euhedral phases and silicate liquid during the precipitation of chromite. The similarity of physical characteristics, modal mineralogy and chemical compositions indicates that this model may be applicable to all mafic-ultramafic complex-types.
Minerale der Platin-Gruppe und andere feste Einschlüsse in Chromiten aus Ophiolit-Komplexen: Vorkommen und petrologische Bedeutung
Zusammenfassung Minerale der Platin-Gruppe, Silikate und andere feste und flüssige Einschlüsse kommen in disseminierten und massiven Chromiten in einer Vielzahl von Gesteinen in ophiolitischen und anderen mafisch-ultramafischen Komplexen vor. Die Einschlüsse sind klein (<250 microns) und unregelmäßig im Chromit verteilt. Silikat-Einschlüsse sind modal weiter verbreitet als andere Arten von Einschlüssen. Minerale der Platin-Gruppe sind durch Ruthenium-reiche Sulfide und Osmium-reiche Legierungen vertreten. Mafische Silikate (Olivin, Pyroxen, pargasitische Amphibole, Glimmer) sind Magnesium-, Titan- und Alkali-reich; felsische Silikate sind Natrium-reich (Albit, Nephelin).Die ausgeprägte Assoziation dieser Einschlüsse mit Chromit weist darauf hin, daß ihre Herkunft im Zusammenhang mit einem Kristallisations-Modell für Chromit zu sehen ist. Ein genetisches Konzept wird vorgelegt, wobei die Platin-Gruppen-Minerale als gut ausgebildete, idiomorphe kristalline Phasen, und die Silikate als Silikatschmelze während des Ausfallens des Chromites eingeschlossen werden. Die Ähnlichkeit der physikalischen Eigenschaften, der modalen mineralogischen Zusammensetzung und der chemischen Zusammensetzung weisen darauf hin, daß dieses Modell auf alle mafisch-ultramafischen Komplexe anzuwenden ist.
  相似文献   

5.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

6.
Summary The circa 2.06 Ga Mt Weld carbonatite complex of Western Australia intrudes an Archean greenstone sequence dominated by basic and ultrabasic metamorphosed igneous rocks. Carbonatites form the core of the complex and are surrounded by glimmerites. The dominant carbonatite is sövite and is intruded by rauhaugites and carbonate-rich veins. The present investigation examines the mineral chemistry and petrology of the layered rauhaugites. They are essentially composed of ferroan dolomite, mica, magnetite and apatite, with accessory amounts of pyrochlore, ilmenite, sphalerite, baddeleyite, pyrite, galena and minerals enriched in the REE. The micas consist of titan-phlogopite, low-Ti phlogopite and tetraferriphlogopite. It is proposed that the parental magma of the Mt Weld complex was a potassic, aillikitic lamprophyre.
Mineralogie und Petrologie der Rauhaugite des Karbonatit Komplexes von Mt. Weld, West-Australien
Zusammenfassung Der circa 2,06 Ga alte Mt. Weld Karbonatit in West-Australien intrudiert eine archaische Grüngestein-Sequenz, die von metamorphosierten basischen und ultrabasischen Magmatiten dominiert wird. Karbonatite bilden die Kernzone des Komplexes und werden von Glimmeriten umgeben. Das am weitesten verbreitete Gestein des Karbonatites ist Sbvit, der wiederum von Rauhaugiten und Karbonat-reichen Gängen intrudiert wird. Diese Untersuchung befaßt sich mit der Mineralchemie und Petrologie der geschichteten Rauhaugite. Sie sind im wesentlichen aus eisenreichem Dolomit, Glimmer, Magnetit, und Apatit zusammengesetzt; dazu kommen als Akzessorien Pyrochlor, Envenii, Zinkblende, Baddeleyit, Pyrit, Bleiglanz und an seltenen Erden angereicherte Minerale. Die Glimmer bestehen aus Titan-Phlogopit, Phlogopit mit niedrigen Titange halten sowie Tetraferriphlogopit. Ein Kali-reicher ailikitischer Lamprophyr ist als Ausgangsmagma für den Mt. Weld-Komplex zu sehen.


With 6 Figures  相似文献   

7.
This paper studies the petrology of K-alkaline lamproite-carbonatite complexes, which are widespread in Siberia. They are exemplified by the Murun and Bilibino massifs in West and Central Aldan. In these massifs, the entire range of differentiates was first found, from K-ultrabasic-alkalic rocks through basic and intermediate ones to alkali granites and unique residual calc-silicate rocks (benstonite Ba-Sr carbonatites and charoite rocks). Also, intrusive equivalents of lamproites occur in these massifs, and the Murun massif was probably formed from highly differentiated lamproite magmas. In many K-alkaline complexes, silicate and silicate-carbonate magma layering takes place. Stages of magmatism are described for both massifs. Binary and ternary petrochemical diagrams exhibit the same compositional trend from early to late rocks.In this paper, lamproites are considered from the chemical point of view; their diagnostic properties are described in terms of chemical and mineral composition. From geological, petrological, and geochemical data, formational analysis of alkaline complexes was performed, four formational types of world lamproites were first identified, and diamond content criteria were developed for them.The carbonatite problem was studied from the petrological point of view, and four formational types of carbonatites were identified using geological, geochemical, and genetic criteria. It has been suggested that for dividing carbonatite complexes into four formational types the following criteria be used: the alkalinity type (Na or K) of alkalic rocks in the complex and the time when the carbonatite liquid separates from silicate melts in different stages of primary magma differentiation. These linked parameters influence the ore content type of carbonatite complexes.A formation model for K-alkaline carbonatite complexes is given, and the Tomtor alkaline carbonatite massif with tuffaceous rare-metal ores is described to prove that they have ore reserves. The geochemistry of C, O, Sr, and Nd isotopes shows that K-alkaline complexes, depending on their geotectonic setting, can originate from three types of mantle sources: depleted mantle, enriched mantle 1 (EM1), and enriched mantle 2 (EM2). It is concluded that ore-bearing ultrabasic-alkaline complexes of lamproites and carbonatites can melt out of different types of mantle, whose composition only slightly influences their ore content. Apparently, the main factors are the low degree of selective mantle melting (less than 1%) and plumes supplying fluid and alkaline components, which stimulate this melting. Later on, the processes important for the accumulation of ore and trace elements are long-term magma differentiation and its layering during crystallization.  相似文献   

8.
We present field relationships, petrography, and mineral major and trace element data for the Neoproterozoic Dariv Igneous Complex of the Altaids of Western Mongolia. This unique complex of high-K plutonic rocks is composed of well-exposed, km-scale igneous intrusions of wehrlites, phlogopite wehrlites, apatite-bearing phlogopite clinopyroxenites, monzogabbros, monzodiorites, and clinopyroxene-bearing monzonites, all of which are intruded by late stage lamprophyric and aplitic dikes. The biotite-dominated igneous complex intrudes depleted harzburgitic serpentinite. The observed lithological variability and petrographic observations suggest that the plutonic rocks can be ascribed to a fractionation sequence defined by olivine + clinopyroxene ± Fe–Ti oxides → phlogopite + apatite → K-feldspar + plagioclase → amphibole + quartz. Notably, phlogopite is the dominant hydrous mafic mineral. Petrogenesis of the observed lithologies through a common fractionation sequence is supported by a gradual decrease in the Mg# [molar Mg/(Fetotal + Mg) × 100] of mafic minerals. Crystallization conditions are derived from experimental phase petrology and mineral chemistry. The most primitive ultramafic cumulates crystallized at ≤0.5 GPa and 1,210–1,100 °C and oxygen fugacity (fO2) of +2–3 ?FMQ (log units above the fayalite–quartz–magnetite buffer). Trace element modeling using clinopyroxene and apatite rare earth element compositions indicates that the dominant mechanism of differentiation was fractional crystallization. The trace element composition of a parental melt was calculated from primitive clinopyroxene compositions and compares favorably with the compositions of syn-magmatic lamprophyres that crosscut the fractionation sequence. The parental melt composition is highly enriched in Th, U, large ion lithophile elements, and light rare earth elements and has a pronounced negative Nb–Ta depletion, suggestive of an alkaline primitive melt originating from a subduction-imprinted mantle. Comparison with a global compilation of primitive arc melts demonstrates that Dariv primitive melts are similar in composition to high-K primitive melts found in some continental arcs. Thus, the high-K fractionation sequence exposed in the Dariv Igneous Complex may be a previously unrecognized important fractionation sequence resulting in alkali-rich upper crustal granitoids in continental arc settings.  相似文献   

9.
平安地蛇绿混杂岩是笔者在"内蒙古锡林郭勒盟朱日和等三幅1∶5万地质矿产综合调查"工作中识别出的一套混杂岩。该混杂岩位于兴蒙造山带南缘,其地处华北板块演化的关键部位。本文对其进行了岩石类型、岩石地球化学及同位素年代学测试分析,结果表明:该套混杂岩主要由蛇绿岩和洋岛海山岩等组成;根据获得的LA-MC-ICP-MS锆石U-Pb年龄数据及锆石特征,主体岩性形成于中元古代或早中元古代。推测该套混杂岩记录了元古代哥伦比亚超大陆聚合过程中的洋陆转化事件,属于华北克拉通的古元古代变质基底。  相似文献   

10.
A coherent ophiolitic complex of pyroxenite, serpentinite, metagabbro, mafic volcanics, felsic volcanics and sediments crops out in NW Maine, adjacent to the Chain Lakes massif. The complex (here informally referred to as the Boil Mountain ophiolitic complex) is about 500 m.y. old. The volcanic sequence is not typical of ophiolites in that it contains a large proportion of felsic volcanics. The mafic volcanics are divided into two geochemical groups. A stratigraphically lower group is depleted in Ti, Zr, Y, Cr and REE contents similar to basalts from supra-subduction zone ophiolites. An upper mafic group has trace element contents similar to normal mid-ocean ridge basalts. The felsic volcanics are mostly rhyolitic and similar to low-K rhyolites found in the forearc of the Marianas trench and in an island arc sequence in the Klamath Mountains, California. The flat REE patterns of the felsic volcanic rocks are similar to those found in siliceous rocks in the Oman ophiolite. The presence of thick sequences of felsic volcanics, the abundance of pyroxenite, the low Ti, Zr and REE contents of some mafic rocks, the flat REE patterns of the felsic volcanics, and the composition of clinopyroxene all suggest the complex was formed in the vicinity of a subduction zone. The complex may be correlated with ophiolitic fragments in the eastern part of the Dunnage Zone in Newfoundland, rather than the main ophiolite belt of the western Appalachians.  相似文献   

11.
Petrographic analyses were carried out on thin coals and coaly sediments from the Lower Carboniferous Mattson Formation at Clausen Creek and Jackfish Gap-Yohin Ridge in the northern part of the Liard Basin, northern Canada. The composition and optical characteristics indicate that the coals are high-volatile bituminous B, predominantly sapropelic (canneloid) and accumulated subaquatically.The coals are dominantly composed of inertinite-rich and exinite-rich durities with subsidiary inertites and clarodurites; vitrite is minor and liptite is rare. The inertinite-rich microlithotypes are dominated by semifusinite, but micrinite, semimacrinite and ?resino-inertinites are abundant. Sporinite, comprising megaspores, crassispores, tenuispores and miospores, is the dominant liptinite maceral with subsidiary cutinite and minor alginite. Except for pyrite, mineral matter is minimal.Three populations of telocollinite are observed: a low-reflectance variety (I), commonly associated with micrinite (as vitrinertite), displays weak brown fluorescence and a reflectance some 0.4-0.5% lower than type II; type II is non-fluorescing telocollinite, with intermediate reflectance (0.67-0.74% Rom), it occurs as vitrite and is also associated with micrinite; and a higher-reflectance telocollinite (III), having no fluorescence or association with micrinite, has variable reflectance (0.74-0.8% Rom) implying higher oxidation or gelification levels.The abundance of semimacrinite, macrinite and ?resino-inertinites in inertites and durites (I) suggests that much of the peat accumulated subaquatically. Furthermore, fluorescing vitrinite and an abundance of micrinite (derived by oxidation or coalification of bituminite), suggest that the coal accumulated under anaerobic conditions. The predominance of semifusinite in humic laminae and micrinite in sapropelic layers suggests extensive surface or near-surface oxidation of the peat. Oxidised sporinites suggest that they were wind-borne.Depositional environment is interpreted as marginal marine, perhaps in shallow lakes in the middle to upper delta plain. Peat accumulations probably began subaquatically at the oxygen-hydrogen sulphide interface, but periodic subaerial exposure and natural oxidation gave rise to the high inertinite coals. Upper Mattson coals are interbedded with algal laminites and probably accumulated in a lagoonal setting.  相似文献   

12.
陈石  郭召杰 《岩石学报》2010,26(8):2336-2344
萨尔托海附近的也格孜卡拉花岗岩侵入到达拉布特蛇绿岩带中,为典型的"钉合岩体",其锆石SHRIMPU-Pb年龄结果为308±3Ma(MSWD=0.83),限定了达拉布特蛇绿岩带侵位时限不晚于308Ma,同时达拉布特蛇绿岩中辉长岩的年龄(Sm-Nd等时线年龄395Ma;LA-ICP-MS锆石U-Pb年龄391Ma),给出了达拉布特蛇绿岩带的形成年龄。达拉布特蛇绿岩带两侧地层均为下石炭统,为稳定火山-沉积序列,岩石组合特征相同,具有很好的可对比性,表明达拉布特蛇绿岩带不是分隔两侧不同板块的板块缝合带。在综合分析前人板片窗、增生楔等不同构造模型的基础上,提出残余洋盆的被动垮塌充填是西准噶尔地区晚古生代构造演化的主要形式,残余洋盆闭合过程中可能伴随着洋壳俯冲过程,侵入于西准增生杂岩的多个花岗岩体和闪长岩墙,限定了西准晚古生代增生作用不晚于晚石炭世。  相似文献   

13.
洋壳深俯冲超高压变质作用研究及其地质意义   总被引:1,自引:0,他引:1  
张立飞 《地质通报》2007,26(9):1079-1085
洋壳深俯冲经历超高压变质作用的岩石比较稀少,是目前超高压变质作用研究的重要前沿领域,有关这方面的研究对于建立新的冷俯冲带变质作用类型、探讨地幔水流体的成因、建立更广泛的超高压变质岩石的抬升机制具有重要意义。另外,洋壳深俯冲高压变质带往往与低压高温变质带组成双变质带,对双变质带的深入研究对于完整地重塑俯冲碰撞造山带的形成演化过程具有重要意义。简要地介绍了新疆西天山洋壳深俯冲超高压变质带的研究现状和存在的问题。  相似文献   

14.
This paper presents a review of petrological-geochemical studies at the Yoko-Dovyren Massif with an emphasis on relations between parameters of the parental magma, a model for the genesis of the lower contact zone, and the nature of Ni sulfide ore mineralization, including the evaluation of the possible ore potential. Arguments are presented in support of the conclusion that the Dovyren magma brought much intratelluric olivine of the composition Fo 85–87 into the chamber, and the composition of the initial melt corresponded to gabbronorite or moderately magnesian basite with no more than 10 wt % MgO. The probable temperature of the parental magma was approximately 1200–1250°C, and the sulfur solubility did not exceed 0.10–0.12 wt % (P = 1 kbar, WM buffer). The comparison of this estimate with the average S contents in the bottom plagioperidotites (0.12±0.06 wt %) indicates that the initial magma was saturated with a sulfide phase. For the first time the problem of the composition of contaminated dunites was formulated (these rocks occur in the Layered Series and contain more magnesian olivine Fo 87–92). The reason for the increase in the mg# of olivine is thought to be the partial melting and compaction of the original cumulates due to the infiltration of intercumulus melt enriched in volatile components. The volatiles were presumably provided by the thermal decomposition of carbonate xenoliths, a process that resulted in an increase in the CO2 pressure and the transfer of calcite-magnesite components of carbonates into the melt. This follows from (1) the occurrence of magnesian skarn developing after carbonates, (2) high CaO contents in olivine form the contaminated dunite, (3) the appearance of olivine-bearing pyroxenites and wehrlites in the upper part of the dunite zone, (4) correlation between the olivine and chromite composition in the contaminated and uncontaminated dunites, (5) broad variations in the oxygen isotopic composition of olivine and plagioclase from rocks of the Layered Series, (6) experimental data on the dissolution of carbonates in alkali basalt melts, and (7) analogies with isotopic-geochemical characteristics of rocks from the Jinchuan ultramafic complex. Petrological implications of the interpretation of the Dovyren chamber are discussed with reference to closed and flow-through (during an initial stage) magmatic systems. A petrological-geological model is proposed for the genesis of the Synnyr-Dovyren volcanic-plutonic complex and related Ni sulfide ore mineralization. The potential resources of Cu-Ni sulfide ores in the plagioperidotites are evaluated with regard to the still-unexposed part of the massif.  相似文献   

15.
Rock complexes composing the Daribi Range were produced in Late Vendian, Early Cambrian, and Early Paleozoic suprasubduction systems. All of the studied mafic and ultramafic magmatic mantle rocks (the post-Vendian ophiolite complex, Early Cambrian pillow basalts, and Early Paleozoic picrobasalts of the sill-dike complex) have geochemical characteristics typical of early evolutionary episodes of island arcs: low LILE concentrations, horizontal REE patterns or patterns close to those of N-MORB, and HFSE minima. The magmas were derived from depleted mantle sources of variable isotopic composition with ?Nd(T) from +2.5 to +10. The Early Paleozoic rocks of the sill-dike complex were likely produced by a complicated interaction of melts derived from different sources. The rocks of group 1 resulted from the mixing of low-K picrite and tonalite melts. The picrite melts with ?Nd(T) from +6 to +8 were melted out of garnet lherzolite in the mantle wedge. The tonalite melts with ?Nd(T) = ?3 seem to have been formed by the partial melting of mafic oceanic rocks of a subducted slab or the bottom of an island arc. The trondhjemite melts of group 2 with ?Nd(T) varying from 2.5 to 7.5 could be formed via the melting of subducted metapelites or amphibolites with low sulfide concentrations. Massifs of sodic Early Paleozoic granites also occur elsewhere in western Mongolia, Tuva, and the Altai territory. The generation of sodic silicic melts was likely a common process in supra-subduction systems in CAFB. The potassic granites (group 4) could be formed by the melting of subducted pelites or by the fractionation of mantle magmas. The genesis of the basaltic andesites (group 5) was likely related to Mesozoic-Cenozoic intraplate processes.  相似文献   

16.
Erling J. Krogh 《Lithos》1980,13(4):355-380
Country-rock eclogites and amphibolites in the Sunnfjord area occur as pods, lenses and layers within gneisses of granitic to tonalitic composition. The contacts towards the enclosing gneisses are mostly tectonic, although apparent primary intrusive contacts occur. Geochemical data show that central parts of eclogitic bodies represent fairly undisturbed magmatic compositions, while the margins of such bodies show varying degrees of contamination. Exchange of components with the enclosing gneisses occurred at both a pre-eclogitic and a post-eclogitic stage. Petrographical and petrological data show that the eclogites developed from garnet amphibolites to eclogites during a prograde stage, and that a subsequent uplift/decompression period took place at fairly constant temperatures. The data presented here are compatible with an in situ model for the genesis of Norwegian country-rock eclogites.  相似文献   

17.
Detailed geological and petrological-geochemical study of rocks of the lava complex of Young Shiveluch volcano made it possible to evaluate the lava volumes, the relative sequence in which the volcanic edifice was formed, and the minimum age of the onset of eruptive activity. The lavas of Young Shiveluch are predominantly magnesian andesites and basaltic andesites of a mildly potassic calc-alkaline series (SiO2 = 55.0–63.5 wt %, Mg# = 55.5–68.9). Geologic relations and data on the mineralogy and geochemistry of rocks composing the lava complex led us to conclude that the magnesian andesites of Young Shiveluch volcano are of hybrid genesis and are a mixture of silicic derivatives and a highly magnesian magma that was periodically replenished in the shallow-depth magmatic chamber. The fractional crystallization of plagioclase and hornblende at the incomplete segregation of plagioclase crystals from the fractionating magmas resulted in adakitic geochemical parameters (Sr/Y = 50–71, Y < 18 ppm) of the most evolved rock varieties. Our results explain the genesis of the rock series of Young Shiveluch volcano without invoking a model of the melting of the subducting Pacific slab at its edge.  相似文献   

18.
The Marda complex is a sequence of andesitic to dacitic to rhyolitic volcanic rocks filling a synformal structure in submarine basalt, banded iron-formation and siliceous sediments in the Archaean Yilgarn Block of Western Australia. The Marda volcanic rocks are in part subaerial and exhibit calc-alkaline chemistry. Their Rb/Sr age is 2635 ± 80 m.y. with an initial Sr87Sr86 ratio of 0.7029 ± 0.0015. The Marda lavas represent products of a differentiated late to syn-tectonic, anatectic magma derived from the base of the Archaean crust. Calc-alkaline volcanic complexes are uncommon in the Yilgarn Block.  相似文献   

19.
The pegmatite complex of epi‐Permian age at Bismuth near Torrington, N.S.W., consists of an elongated intrusion of a granitoid quartz‐topaz rock (silexite) together with a series of pegmatites of varying composition. The principal pegmatite consists of orthoclase, biotite, quartz and beryl with concentric zoning passing outwards into fine‐grained biotite‐beryl rock containing a number of ore minerals: arsenides of Co, Fe and Ni, wolframite, bismuth, bismuthinite, molybdenite, joseite, cassiterite, rutile, uraninite and monazite. Small pegmatite veins issuing from this main body contain, in addition to the silicate minerals, high temperature tetrahedrite, chalcopyrite and sphalerite. A second group is characterised by quartz, orthoclase and beryl with occasional patches of tourmaline.

Emplacement at no great depth is indicated by breccia veins and stock‐works filled with pegmatite.

The origin of a silica hydromagma is considered in terms of existing experimental work and in terms of field occurrence. Structural evidence suggests that the quartzose intrusion preceded the injection of the pegmatite fluids, both being derived from the parent Mole biotite granite.  相似文献   

20.
The Nain and Ashin ophiolites consist of Mesozoic melange units that were emplaced in the Late Cretaceous onto the continental basement of the Central-East Iran microcontinent(CEIM).They largely consist of serpentinized peridotites slices;nonetheless,minor tectonic slices of sheeted dykes and pillow lavas-locally stratigraphically associated with radiolarian cherts-can be found in these ophiolitic melanges.Based on their whole rock geochemistry and mineral chemistry,these rocks can be divided into two geochemical groups.The sheeted dykes and most of the pillow lavas show island arc tholeiitic(IAT)affinity,whereas a few pillow lavas from the Nain ophiolites show calc-alkaline(CA)affinity.Petrogenetic modeling based on trace elements composition indicates that both IAT and CA rocks derived from partial melting of depleted mantle sources that underwent enrichment in subduction-derived components prior to melting.Petrogenetic modeling shows that these components were represented by pure aqueous fluids,or sediment melts,or a combination of both,suggesting that the studied rocks were formed in an arc-forearc tectonic setting.Our new biostratigraphic data indicate this arc-forearc setting was active in the Early Cretaceous.Previous tectonic interpretations suggested that the Nain ophiolites formed,in a Late Cretaceous backarc basin located in the south of the CEIM(the so-called Nain-Baft basin).However,recent studies showed that the CEIM underwent a counter-clockwise rotation in the Cenozoic,which displaced the Nain and Ashin ophiolites in their present day position from an original northeastward location.This evidence combined with our new data and a comparison of the chemical features of volcanic rocks from different ophiolites around the CEIM allow us to suggest that the Nain-Ashin volcanic rocks and dykes were formed in a volcanic arc that developed on the northern margin of the CEIM during the Early Cretaceous in association with the subduction,below the CEIM,of a Neo-Tethys oceanic branch that was existing between the CEIM and the southern margin of Eurasia.As a major conclusion of this paper,a new geodynamic model for the Cretaceous evolution of the CEIM and surrounding Neo-Tethyan oceanic basins is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号