首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfide Inhibition of Nitrate Removal in Coastal Sediments   总被引:1,自引:0,他引:1  
Microbial nitrate (NO3) removal via denitrification (DNF) at high sulfide (H2S) concentrations was compared in sediment from a coastal freshwater pond in a developed area that receives salt-water influx during storm events, and a saline pond proximal to an undeveloped estuary. Sediments were incubated with added SO42− (1,000 μg per gram dry weight basis (gdw)) to determine whether acid volatile sulfides (AVS) were formed. DNF in the sediments was measured with NO3–N (300 μg gdw−1) alone, and with NO3–N and H2S (1,000 μg S2− gdw−1). SO42− addition to the freshwater sediments resulted in AVS formation (970 ± 307 μg S gdw−1) similar to the wetland with no added SO42− (986 ± 156 μg S gdw−1). DNF rates measured with no added H2S were greater in the freshwater than the wetland site (10.6 ± 0.6 vs. 6.4 ± 0.1 μg N2O–N gdw−1 h−1, respectively). High H2S concentrations retained NH4–N in the undeveloped wetland and retained NO3–N in the developed freshwater site, suggesting that potential salt-water influx may reduce the ability of the freshwater sediments to remove NO3–N.  相似文献   

2.
3.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

4.
The vertical variation of P forms in sediments of urban shallow lakes in China, Xuanwu Lake, Daming Lake and Mochou Lake, were sequentially extracted and measured with the method of SEDEX. The results indicated the TP content in the sediment profiles ranged from 371.94 to 777.25 mg kg−1 for Xuanwu Lake, 1,308.14 to 4,632.63 mg kg−1 for Daming Lake, and 995.49 to 1,860.71 mg kg−1 for Mochou Lake. The results of sequential extraction showed that Ca-P and Fe-P were the main fractions. Meanwhile, the proportions of Bio-P to TP were 35.24% for Xuanwu Lake, 29.57% Daming lake, and 25.26%, for Mochou Lake, indicating a high potential of P releasing. The content of Bio-P was significantly and positively correlated with TP (r = 0.978, P < 0.01). Lake hydrations conditions played an important role in the distribution and contents of Bio-P and TP. In the region with macrophytes, the contents of TP and Bio-P were relatively low. Physicochemical properties of sediments were significantly related to the fraction distribution and P contents, and might play an important role in controlling P activity and mobility. Moreover, Fe showed an evident influence on P fraction and the ratio Fe/P might be good indicator to the contents and composition of active P in sediments.  相似文献   

5.
In southern California, USA, wildfires may be an important source of mercury (Hg) to local watersheds. Hg levels and Hg accumulation rates were investigated in dated sediment cores from two southern California lakes, Big Bear Lake and Crystal Lake, located approximately 40-km apart. Between 1895 and 2006, fires were routinely minimized or suppressed around Big Bear Lake, while fires regularly subsumed the forest surrounding Crystal Lake. Mean Hg concentrations and mean Hg accumulation rates were significantly higher in Crystal Lake sediments compared to Big Bear Lake sediments (Hg levels: Crystal Lake 220 ± 93 ng g−1, Big Bear Lake 92 ± 26 ng g−1; Hg accumulation: Crystal Lake 790 ± 1,200 μg m−2 year−1, Big Bear 240 ± 54 μg m−2 year−1). In Crystal Lake, the ratio between post-1965 and pre-1865 Hg concentrations was 1.1, and several spikes in Hg levels occurred between 1910 and 1985. Given the remote location of the lake, the proximity of fires, and the lack of point sources within the region, these results suggested wildfires (rather than industrial sources) were a continuous source of Hg to Crystal Lake over the last 150 years.  相似文献   

6.
Heavy metal pollution and their fractionations in the sediments of Changjiang River in Nanjing Reach was monitored for cadmium (Cd), lead (Pb), zinc (Zn), chromium (Cr), and copper (Cu). Moreover, the biological enrichment of metals by riverine plants was studied. The results demonstrated there were highly significant variations among different sampling stations for the concentrations of tested metals. The highest range was for Cu (38.8–120.4 mg kg−1), followed by Cr (74.4–120.0 mg kg−1), Zn (80.9–121.1 mg kg−1), Ni (26.0–55.5 mg kg−1), Pb (15.8–46.7 mg kg−1) and Cd (0.28–0.48 mg kg−1). Cd was the element with highest biological enrichment factor (BEF). The highest BEF of Cd in Erigeron bonariensis reached 3.0, indicating a significant Cd enrichment in this aquatic plant. In addition, 60% of Cd was found in reducible fraction and exchangeable and acid-soluble fraction, which was consistent with its high mobility. The consistency of Cd fraction in sediment and suspended particle indicated they came from the same source. Accumulated Cd concentration calculated according to the release curve showed significant relativity with the total Cd concentration in the sediment.  相似文献   

7.
The rare earth elements (REEs) in the sediments of the Xianghai wetlands were measured by inductively coupled plasma spectrometry. The REEs accumulation rates in two sedimentation cores derived from the riparian and depressional marshes were determined by 210Pb method. The results showed that REEs concentrations in the Xianghai wetland sediments (∑REEs, 116 mg kg−1) were lower than the corresponding values in Chinese soils (181 mg kg−1) and river sediments (∑REEs, 158–191 mg kg−1). Under alkaline conditions (with pH, 8.2–10.3), the light REEs were more enriched than the heavy REEs. Cerium is the predominant element, and accounts for 30–33% of the total REEs. REEs in the depressional marsh sediments were relatively high (∑REEs, 127 vs. 104 mg kg−1), especially light REEs contents. A significantly positive correlation was found between the neighboring elements except Pr and Dy. The different types of vertical distribution of REEs between the riparian and the depressional marsh can partly result from long-term differing hydrological regimes. Generally, depressional marsh had accumulated much more REEs than riparian marsh (the mean accumulation rates of ∑REEs, 102.98 vs. 48.89 μg cm−2 year−1).  相似文献   

8.
We measured seasonal variations in microzooplankton grazing in Long Island Sound (LIS) and San Francisco Bay (SFB). There was consistent evidence of nutrient limitation in LIS, but not SFB. We found higher chlorophyll a concentrations in LIS compared with SFB. In spite of differences in phytoplankton, there were no differences in microzooplankton abundance (summer: LIS, 12.4 ± 1.8 × 103 indiv. L−1; SFB, 14.1 ± 3.0 × 103 indiv. L−1), biomass (summer: LIS, 30.4 ± 5.0 μg C L−1; SFB, 26.3 ± 5.9 μg C L−1), or grazing rates (summer: LIS, 0.66 ± 0.19 day−1; SFB, 0.65 ± 0.18 day−1) between the two estuaries. In common with many other investigators, we found many instances of saturated as well as insignificant grazing. We suggest that saturation in some cases may result from high particle loads in turbid estuarine systems and that insignificant grazing may result from extreme saturation of the grazing response due to the need to process non-food particles.  相似文献   

9.
The Cu–Co–Ni Texeo mine has been the most important source of Cu in NW Spain since Roman times and now, approximately 40,000 m3 of wastes from mine and metallurgical operations, containing average concentrations of 9,263 mg kg−1 Cu, 1,100 mg kg−1 As, 549 mg kg−1 Co, and 840 mg kg−1 Ni, remain on-site. Since the cessation of the activity, the abandoned works, facilities and waste piles have been posing a threat to the environment, derived from the release of toxic elements. In order to assess the potential environmental pollution caused by the mining operations, a sequential sampling strategy was undertaken in wastes, soil, surface and groundwater, and sediments. First, screening field tools were used to identify hotspots, before defining formal sampling strategies; so, in the areas where anomalies were detected in a first sampling stage, a second detailed sampling campaign was undertaken. Metal concentrations in the soils are highly above the local background, reaching up to 9,921 mg kg−1 Cu, 1,373 mg kg−1 As, 685 mg kg−1 Co, and 1,040 mg kg−1 Ni, among others. Copper concentrations downstream of the mine works reach values up to 1,869 μg l−1 and 240 mg kg−1 in surface water and stream sediments, respectively. Computer-based risk assessment for the site gives a carcinogenic risk associated with the presence of As in surface waters and soils, and a health risk for long exposures; so, trigger levels of these elements are high enough to warrant further investigation.  相似文献   

10.
The purpose of this research was to assess the effects of dredging performed in a marginal wetland colonized by aquatic macrophytes on eutrophication of the adjacent shallow tropical lake (Imboassica Lake, Brazil). The river mouth of the Imboassica River that drains into Imboassica Lake had been densely colonized by aquatic vegetation dominated by Typha domingensis (Pers.) when it was dredged. Total and dissolved nitrogen and phosphorus concentrations were measured monthly over 13 years at four stations in the Imboassica river-lake system. Dredging activities reduced phosphorus and nitrogen retention at the river mouth and subsequently increased these nutrient stocks in the lake waters. Nutrient retention by non-dredged wetland was estimated to be ca. 1,200 kg year−1 (87.3 g m−2 year−1) for nitrogen and 60 kg year−1 (4.5 g m−2 year−1) for phosphorus. Our whole-lake approach suggested that dredging might intensify rather than mitigate eutrophication in shallow tropical lakes when the removal of aquatic macrophytes is coupled to the persistence of anthropogenic nutrient inputs from the watershed.  相似文献   

11.
With the aim of evaluating temporal changes in sedimentation and organic carbon (Corg) supplied over the last ~100 years, a sediment core was collected at Soledad Lagoon, a costal ecosystem surrounded by mangroves, located in the Cispatá Estuary (Caribbean coast of Colombia). The core sediments were characterized by low concentrations of calcium carbonate (0.2–2.9%), organic matter (3–8%), total nitrogen (0.11–0.38%), and total phosphorus (0.19–0.65 mg g−1). Fe and Al concentrations ranged from 4% to 5%, and Mn from 356 to 1,047 μg g−1. The 210Pb-derived sediment and mass accumulation rates were 1.54 ± 0.18 mm year−1 and 0.08 ± 0.01 g cm−2 year−1, respectively. The sediment core did not provide evidence of human impact, such as enhancement of primary production or nutrient enrichment, which may result from recent land uses changes or climate change. The Corg fluxes estimated for Soledad Lagoon core lay in the higher side of carbon fluxes to coastal ecosystems (314–409 g m−2 year−1) and the relatively high Corg preservation observed (~45%) indicate that these lagoon sediments has been a net and efficient sink of Corg during the last century, which corroborate the importance of mangrove areas as important sites for carbon burial and therefore, long-term sequestration of Corg.  相似文献   

12.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

13.
The concentrations and distribution of natural and artificial radionuclides in sediment and water samples collected from Fırtına River in the Eastern Black Sea region of Turkey were investigated with an aim of evaluating the environmental radioactivity and radiation hazard. Natural gross α and gross β activities were determined for 21 different water samples, and the activity concentrations were obtained for 226Ra, 214Pb, 214Bi, 228Ac, 208Tl, 40K and 137Cs in 20 different sediment samples. The obtained results showed that natural gross α and gross β activity concentrations in water samples range from 12.4 ± 3.4 to 66.2 ± 9.2 mBq l−1 and from 27.9 ± 3.3 to 133.3 ± 4.1 mBq l−1, respectively. The mean activity concentrations were 32.6 ± 3.8 mBq l−1 for gross α and 69.9 ± 4.4 mBq l−1 for gross β. Generally, the gross β activities were higher than the corresponding gross α activities. The average concentrations of 238U and 232Th daughter products vary from 11 to 167 Bq kg−1 and from 16 to 107 Bq kg−1, respectively. The concentrations of 40K and 137Cs vary from 51 to 1,605 Bq kg−1 and from 0.8 to 42 Bq kg−1, respectively. Sediment characterization was also investigated using grain size, thin section and XRD analysis.  相似文献   

14.
Physiological responses and metal accumulation in Vallisneria spiralis L. exposed to copper and cadmium contaminated sediment were examined at different metal concentrations and the influence of humic acids on copper and cadmium accumulation was also studied. The plants of V. spiralis accumulated high amount of copper and cadmium. The maximum accumulation of 396 and 114 mg kg−1 DW copper were found in the roots and shoots, respectively, at 614 mg kg−1 DW after 21 days’ copper exposure; they were 63.8 and 48.0 mg kg−1 DW for cadmium at 88.69 mg kg−1 DW. The plants showed decrease in chlorophyll content with the increasing concentration of copper/cadmium in sediment. With addition of humic acids from 3.09 to 7.89 g kg−1 DW, both copper and cadmium accumulation in V. spiralis were significantly inhibited (p < 0.01). The cadmium concentrations of roots and shoots of plant decreased 26.4–50.3 and 14.3–33.0% under cadmium treatments, respectively; copper accumulation decreased much more with 44.0–77.0 and 35.0–62.7%, respectively. It was concluded that V. spiralis appeared to be an ideal candidate for the phytoremediation of copper and cadmium polluted sediments, and humic acids had an important role in regulating copper and cadmium bioavailability and toxicity in sediments.  相似文献   

15.
Xiamen Bay (XMB) has received substantial loadings of pollutants from industrial and municipal wastewater discharged since the 1980s. To assess ecological risks and the current spatial changes of metal contaminants in bottom surface sediments, 12 samples were collected. Samples were subjected to a total digestion technique and analyzed by ICP–OES for Cu, Pb, Zn, Cr, and Cd, and by AFS for Hg and As. Among these metals, Zn had the highest values (68–268 mg kg−1), followed by Pb (27–71 mg kg−1), and lower concentrations were found for Cd (42–1,913 μg kg−1) and Hg (0–442 μg kg−1). In comparison with the average crustal abundance values, the results indicated that nearly half of the sediment samples of XMB and its adjacent areas were contaminated by Cd, Pb, Zn, and As. Furthermore, based on the modified BCR sequential extraction procedure, the chemical speciation of heavy metals (Cd, Cr, Cu, Pb, Zn, Hg, and As) in selected sediment samples were evaluated in this study. Data from BCR sequential extractions indicated that Cd posed a medium ecological risk, whereas, Cr posed low risk since its exchangeable and carbonate fractions were below 4%, and the mobility of heavy metals in XMB decreased in the order Cd > Pb > Cu > Zn > Hg > As > Cr. By applying mean effects range median quotients (mERMQ), the results showed that Yuandang Lagoon with mERMQ value >0.5 would be expected to have the greatest potential toxic risk in amphipod within XMB and its adjacent areas.  相似文献   

16.
Gamma activity from the naturally occurring radionuclides namely, 226Ra, 232Th, the primordial radionuclide 40K was measured in the soil of Cuihua Mountain National Geological Park, China using γ-ray spectrometry technique. The mean activity of 226Ra, 232Th and 40K were found to be 27.2 ± 6.5, 43.9 ± 6.2 and 653.1 ± 127.6 Bq kg−1, respectively. The concentrations of these radionuclides were compared with the typical world values and the average activities of Chinese soil. The radium equivalent activity, the air absorbed dose rate, the annual effective dose rate, and the external hazard index were evaluated and compared with the internationally approved values. All the soil samples have Raeq lower than the limit of 370 Bq kg−1 and H ex less than unity. The overall mean outdoor terrestrial gamma dose rate is 66.3 nGy h−1 and the corresponding outdoor annual effective dose is 0.081 mSv.  相似文献   

17.
Matrix‐matched reference materials are necessary for accurate microbeam U‐Pb dating and Hf isotopic determination. This study introduces the RMJG rutile as a new potential reference material, which was separated from Palaeoproterozoic pelitic granulites collected in Hebei Province, China. LA‐ICP‐MS measurements indicate the RMJG rutile has extremely low Th (< 0.003 ± 0.01 µg g?1) and common Pb contents, but high Hf (102 ± 34 µg g?1), U (61 ± 11 µg g?1), and radiogenic Pb (~ 20 µg g?1) contents. Moreover, the rutile yields relatively constant U‐Pb ages and Hf isotopic data. The LA‐ICP‐MS analyses suggest that this rutile has a concordant U‐Pb age with a statistical mean 206Pb/238U and 207Pb/235U ages of 1749.9 ± 32.1 Ma and 1750.0 ± 26.4 Ma, respectively (2s), which are statistically indistinguishable from its ID‐TIMS ages (1750.6 ± 8.4 and 1750.1 ± 4.7 Ma). Precise determination of the 176Hf/177Hf ratio by MC‐ICP‐MS in solution mode (0.281652 ± 0.000006) is in good agreement with the statistical mean of the LA‐MC‐ICP‐MS measurements (0.28166 ± 0.00018). Therefore, the limited variations of RMJG U‐Pb age and Hf isotopic composition together with its extremely low common Pb and high Hf, U and Pb contents make it an ideal calibration and monitor reference material for LA‐ICP‐MS measurements.  相似文献   

18.
A double‐spike method in combination with MC‐ICP‐MS was applied to obtain molybdenum (Mo) mass fractions and stable isotope compositions in a suite of sedimentary silicate (marine, lake, stream, estuarine, organic‐rich sediment, shales, slate, chert) and carbonate reference materials (coral, dolomite, limestones, carbonatites), and a manganese nodule reference material, poorly characterised for stable Mo isotope compositions. The Mo contents vary between 0.076 and 364 μg g?1, with low‐Mo mass fractions (< 0.29 μg g?1) found almost exclusively in carbonates. Intermediate Mo contents (0.73–2.70 μg g?1) are reported for silicate sediments, with the exception of chert JCh‐1 (0.24 μg g?1), organic‐rich shale SGR‐1b (36.6 μg g?1) and manganese nodule NOD‐A‐1 (364 μg g?1). The Mo isotope compositions (reported as δ98Mo relative to NIST SRM 3134) range from ?1.77 to 1.03‰, with the intermediate precision varying between ± 0.01 and ± 0.12‰ (2s) for most materials. Low‐temperature carbonates show δ98Mo values ranging from 0.21 to 1.03‰ whereas δ98Mo values of ?1.77 and ?0.17‰ were obtained for carbonatites CMP‐1 and COQ‐1, respectively. Silicate materials have δ98Mo values varying from ?1.56 to 0.73‰. The range of δ98Mo values in reference materials may thus reflect the increasingly important relevance of Mo isotope investigations in the fields of palaeoceanography, weathering, sedimentation and provenance, as well as the magmatic realm.  相似文献   

19.
A field survey was conducted to identify potential hyperaccumulators of Pb, Zn or Cd in the Beichang Pb/Zn mine outcrop in Yunnan Province, China. The average total concentrations of Pb, Zn, and Cd in the soils were up to 28,438, 5,109, and 52 mg kg−1, respectively. A total of 68 plant species belonging to 60 genera of 37 families naturally colonizing the outcrop were recorded. According to metal accumulation in the plants and translocation factor (TF), Silene viscidula was identified as potential hyperaccumulator of Pb, Zn, and Cd with mean shoot concentrations of 3,938 mg kg−1 of Pb (TF = 1.2), 11,155 mg kg−1 of Zn (TF = 1.8) and 236 mg kg−1 of Cd (TF = 1.1), respectively; S. gracilicanlis (Pb 3,617 mg kg−1, TF = 1.2) and Onosma paniculatum (Pb 1,837 mg kg−1, TF = 1.9) were potential Pb hyperaccumulators. Potentilla griffithii (Zn 8,748 mg kg−1, TF = 1.5) and Gentiana sp. (Zn 19,710 mg kg−1, TF = 2.7) were potential Zn hyperaccumulators. Lysimachia deltoides (Cd 212 mg kg−1, TF = 3.2) was a potential Cd hyperaccumulator. These new plant resources could be used to explore the mechanisms of Pb, Zn and/or Cd hyperaccumulation, and the findings could be applied for the phytoremediation of Pb, Zn and/or Cd-contaminated soils.  相似文献   

20.
Primordial radionuclides in sand sediments that are often used as constructing materials are one of the sources of radiation hazard in dwellings. Activity concentrations of the primordial radionuclides of 40K, 226Ra and 232Th have been measured in sand sediments collected from streams and streamlets lying within and around the uranium mineralization deposit blocks of Kylleng-Pyndensohiong, Mawthabah Areas of West Khasi Hills District, Meghalaya, India. The technique of gamma-ray spectroscopy using a NaI(Tl) detector with a PC-based multi channel analyser was applied for determination of the activity concentrations. The activity of the sand sediments obtained in this study ranges from 95.3 to 1,088.8 Bq kg−1 for 40K; 38.3 to 784.1 Bq kg−1 for 226Ra and 78.0 to 316.1 Bq kg−1 for 232Th. Sand sediments from two sampling locations lying within the mineralization zone show highest concentrations of these radionuclides. The radiological hazards of the sand sediments were calculated using various models given in the literature. The radium equivalent activity was found to be higher than the accepted standard criterion value of 370 Bq kg−1 and the values of external and internal hazard indices were also found to be higher than unity in these two sampling locations. Besides these two sampling locations, a sampling location lying at a nearby distance from the mineralization zone also exhibits hazard indices values greater than unity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号