首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
To investigate the origin of compositional zonation in the Bishop Tuff magma body, we have analyzed trace elements in the matrix glass of pumice clasts and in quartz-hosted melt inclusions. Our results show contrasting patterns for quartz in different parts of the Bishop Tuff. In all samples from the early part of the eruption, trace element compositions of matrix glasses are similar to but slightly more evolved than quartz-hosted melt inclusions. This indicates a cogenetic relationship between quartz crystals and their surrounding matrix glass, consistent with in situ crystallization. The range of incompatible element concentrations in melt inclusions and matrix glass from single pumice clasts requires 16–20 wt% in situ crystallization. This is greater than the actual crystal content of the pumices (<15 % crystals). In contrast to the pattern for the early pumices, pyroclastic flow samples from the middle part of the eruption show contrasting trends: In some clasts, the matrix is more evolved than the inclusions, whereas in other clasts, the matrix is less evolved. In the late Bishop Tuff, all crystal-rich samples have matrix glasses that are less evolved than the melt inclusions. Trace element abundances indicate that the cores of quartz in the late Bishop Tuff crystallized from more differentiated rhyolitic magma that was similar in many ways, yet distinct from the early-erupted Bishop Tuff. Our results are compatible with a model of secular incremental zoning (Hildreth and Wilson in Compositional zoning of the Bishop Tuff. J Petrol 48(5):951–999, 2007), in which melt batches from underlying crystal mush rise to various levels in a growing magma body according to their buoyancy. Early- and middle-erupted quartz crystallized from highly evolved rhyolitic melt, but then some parts of the middle-erupted magma were invaded by less differentiated rhyolite such that the matrix melt at the time of eruption was less evolved than the melt inclusions. A similar process occurred but to a greater extent in magma that erupted to form the late Bishop Tuff. In addition, there was a final, major magma mixing event in the late magma that formed Ti-rich rims on quartz and Ba-rich rims on sanidine, trapped less evolved rhyolitic melt inclusions, and resulted in dark and swirly crystal-poor pumice that is a rare type throughout much of the Bishop Tuff.  相似文献   

2.
Products of the Pomici di Base plinian eruption of Somma-Vesuvius consist of pumice and scoria fall deposits overlain by lithic-rich phreatomagmatic deposits. The plinian fall, which represents most of the magma volume involved in the eruption, ranges in composition from trachyte (SiO2 = 62.5 wt%) to latite (SiO2 ≈ 58 wt%) in the lower one-third of the deposit, whereas the upper two-thirds of the total thickness consists of latitic scoriae with fairly uniform composition (SiO2 ≈ 55–56 wt%). All the products have very low content of phenocrysts (from 4 wt% in trachyte pumice to 1 wt% in the latite scoriae), most of which are not in equilibrium with the host rock. Minerals not in equilibrium, both in trachytic and latitic rocks, consist of discrete crystals of sanidine and plagioclase wetted by trachytic glass and felsic aggregates with interstital trachytic glass. Trends of major and trace elements are consistent with crystal-liquid fractionation processes and rule out syn-eruptive mixing processes between latitic and trachytic magmas. We suggest that discrete crystals and crystal aggregates not in equilibrium with the host rock represent fragments of the crystallising boundary layer at the upper walls of the magma chamber, which were wrenched and admixed into the magma during the ascent. This process diversifies the mineral assemblage and increases the crystal content of the rocks. We propose that diffusive crystallization processes operating at the wall of the chamber allowed the formation of a two-fold layered reservoir with a more mafic, homogeneous lower body and a more evolved, compositionally graded upper body. Around one-quarter of crystals adhering to the upper part of the magma chamber were admixed into the magma during the eruption. The absence of significant syn-eruptive mixing processes and the major role played by diffusive crystallization are consistent with a low aspect ratio magma chamber (width/height <1). Received: 23 March 1998 / Accepted: 11 December 1998  相似文献   

3.
Compositional Zoning of the Bishop Tuff   总被引:14,自引:0,他引:14  
Compositional data for >400 pumice clasts, organized accordingto eruptive sequence, crystal content, and texture, providenew perspectives on eruption and pre-eruptive evolution of the>600 km3 of zoned rhyolitic magma ejected as the Bishop Tuffduring formation of Long Valley caldera. Proportions and compositionsof different pumice types are given for each ignimbrite packageand for the intercalated plinian pumice-fall layers that eruptedsynchronously. Although withdrawal of the zoned magma was lesssystematic than previously realized, the overall sequence displaystrends toward greater proportions of less evolved pumice, morecrystals (0·5–24 wt %), and higher FeTi-oxide temperatures(714–818°C). No significant hiatus took place duringthe 6 day eruption of the Bishop Tuff, nearly all of which issuedfrom an integrated, zoned, unitary reservoir. Shortly beforeeruption, however, the zoned melt-dominant portion of the chamberwas invaded by batches of disparate lower-silica rhyolite magma,poorer in crystals than most of the resident magma but slightlyhotter and richer in Ba, Sr, and Ti. Interaction with residentmagma at the deepest levels tapped promoted growth of Ti-richrims on quartz, Ba-rich rims on sanidine, and entrapment ofnear-rim melt inclusions relatively enriched in Ba and CO2.Varied amounts of mingling, even in higher parts of the chamber,led to the dark gray and swirly crystal-poor pumices sparselypresent in all ash-flow packages. As shown by FeTi-oxide geothermometry,the zoned rhyolitic chamber was hottest where crystal-richest,rendering any model of solidification fronts at the walls orroof unlikely. The main compositional gradient (75–195ppm Rb; 0·8–2·2 ppm Ta; 71–154 ppmZr; 0·40–1·73% FeO*) existed in the melt,prior to crystallization of the phenocryst suite observed, whichincluded zircon as much as 100 kyr older than the eruption.The compositions of crystals, though themselves largely unzoned,generally reflect magma temperature and the bulk compositionalgradient, implying both that few crystals settled or were transportedfar and that the observed crystals contributed little to establishingthat gradient. Upward increases in aqueous gas and dissolvedwater, combined with the adiabatic gradient (for the 5 km depthrange tapped) and the roofward decline in liquidus temperatureof the zoned melt, prevented significant crystallization againstthe roof, consistent with dominance of crystal-poor magma earlyin the eruption and lack of any roof-rind fragments among theBishop ejecta, before or after onset of caldera collapse. Amodel of secular incremental zoning is advanced wherein numerousbatches of crystal-poor melt were released from a mush zone(many kilometers thick) that floored the accumulating rhyoliticmelt-rich body. Each batch rose to its own appropriate levelin the melt-buoyancy gradient, which was self-sustaining againstwholesale convective re-homogenization, while the thick mushzone below buffered it against disruption by the deeper (non-rhyolitic)recharge that augmented the mush zone and thermally sustainedthe whole magma chamber. Crystal–melt fractionation wasthe dominant zoning process, but it took place not principallyin the shallow melt-rich body but mostly in the pluton-scalemush zone before and during batchwise melt extraction. KEY WORDS: Bishop Tuff; ignimbrite; magma zonation; mush model; rhyolite  相似文献   

4.
The Bishop Tuff, one of the most extensively studied high-silica rhyolite bodies in the world, is usually considered as the archetypical example of a deposit formed from a magma body characterized by thermal and compositional vertical stratification—what we call the Standard Model for the Bishop magma body. We present here new geothermometry and geobarometry results derived using a large database of previously published quartz-hosted glass inclusion compositions. Assuming equilibrium between melt and an assemblage composed of quartz, ±plagioclase, ±sanidine, +zircon, ±fluid, we use Zr contents in glass inclusions to derive quartz crystallization temperatures, and we use (1) silica contents in glass, (2) projection of glass compositions onto the haplogranitic (quartz-albite-orthoclase) ternary, and (3) phase equilibria calculations using rhyolite-MELTS, to constrain crystallization pressures. We find crystallization temperatures of ~740–750 °C for all inclusions from both early- and late-erupted pumice. Crystallization pressures for both early- and late-erupted inclusions are also very similar to each other, with averages of ~175–200 MPa. We find no evidence of late-erupted inclusions having been entrapped at higher temperatures or pressures than early-erupted inclusions, as would be expected by the Standard Model. We argue that the thermal gradient inferred from Fe–Ti oxides—the backbone of the Standard Model—does not reflect equilibrium pre-eruptive conditions; we also note that H2O–CO2 systematics of glass inclusions yields overlapping pressure ranges for early- and late-erupted inclusions, similar to the results presented here; and we show that glass inclusion and phenocryst compositions show bimodal distributions, suggestive of compositional separation between early- and late-erupted populations. These findings are inconsistent with the Standard Model. The similarity in crystallization conditions and the compositional separation between early- and late-erupted magmas suggest that two laterally juxtaposed independent magma reservoirs existed in the same region at the same time and co-erupted to form the Long Valley Caldera and the Bishop Tuff. This hypothesis would explain the lack of mixing between early- and late-erupted crystal populations in pumice clasts; it could also explain the inferred eruption pattern—which resulted in early-erupted magmas being deposited only to the south of the caldera—if the early-erupted magma body resided to the south and the late-erupted magma body was located to the north. Our alternative model is consistent with the patchy distribution of thermal anomalies and the inference of co-eruption of distinct magma types in active volcanic areas such as the central Taupo Volcanic Zone.  相似文献   

5.
Large pyroclastic rhyolites are snapshots of evolving magma bodies, and preserved in their eruptive pyroclasts is a record of evolution up to the time of eruption. Here we focus on the conditions and processes in the Oruanui magma that erupted at 26.5 ka from Taupo Volcano, New Zealand. The 530 km3 (void-free) of material erupted in the Oruanui event is comparable in size to the Bishop Tuff in California, but differs in that rhyolitic pumice and glass compositions, although variable, did not change systematically with eruption order. We measured the concentrations of H2O, CO2 and major and trace elements in zoned phenocrysts and melt inclusions from individual pumice clasts covering the range from early to late erupted units. We also used cathodoluminescence imaging to infer growth histories of quartz phenocrysts. For quartz-hosted inclusions, we studied both fully enclosed melt inclusions and reentrants (connecting to host melt through a small opening). The textures and compositions of inclusions and phenocrysts reflect complex pre-eruptive processes of incomplete assimilation/partial melting, crystallization differentiation, magma mixing and gas saturation. ‘Restitic’ quartz occurs in seven of eight pumice clasts studied. Variations in dissolved H2O and CO2 in quartz-hosted melt inclusions reflect gas saturation in the Oruanui magma and crystallization depths of ∼3.5–7 km. Based on variations of dissolved H2O and CO2 in reentrants, the amount of exsolved gas at the beginning of eruption increased with depth, corresponding to decreasing density with depth. Pre-eruptive mixing of magma with varying gas content implies variations in magma bulk density that would have driven convective mixing. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
The Recent stratigraphy of Sao Miguel records large numbers of trachytic pyroclastic deposits produced by sub-plinian to plinian eruptions. Tephrochronological studies by Walker and Croasdale (1971) and Booth et al. (1978) have shown that in the last 5,000 years there have been five such eruptions from the caldera of Agua de Pau, one of the three active stratovolcanoes on Sao Miguel.A geochemical and electron microprobe study made on the resultant pyroclastic succession, revealed significant variations in pumice clast chemistry and mineralogy between the individual deposits; most of these variations show temporal control. For example, Sr and Eu/Eu{sr*} decrease in value up through the succession, whereas incompatible elements such as La, Zr and Nb show stepwise enrichment, attaining highest concentrations in the most recent deposit. It is proposed that the five air fall pumice deposits represent successive samples of an evolving trachytic magma body in which fractionation of alkali feldspar has largely controlled the liquid line of descent. This crystal fractionation had resulted in the development of peralkalinity in the melt by the time Fogo D, the second youngest deposit, was erupted.The presence of some mineralogical and chemical peculiarities suggest that the trachytic melt has been periodically contaminated by less evolved magmas.  相似文献   

7.
Larkman Nunatak (LAR) 06319 is an olivine-phyric shergottite whose olivine crystals contain abundant crystallized melt inclusions. In this study, three types of melt inclusion were distinguished, based on their occurrence and the composition of their olivine host: Type-I inclusions occur in phenocryst cores (Fo77-73); Type-II inclusions occur in phenocryst mantles (Fo71-66); Type-III inclusions occur in phenocryst rims (Fo61-51) and within groundmass olivine. The sizes of the melt inclusions decrease significantly from Type-I (∼150-250 μm diameter) to Type-II (∼100 μm diameter) to Type-III (∼25-75 μm diameter). Present bulk compositions (PBC) of the crystallized melt inclusions were calculated for each of the three melt inclusion types based on average modal abundances and analyzed compositions of constituent phases. Primary trapped liquid compositions were then reconstructed by addition of olivine and adjustment of the Fe/Mg ratio to equilibrium with the host olivine (to account for crystallization of wall olivine and the effects of Fe/Mg re-equilibration). The present bulk composition of Type-I inclusions (PBC1) plots on a tie-line that passes through olivine and the LAR 06319 whole-rock composition. The parent magma composition can be reconstructed by addition of 29 mol% olivine to PBC1, and adjustment of Fe/Mg for equilibrium with olivine of Fo77 composition. The resulting parent magma composition has a predicted crystallization sequence that is consistent with that determined from petrographic observations, and differs significantly from the whole-rock only in an accumulated olivine component (∼10 wt%). This is consistent with a calculation indicating that ∼10 wt% magnesian (Fo77-73) olivine must be subtracted from the whole-rock to yield a melt in equilibrium with Fo77. Thus, two independent estimates indicate that LAR 06319 contains ∼10 wt% cumulate olivine.The rare earth element (REE) patterns of Type-I melt inclusions are similar to that of the LAR 06319 whole-rock. The REE patterns of Type-II and Type-III melt inclusions are also broadly parallel to that of the whole-rock, but at higher absolute abundances. These results are consistent with an LAR 06319 parent magma that crystallized as a closed-system, with its incompatible-element enrichment being inherited from its mantle source region. However, fractional crystallization of the reconstructed LAR 06319 parent magma cannot reproduce the major and trace element characteristics of all enriched basaltic shergottites, indicating local-to-large scale major- and trace-element variations in the mantle source of enriched shergottites. Therefore, LAR 06319 cannot be parental to the enriched basaltic shergottites.  相似文献   

8.
Rhyolitic pumices in the 26.5 ka Oruanui eruption (Taupo volcano, New Zealand) contain an average of 10 wt% crystals. About 2 wt% of the crystal population is feldspar crystals that display bluish–grey cloudy cores, the colour being imparted by exsolved needles of rutile. The volume of cloudy-cored feldspars thus amounts to ~1.0 km3 in a total magma volume of ~530 km3. The cored feldspars show great variability in detail, but in general have a rounded cloudy core bounded by a zone rich in glass and mineral inclusions, that was then overgrown by a euhedral clear rim. Sr-isotopic variations in eight representative crystals were measured on micromilled samples of selected growth zones in the cores and rims, and linked to feldspar compositions through microprobe traverses. The cloudy cores range from 87Sr/86Sr = 0.70547 to 0.70657, with compositions of An43 to An78. The overgrowth rims display wider variations: inner parts show extreme ranges in composition (maxima 87Sr/86Sr = 0.70764 and An78), while outer parts in seven of eight crystals are zoned, with outward-decreasing Sr-isotopic and An values to figures that are in accord with the bulk pumice and other, clear-feldspar values, respectively. The three parts of the crystals represent distinct regimes. The cloudy cores are inherited from an intermediate plutonic protolith that has been subjected to melting. The inner overgrowth rims were crystallised from a high temperature, relatively radiogenic melt derived from Mesozoic-Palaeozoic metasedimentary rocks (“greywacke”). The outer euhedral rims reflect mixing into and continued growth within the growing Oruanui magma body. The cloudy-cored feldspars also contain rare zircon inclusions. Twenty one zircons were recovered by HF digestion of a bulk sample of cloudy feldspars and analysed by SHRIMP for U–Th isotopes with which to calculate model ages. Eighteen of 21 crystals returned finite ages, the model-age spectrum of which is similar to the age spectra from free zircons in Oruanui pumices. Assembly of the Oruanui magma body was not only rapid (over ~40 kyr, as shown by other data) but involved a wide open system, with significant contributions from partly-melted intermediate-composition igneous intrusions (cloudy cores) and greywacke melts (inner overgrowths) being introduced into the magma body up to the point of eruption. Such open system behaviour contrasts with that proposed in models for comparably voluminous silicic magmas derived dominantly by fractionation (such as the Bishop Tuff) where the magma and its crystal cargo were better insulated thermally and chemically from country-rock interaction.  相似文献   

9.
Crystalline and melt inclusions were studied in garnet,diopside,potassium feldspar,and sphene from the garnet syenite porphyry of the carbonatite-bearing complex Mushugai-Khuduk,southern Mongolia.Phlogopite,clinopyroxene,albite,potassium feldspar,spheric,wollastonite,magnetite,Ca and Sr sulfates,fluorite,and apatite were identified among the crystalline inclusions. The melt inclusions were homogenized at 1010~1080℃and analyzed on an electron microprobe.Silicate,salt,and combined silicate- salt melt inclusions were found.Silicate melts show considerable variations in SiO_2 concentration(56 to 66wt% ),high Na_2O K_2O (up to 17wt% ),and elevated Zr,F,and C1 contents.In terms of bulk rock chemistry,the silicate melts are alkali syenites.During thermometric experiments,salt melt inclusions quenched into homogeneous glasses of predominantly sulfate compositions containing no more than 1.3wt% SiO_2.These melts are enriched in alkalis,Ba,Sr,P,F,and C1.The investigation of the silicate and salt melt inclusions in minerals of the garnet syenite porphyries indicate that these rocks were formed under influence of the processes of crystallization differentiation and magma separation into immiscible silicate and salt(sulfate)liquids.  相似文献   

10.
Primitive chemical characteristics of high-Mg andesites (HMA) suggest equilibration with mantle wedge peridotite, and they may form through either shallow, wet partial melting of the mantle or re-equilibration of slab melts migrating through the wedge. We have re-examined a well-studied example of HMA from near Mt. Shasta, CA, because petrographic evidence for magma mixing has stimulated a recent debate over whether HMA magmas have a mantle origin. We examined naturally quenched, glassy, olivine-hosted (Fo87–94) melt inclusions from this locality and analyzed the samples by FTIR, LA-ICPMS, and electron probe. Compositions (uncorrected for post-entrapment modification) are highly variable and can be divided into high-CaO (>10 wt%) melts only found in Fo > 91 olivines and low-CaO (<10 wt%) melts in Fo 87–94 olivine hosts. There is evidence for extensive post-entrapment modification in many inclusions. High-CaO inclusions experienced 1.4–3.5 wt% FeOT loss through diffusive re-equilibration with the host olivine and 13–28 wt% post-entrapment olivine crystallization. Low-CaO inclusions experienced 1–16 wt% olivine crystallization with <2 wt% FeOT loss experienced by inclusions in Fo > 90 olivines. Restored low-CaO melt inclusions are HMAs (57–61 wt% SiO2; 4.9–10.9 wt% MgO), whereas high-CaO inclusions are primitive basaltic andesites (PBA) (51–56 wt% SiO2; 9.8–15.1 wt% MgO). HMA and PBA inclusions have distinct trace element characteristics. Importantly, both types of inclusions are volatile-rich, with maximum values in HMA and PBA melt inclusions of 3.5 and 5.6 wt% H2O, 830 and 2,900 ppm S, 1,590 and 2,580 ppm Cl, and 500 and 820 ppm CO2, respectively. PBA melts are comparable to experimental hydrous melts in equilibrium with harzburgite. Two-component mixing between PBA and dacitic magma (59:41) is able to produce a primitive HMA composition, but the predicted mixture shows some small but significant major and trace element discrepancies from published whole-rock analyses from the Shasta locality. An alternative model that involves incorporation of xenocrysts (high-Mg olivine from PBA and pyroxenes from dacite) into a primary (mantle-derived) HMA magma can explain the phenocryst and melt inclusion compositions but is difficult to evaluate quantitatively because of the complex crystal populations. Our results suggest that a spectrum of mantle-derived melts, including both PBA and HMA, may be produced beneath the Shasta region. Compositional similarities between Shasta parental melts and boninites imply similar magma generation processes related to the presence of refractory harzburgite in the shallow mantle.  相似文献   

11.
Olivine-hosted melt inclusions have been analyzed from the young (4,150 ± 300 ybp) Dotsero basaltic (48.2 wt% SiO2) lava flow in Northwest Colorado, USA. Silicate melt-inclusion compositions have a bimodal distribution (41–46 wt% SiO2 and 47–50 wt% SiO2). Low-Si melt inclusions record high pre-eruptive sulfur concentrations (>1,000 ppm S) and variations in their major- and trace-element compositions appears to be related to shallow assimilation of local basement sandstone. Whole-rock compositions are modeled as a contamination of low-Si inclusion compositions with ~10 wt% sandstone. Host olivine crystallization may have accompanied magma injection into a shallow storage chamber. In contrast to the low-Si melt inclusions, the high-Si population is relatively degassed and records late-stage rapid crystallization either during or post-eruption. Hopper or skeletal olivine grains in conjunction with the bimodal inclusion compositions suggest relatively rapid cooling rates at the time of eruption and inclusion entrapment. Inclusion compositions, in conjunction with mineral textures, therefore provide a more complete picture of shallow magma processes, coupling the relative timing of undercooling and crystallization, assimilation and melt compositional evolution. Most of the inclusion and host textural and compositional data indicates late and very shallow petrogenetic processes and does not appear to record deeper (mid-, lower-crustal) processes.  相似文献   

12.
Melt inclusions and fluid inclusions in the Fangcheng basalt were investigated to understand the magma evolution and fluid/melt-peridotite interaction. Primary silicate melt inclusions were trapped in clinopyroxene and orthopyroxene phenocrysts in the Fangcheng basalt. Three types of melt inclusions (silicate, carbonate, and sulfide) coexisting with fluid inclusions occur in clinopyroxene xenocrysts and clinopyroxene in clinopyroxenite xenoliths. In situ laser-ablation ICP-MS analyses of major and trace element compositions on individual melt inclusions suggest that the silicate melt inclusions in clinopyroxene and orthopyroxene phenocrysts were trapped from the same basaltic magma. The decoupling of major and trace elements in the melt inclusions indicates that the magma evolution was controlled by melt crystallization and contamination from entrapped ultramafic xenoliths. Trace element patterns of melt inclusions are similar to those of the average crust of North China Craton and Yangtze Craton, suggesting a considerable crustal contribution to the magma source. Calculated parental melt of the Fangcheng basalt has features of low MgO (5.96 wt%), high Al2O3 (16.81 wt%), Sr (1,670 ppm), Y (>35 ppm), and high Sr/Y (>40), implying that subducted crustal material was involved in the genesis of the Fangcheng basalt. The coexisting fluid and melt inclusions in clinopyroxene xenocrysts and in clinopyroxene of xenoliths record a rare melt-peridotite reaction, that is olivine + carbonatitic melt1 (rich in Ca) = clinopyroxene + melt2 ± CO2. The produced melt2 is enriched in LREE and CO2 and may fertilize the mantle significantly, which we consider to be the cause for the rapid replacement of lithospheric mantle during the Mesozoic in the region.  相似文献   

13.
INTRODUCTIONThemiddleandlowerreachesofChangjiangRiverareoneofthemainregionsinChinawhichischaracteristicofthewidespreaddistrib...  相似文献   

14.
Air entrainment in fragmented magmas controls the dynamics of volcanic eruptions. Pyroclast oxidation kinetics may be applied to quantify the degree of magma–air interaction. Pyrrhotite (Po) in volcanic rocks is often oxidized to form magnetite (Mt) and hematite (Hm), and its reaction mechanisms are well constrained. To test utilizing Po oxidation as a marker for magma–air interactions, we compared the occurrence of Po oxidation products from three different eruption styles during the Sakurajima 1914–1915 eruption. Pumices from the Plinian eruption include columnar-type Fe oxides (Mt with subordinate width of Hm) often accompanied by relict Po. This columnar type is also found in clastogenic lava, where it is almost completely oxidized to Hm. The effusive lava contains framboidal aggregates of subhedral to anhedral Mt crystals without Hm. The formation mechanisms of columnar and framboidal Fe oxides were estimated. The columnar type Fe oxides were formed syn-eruptively through gaseous reactions, as opposed to the melt in a magma chamber, as demonstrated by the Ti-free nature of the columnar Mt and its synchronous oxidation to Hm. By contrast, the framboidal type was formed in a melt with decreasing fS2. The calculation of Hm growth in a conductively cooling pumice clast constrains the surface temperature of pumice in the eruption column. The paragenesis and oxidation degree of Po and Fe oxides are consistent with the eruption processes in terms of magma fragmentation, air entrainment, and welding, and can, therefore, be a responsive marker for the magma–air interaction.  相似文献   

15.
The distribution of H2O, F, Cl and S in the Campanian Ignimbrite (CI) magma chamber was investigated through study of primary glass inclusions and matrix glasses from pumices of the Plinian fall deposit. The eruption, fed by trachytic to phono-trachytic magmas, mainly produced a trachytic non-welded to partially welded tuff, underlain by a minor cogenetic fallout deposit. The entire chemical variability of the eruptive products is well represented in the pumices of the Plinian fall deposit, which we divide into a basal Lower Fall Unit (LFU) and an overlying Upper Fall Unit (UFU). Primary glass inclusions were only found in clinopyroxenes associated with the LFU pumice and contain a mean of 1.60ǂ.32 wt% H2O (analysed by FTIR), 0.11ǂ.08 wt% F, 0.37ǂ.03 wt% Cl and 0.08ǂ.04 wt% SO3 (EMP analysis); CO2 concentrations were below the FTIR detection limit (10-20 ppm). The coexisting matrix glasses contain similar amounts of halogens and sulfur but less water (~0.60 wt%). Partially degassed matrix glasses from UFU pumices contain a mean of 0.30ǂ.02 H2O, 0.28ǂ.10 F, 0.04ǂ.02 SO3 and 0.80ǂ.04 wt% Cl. To reconstruct the total amount of volatiles dissolved in the most evolved trachytes we have used experimental solubility data and mass balance calculations concerning the amount of crystal fractionation required to produce the most evolved trachyte from the least evolved trachyte; these yield an estimated pre-eruptive magma volatile content (H2O + Cl + F) of ~5.5 wt% for the most evolved magmas. On the basis of new determinations of Cl solubility limits in hydrous trachytic melts coexisting with an aqueous fluid phase + hydrosaline melt (brine), we suggest that the upper part of the magma chamber which fed the CI eruption was fluid(s) saturated and at a minimum depth of ~2 km. Variations in eruptive style (Plinian fallout, pyroclastic flows) do not appear to be related to significant variations in pre-eruptive volatile contents.  相似文献   

16.
The 3.7 ka year-old Averno 2 eruption is one of the rare eruptions to have occurred in the northwest sector of the Phlegraean Fields caldera (PFc) over the past 5 ka. We focus here on the fallout deposits of the pyroclastic succession emplaced during this eruption. We present major and trace element data on the bulk pumices, along with major and volatile element data on clinopyroxene-hosted melt inclusions, in order to assess the conditions of storage, ascent, and eruption of the feeding trachytic magma. Crystal fractionation accounts for the evolution from trachyte to alkali-trachyte magmas; these were intimately mingled (at the micrometer scale) during the climactic phase of the eruption. The Averno 2 alkali trachyte represents one of the most evolved magmas erupted within the Phlegraean Fields area and belongs to the series of differentiated trachytic magmas erupted at different locations 5 ka ago. Melt inclusions record significant variations in H2O (from 0.4 to 5 wt%), S (from 0.01 to 0.06 wt%), Cl (from 0.75 up to 1 wt%), and F (from 0.20 to >0.50 wt%) during both magma crystallization and degassing. Unlike the eruptions occurring in the central part of the PFc, deep-derived input(s) of gas and/or magma are not required to explain the composition of melt inclusions and the mineralogy of Averno 2 pumices. Compositional data on bulk pumices, glassy matrices, and melt inclusions suggest that the Averno 2 eruption mainly resulted from successive extrusions of independent magma batches probably emplaced at depths of 2–4 km along regional fractures bordering the Neapolitan Yellow Tuff caldera.  相似文献   

17.
As the water concentration in magma decreases during magma ascent, olivine-hosted melt inclusions will reequilibrate with the host magma through hydrogen diffusion in olivine. Previous models showed that for a single spherical melt inclusion in the center of a spherical olivine, the rate of diffusive reequilibration depends on the partition coefficient and diffusivity of hydrogen in olivine, the radius of the melt inclusion, and the radius of the olivine. This process occurs within a few hours and must be considered when interpreting water concentration in olivine-hosted melt inclusions. A correlation is expected between water concentration and melt inclusion radius, because small melt inclusions are more rapidly reequilibrated than large ones when the other conditions are the same. This study investigates the effect of diffusive water loss in natural samples by exploring such a correlation between water concentration and melt inclusion radius, and shows that the correlation can be used to infer the initial water concentration and magma ascent rate. Raman and Fourier transform infrared spectroscopy measurements show that 31 melt inclusions (3.6–63.9 μm in radius) in six olivines from la Sommata, Vulcano Island, Aeolian Islands, have 0.93–5.28 wt% water, and the host glass has 0.17 wt% water. The water concentration in the melt inclusions shows larger variation than the data in previous studies (1.8–4.52 wt%). It correlates positively with the melt inclusion radius, but does not correlate with the major element concentrations in the melt inclusions, which is consistent with the hypothesis that the water concentration has been affected by diffusive water loss. In a simplified hypothetical scenario of magma ascent, the initial water concentration and magma ascent rate are inferred by numerical modeling of the diffusive water loss process. The melt inclusions in each olivine are assumed to have the same initial water concentration and magma ascent rate. The melt inclusions are assumed to be quenched after eruption (i.e., the diffusive water loss after eruption is not considered). The model results show that the melt inclusions initially had 3.9–5.9 wt% water and ascended at 0.002–0.021 MPa/s before eruption. The overall range of ascent rate is close to the lower limit of previous estimates on the ascent rate of basalts.  相似文献   

18.
李霓  Nicole  METRICH  樊祺诚 《岩石学报》2006,22(6):1465-1472
长白山天池火山在公元一千年左右曾发生过大规模喷发,其产物为大面积分布的灰白色碱流质浮岩和碎屑流,在其斑晶矿物橄榄石、钙铁辉石和碱性长石中均可见到熔融包裹体。在最主要的斑晶矿物——碱性长石中含有数量众多且个体也较大的熔融包裹体,多数含有一个以上的气泡,其中部分含有子晶,根据形貌特征的不同可分为截然不同的两组包裹体。这些熔融包裹体带有大量喷发前地下岩浆的信息,成为研究地下深部的岩浆在复杂的溢流-爆炸喷发中所发生变化的最好媒介。也是本文的研究对象,通过其中挥发份尤其是水的含量,可以推知天池火山发生大喷发的原因。经Nicolet Magna-IR 550红外光谱仪测定,这些熔融包裹体的含水量较高,达1.6%-3.6%,为当时天池火山发生了巨大规模爆炸喷发的原因提供了强有力的证据。但目前红外光谱仪的应用范围还比较有限,有待今后拓宽其应用领域。  相似文献   

19.
The 2010 eruption of Merapi (VEI 4) was the volcano’s largest since 1872. In contrast to the prolonged and effusive dome-forming eruptions typical of Merapi’s recent activity, the 2010 eruption began explosively, before a new dome was rapidly emplaced. This new dome was subsequently destroyed by explosions, generating pyroclastic density currents (PDCs), predominantly consisting of dark coloured, dense blocks of basaltic andesite dome lava. A shift towards open-vent conditions in the later stages of the eruption culminated in multiple explosions and the generation of PDCs with conspicuous grey scoria and white pumice clasts resulting from sub-plinian convective column collapse. This paper presents geochemical data for melt inclusions and their clinopyroxene hosts extracted from dense dome lava, grey scoria and white pumice generated during the peak of the 2010 eruption. These are compared with clinopyroxene-hosted melt inclusions from scoriaceous dome fragments from the prolonged dome-forming 2006 eruption, to elucidate any relationship between pre-eruptive degassing and crystallisation processes and eruptive style. Secondary ion mass spectrometry analysis of volatiles (H2O, CO2) and light lithophile elements (Li, B, Be) is augmented by electron microprobe analysis of major elements and volatiles (Cl, S, F) in melt inclusions and groundmass glass. Geobarometric analysis shows that the clinopyroxene phenocrysts crystallised at depths of up to 20 km, with the greatest calculated depths associated with phenocrysts from the white pumice. Based on their volatile contents, melt inclusions have re-equilibrated during shallower storage and/or ascent, at depths of ~0.6–9.7 km, where the Merapi magma system is interpreted to be highly interconnected and not formed of discrete magma reservoirs. Melt inclusions enriched in Li show uniform “buffered” Cl concentrations, indicating the presence of an exsolved brine phase. Boron-enriched inclusions also support the presence of a brine phase, which helped to stabilise B in the melt. Calculations based on S concentrations in melt inclusions and groundmass glass require a degassing melt volume of 0.36 km3 in order to produce the mass of SO2 emitted during the 2010 eruption. This volume is approximately an order of magnitude higher than the erupted magma (DRE) volume. The transition between the contrasting eruptive styles in 2010 and 2006 is linked to changes in magmatic flux and changes in degassing style, with the explosive activity in 2010 driven by an influx of deep magma, which overwhelmed the shallower magma system and ascended rapidly, accompanied by closed-system degassing.  相似文献   

20.
The latest eruption of Haruna volcano at Futatsudake took placein the middle of the sixth century, starting with a Plinianfall, followed by pyroclastic flows, and ending with lava domeformation. Gray pumices found in the first Plinian phase (lowerfall) and the dome lavas are the products of mixing betweenfelsic (andesitic) magma having 50 vol. % phenocrysts and maficmagma. The mafic magma was aphyric in the initial phase, whereasit was relatively phyric during the final phase. The aphyricmagma is chemically equivalent to the melt part of the phyricmafic magma and probably resulted from the separation of phenocrystsat their storage depth of 15 km. The major part of the felsicmagma erupted as white pumice, without mixing and heating priorto the eruption, after the mixed magma (gray pumice) and heatedfelsic magma (white pumice) of the lower fall deposit. Althoughthe mafic magma was injected into the felsic magma reservoir(at 7 km depth), part of the product (lower fall ejecta) precedederuption of the felsic reservoir magma, as a consequence ofupward dragging by the convecting reservoir of felsic magma.The mafic magma injection made the nearly rigid felsic magmaerupt, letting low-viscosity mixed and heated magmas open theconduit and vent. Indeed the lower fall white pumices preservea record of syneruptive slow ascent of magma to 2 km depth,probably associated with conduit formation. KEY WORDS: high-crystallinity felsic magma; magma plumbing system; multistage magma mixing; upward dragging of injected magma; vent opening by low-viscosity magma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号