首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anomalous geomagnetic variations have been observed at all geomagnetic stations in South India and they have earlier been attributed to ocean and crustal conductors. The spectral character of induced variations indicate that, in addition to coastal effects and channelling of currents through the Palk Straits, there is a concentration of currents in a conducting body at deeper levels in the crust or mantle.Current thinking on crustal evolution and the influence of Precambrian lineaments on tectonism and mineralisation up to recent times, provides support for the conjecture that zones of high electrical conductivity exist in the crust, which are related to tectonic and mineral influences. The Eastern Ghats and granulite terrain of South India and Sri Lanka are probably associated with such a zone of fundamental weakness in the crust. Extended graphite mineralisation along the Eastern Ghats, occurrence of economic graphite deposits near Trivandrum and in Sri Lanka and the association of alkaline and ultrabasic metallic minerals with deep faults in South India are indications of the possible chemical causes of high electrical conductivity in some regions of the crust.Similar relations between induced anomalous variations and tectonism and mineralisation in the Precambrian crystalline crust have been found in North America and Scotland. However, the regions of high electrical conductivity have not yet been mapped in detail in South India to confirm such a relationship.  相似文献   

2.
A research team called the “C.A. (conductivity anomaly) Group” has been active since the early 1960's in Japan. A number of organized observations of geomagnetic variation anomaly have been carried out by the group. As a result, the overall distribution of Parkinson vectors for short-period variation over Japan has become clear. It seems likely that the anomalously large vertical component as observed in central Japan can be accounted for by assuming a depression of the highly conducting mantle layer beneath Japan, although effects of the sea surrounding Japan on geomagnetic variations are also seen. Such a model seems to harmonize with observations of heat flow, seismic wave velocities and attenuation. Use of the transfer function technique has recently become popular and consequently frequency characteristics of geomagnetic variation anomaly will be thoroughly examined in coming years.Intensive observations of island and peninsula effects on geomagnetic variation have been conducted, sometimes in cooperation with the University of Hawaii. Beautiful reversal of the sign of the vertical component at the northern and southern observation points on an island has often been reported.Numerical work on electromagnetic induction in two-dimensional conductors, thin sheets and so on has also been intensively advanced. It is particularly important to estimate the frequency response of an underground model which is believed to account for the geomagnetic variation anomaly in central Japan.  相似文献   

3.
章鑫  姚丽  冯志生 《地球物理学报》1954,63(10):3804-3817
在青藏高原东南缘,前人使用大地电磁探测和地震学方法得出的结果都揭示了可能存在部分熔融状态的地壳流,而这种地下熔融体与周围物质的作用可能引起了地下强电流异常,进一步导致地表地磁响应.基于连续的地磁观测,发现2018年7月31日在川滇块体周边出现大范围的地磁Z分量日变化短时畸变,畸变发生后100天内发生了4次5级以上地震.为了定量研究这一现象,本文基于Biot-Savart定理和采用SVD (Singular Value Decomposition,奇异值分解)的阻尼最小二乘法对地磁日变化短时畸变数据开展反演.结果显示:(1)以大地电磁测深给出的电性模型作为初始条件,反演得到的电流强度为3700~5000 A,有效深度为25~60 km;(2)地下畸变电流的空间分布位置和深度和地下电性高导体分布一致,与前人给出的地壳流位置吻合;(3)地壳流偶然微小运动可能引起了大范围的强电流,这种短时存在的高强度电流沿高导带分布,可能是地磁日变化短时畸变的源电流;(4)推测深部地壳流的运动具有传递应力作用,参与诱发了100天内发生多次5级以上地震.对源电流进行反演的定量化工作,以地下电流的方式佐证了可能存在地壳流.  相似文献   

4.
Electric conductivity of the lower mantle. Methods and results   总被引:1,自引:0,他引:1  
The methods and results of estimating the electric conductivity of the Earth’s lower mantle are discussed. It has been indicated that the available estimates are qualitative since, first, the spatial-temporal characteristics of the geomagnetic variations on the Earth’s surface have been insufficiently accurate until recently and, second, the models of variations on the core surface are hypothetical. The situation is similar to the problem of determining filter parameters without knowing a filter entry. Nevertheless, the estimates of admissible conductivity limits at the mantle-core boundary and the general form of the conductivity radial dependence have been obtained based on the Earth thermodynamic model and certain global characteristics of the secular geomagnetic variations.  相似文献   

5.
Many evidences indicate that the collision of two plates deformed strongly the crust of the SYR, and the deformation has been continued up to the present. In addition, the SYR is in the south segment of the South-North Seismic Zone of China, which is one of the regions in the Chinese mainland, where the seismic activity is very high, and the strong earthquakes frequently occurred. Since the 1970s, a series of large earthquakes with magnitude M>7.0 occurred in SYR, such as the 1970 Tongha…  相似文献   

6.
川滇地区地壳上地幔三维速度结构研究   总被引:95,自引:22,他引:95  
根据云南和四川地震台网174个台站记录的4625个区域地震初至P波和S波走时资料,并结合其它深部地球物理资料,确定了川滇地区地壳上地幔三维速度结构.在上地壳速度异常分布中,四川盆地为正异常,川西高原为负异常,龙门山断裂带为正、负异常的边界.龙门山断裂、鲜水河断裂以及红河断裂等,在下地壳和上地幔的速度异常中仍显示出构造分界特征,说明它们可能穿透了莫霍界面.腾冲火山区和攀西构造带在50km深度上呈现负速度异常,与上地幔温度和物质组成的差异相联系.川滇地区地壳结构的总体特征是:地壳和上地幔的低平均速度,地壳厚度变化剧烈,地壳和(或)上地幔存在高导层、高热流值.这些同印度板块与欧亚板块碰撞的构造背景有关.川滇菱形块体在地壳内总体上为正常或正异常速度,而其边界的深大走滑断裂存在负速度异常,它有助于地壳块体沿断裂的侧向挤出.在主要的地震带上,中下地壳的负速度异常与地震活动性相关.多数强烈地震发生在具有正速度异常或正常速度分布的上中地壳深度上,而其下方则通常是负速度异常带.   相似文献   

7.
磁相变与地壳地球物理异常   总被引:1,自引:0,他引:1       下载免费PDF全文
L.SZARKA  J.KISS  E.PR 《地球物理学报》2010,53(3):612-621
我们曾提出过一种可能导致地磁和地壳电导率异常的来源:地壳中的二级磁相变,即居里(尼尔)深度附近磁化率的显著提高.这一现象能很好地解释一些来源不明的地磁异常.本文总结了在中地壳深度处、薄且高磁导率异常体的一维和多维大地电磁特征.高磁导率层引起的异常与高电导率层导致的异常相比,大小上可相比拟,但符号相反.无论在什么情况下,经典的大地电磁解释容易导致一个不真实的极厚高阻层,并且在地磁异常附近有与之对应的空间波长,二级磁相变也被认为是这一现象的可能解释.尽管在地壳中是否存在二级磁相变还有一定争议,但最近的一些固体物理实验结果进一步表明它可能是地壳各种地球物理异常的来源之一.  相似文献   

8.
Geomagnetic records from 20 Japanese observatories have been used to yield time series of response function (RF) components for 20 years at periods of between 2.5 and 60 min. Six observatories showed anomalous variations lasting 3–5 years in the short period part of the above range of periods prior to the March 11, 2011 Tohoku earthquake. The variations could have been intermediate-term precursors. We made a detailed analysis of how noise affects the results using coherence criteria, visual control, and the remote-reference technique. We clarified the conditions that make response functions dependent on geomagnetic activity. For 19 observatories we constructed the tensor of the anomalous magnetic field with Kakioka as the base site. An anomaly in electrical conductivity striking WNW–ESE has been identified beneath the Boso Peninsula near Tokyo in the conditions of strong noise. We sought to corroborate the reality of the anomaly by visual control and processing of nighttime records with minimum noise. We advanced idea that precursors can be monitored using the DC noise field in the presence of a shallow conductivity anomaly. We provided a tectonic interpretation of the obtained RF anomalies. The Boso conductivity anomaly is interpreted as being due to a graben-shaped structure of the sediments and possibly to a deeper plate-tectonics structure, that is, the Sagami Trough. We examine similarities and differences between the Boso anomaly and the Avacha anomaly in Kamchatka, and provided recommendations for further study of the Boso anomaly and for using the Avacha anomaly to monitor EM precursors in Kamchatka.  相似文献   

9.
Electric currents in long pipelines can contribute to corrosion effects that limit the pipe's lifetime. One cause of such electric currents is the geomagnetic field variations that have sources in the Earth's upper atmosphere. Knowledge of the general behavior of the sources allows a prediction of the occurrence times, favorable locations for the pipeline effects, and long-term projections of corrosion contributions. The source spectral characteristics, the Earth's conductivity profile, and a corrosion-frequency dependence limit the period range of the natural field changes that affect the pipe. The corrosion contribution by induced currents from geomagnetic sources should be evaluated for pipelines that are located at high and at equatorial latitudes. At midlatitude locations, the times of these natural current maxima should be avoided for the necessary accurate monitoring of the pipe-to-soil potential.  相似文献   

10.
通过分析台站之间地磁垂直分量日变化相关性,研究中国大陆南北带地区90°E~110°E,2009~2018年地磁日变化感应电流线状集中分布现象与M_S≥6.0地震关系。统计发现,我国每月平均出现约2次感应电流集中分布现象,且10天左右内有原地重复出现现象——感应电流集中分布重叠异常,原地重现的集中分布感应电流日期间隔一般在10天左右以内,原地重现日期一般不连续,重现次数一般仅有2次。研究发现,我国南北带2009~2018年共出现重叠异常23次,20次重叠异常出现后18个月内重叠段发生M_S≥6.0地震,对应率高达87%,地震基本发生在重叠段端部250km以内,重叠段发生2次M_S≥6.0地震的比例较低,约35%;重叠段2个端部均发生M_S≥6.0地震的比例极小,仅约9%。部分重叠段走向与已经发现的上地幔和地壳高导带埋深走向基本一致,推测重叠异常发生在上地幔和地壳高导带附近,是来自上地幔和地壳内高导带附近的地震异常信息。目前已知,中国大陆强地震主要发生在上地幔高导层的隆起区一带及其壳内高导层发育地区,深部电性测深结果表明,大震易于发生在电导率急剧变化的梯度带,但这些地区何时发生地震还未得知,本文发现的重叠异常解释了这些地区1~2年内是否发生地震这一问题。  相似文献   

11.
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below. Foundation item: National Scientific and Technological Development Program (95-973-02-02), the Climb Program (95-S-05-01) of National Scientific and Technological Ministry of China, and the State Natural Sciences Foundation of China (49874021). Contribution No. 02FE2004, Institute of Geophysics, China Seismological Bureau.  相似文献   

12.
Geomagnetic induction anomalies identified in India during the last fifteen years are discussed with emphasis on geology. The effects on both short period (SSCs and bays) and long period (Sq and Dst) geomagnetic variations are summarized. The induction effects observed in the southern tip of peninsular India are highly complex due to the coastal effect, to crustal and upper mantle conductivity anomalies between India and Sri Lanka and to the daytime equatorial electrojet. Further complications arise from the existence of a conductive step structure along the coastline at the Moho boundary and a graben in the Palk Strait.The reversed coast effect in the Z-variation identified at Alibag situated on the Deccan Traps is accounted for by the remanent magnetization of the Deccan lavas, their thickness and the underlying conductive structures.Induced currents have been found to be channelled through conductive structures beneath the Aravallis along its strike following a path transverse to the Himalaya. An asthenospheric upwelling beneath the Aravallis has also been noted. Conductive step structures have also been invoked on the southern and the northern flanks of the Pamir-Himalaya with east-west current channelling at the Moho boundary.  相似文献   

13.
Magnetotelluric and differential geomagnetic sounding surveys, consisting of nine soundings, were performed in 1984 along a 200-km profile across the southern Senegal basin. They were intended to obtain information concerning the resistivity structure of the crust and upper mantle and the distribution of the induced electric currents. Magnetotelluric data indicate that two-dimensional resistivity models are appropriate for the region. The zone above the basement is highly inhomogeneous in geoelectrical structure. Very conductive sediments (0.6-3 ohm m) appear in the Mesozoic-Cenozoic Senegal basin. These sediments lie at depths of up to 4500 m on the west end of the profile. Below this, a modest resistivity material (10–30 ohm m) extends to a maximum depth of about 3000 m. The material at depth on the cast part of the traverse line is thought to be Palaeozoic sediments of the Bove basin. The depth of the magnetotelluric basement lies between about 250 m (in the east) and 4800 m (in the west). The crust is characterised by a drop in electrical resistivity at a depth of 15 km below the east part of the profile. Considering the total section, we observe a general trend towards lower resistivities at depths in excess of 100 km, the transition from 2000 ohm m to about 2 ohm m occurs in the depth range 100 to 175 km. An analysis of the geomagnetic variation field has identified a concentration of telluric current flow beneath the deep basin. It appears that the additional currents flowing in the striking direction of the Senegal basin are largely controlled by sedimentary rocks of high conductivity lying at depths less than 5 km. Model studies show that the local conductivity distribution is able to explain the currents circulating in the thick well-conducting sediments.  相似文献   

14.
By comparing the M2 lunar geomagnetic variations of 12.42 h period at Sidmouth and Exeter, it is shown that local concentrations of the electric currents, induced by sea tides in the seas and oceans around the U.K., can give a significant contribution to the M2 variations at the two observatories.  相似文献   

15.
Researchonearthquakepredictionfromgeomagneticpulsation周军成,韩克礼,王培德,鲁跃Jun-ChengZHOU;Ke-LiHAN;Pei-DeWANGandYueLU(InstituteofGeop...  相似文献   

16.
The stability of natural remanent magnetization of three samples of oceanic basalts (DSDP Leg 25) is tested by alternating fields, thermal and pressure demagnetization. The possibility of low-temperature oxidation is examined by means of thermomagnetic curves.The effects of uniaxial compressions on initial susceptibility and induced magnetization are studied for the three samples. These experiments, performed in a field comparable to the geomagnetic field have shown large variations of magnetization. The results of paleomagnetism, as well as the interpretation of anomalies when the effects of the pressure of water and of possible sediments far from the ridge itself are taken into account, are discussed. The results could partly account for the decrease of magnetic anomaly amplitudes with distance from the mid-ocean ridge.  相似文献   

17.
云南地区地壳磁异常与地质构造   总被引:3,自引:1,他引:2       下载免费PDF全文
根据美国地球物理数据中心的地磁场模型(NGDC-720),研究云南地区地壳磁异常的空间变化,包括磁异常及其梯度的分布、磁异常随高度的衰减、不同波长成分对总体磁异常的贡献.比较磁异常与重力异常、大地热流、地震活动等地球物理信息的异同特征,探讨地壳磁异常与地质构造的关系.研究结果表明:丽江—小金河、红河断裂带以西的三江、滇西造山带的异常较弱,菱形地块的异常相对较强.研究区域的地壳磁异常主要是弱磁性基底背景下叠加的浅源磁性体产生.卫星磁异常显示滇中坳陷区具有清晰的偶极场特征.沿红河断裂带分布的正负磁异常带与断裂构造走向一致.围限菱形地块的丽江—小金河断裂、红河断裂、康定—奕良—水城断裂和弥勒—师宗—水城断裂带是磁异常的强弱过渡带.强烈地震发生的地点、大地热流值高的地区,地壳磁异常为负值或相对较弱.  相似文献   

18.
The electrical conductivities of natural pyrolitic mantle and MORB materials were measured at high pressure and temperature covering the entire lower mantle conditions up to 133 GPa and 2650 K. In contrast to the previous laboratory-based models, our data demonstrate that the conductivity of pyrolite does not increase monotonically but varies dramatically with depth in the lower mantle; it drops due to high-spin to low-spin transition of iron in both perovskite and ferropericlase in the mid-lower mantle and increases sharply across the perovskite to post-perovskite phase transition at the D″ layer. We also found that the MORB exhibits much higher conductivity than pyrolite. The depth–conductivity profile measured for pyrolite does not match the geomagnetic field data below about 1500-km depth, possibly suggesting the existence of large quantities of subducted MORB crust in the deep lower mantle. The observations of geomagnetic jerks suggest that the electrical conductivity may be laterally heterogeneous in the lowermost mantle with high anomaly underneath Africa and the Pacific, the same regions as large low shear-wave velocity provinces. Such conductivity and shear-wave speed anomalies are also possibly caused by the deep subduction and accumulation of dense MORB crust above the core–mantle boundary.  相似文献   

19.
Anomalies of electrical conductivity are considered in relation to other geophysical parameters, such as seismic wave velocity, attenuation, seismicity and density, and to tectonic features. In the case of active subduction zones there appears to be a good correlation between low conductivity and the seismic quality factor Q. Beneath western North America, a conductive zone in the uppermost mantle apparently is controlled by the thickness and severity of the low-velocity layer. Anomalies in conductivity beneath rift valleys can be related to regions of intermediate seismic P-wave velocity, typically about 7.0 km/sec, which is suggestive of partial melting of mantle material. Within the continental crust, anomalies in conductivity are not, in general, thermally controlled, but they can show correlations with seismicity, and may indicate intra-plate boundaries.  相似文献   

20.
Knowledge of the structure of the lower crust and uppermost mantle is of special importance in understanding plate tectonics. Electrical conductivity of this region has been measured recently in various parts of the world. Transfer functions are still the most widely used quantity in data analysis and model fitting. Anomalies in the horizontal magnetic components in combination with anomalies in the vertical component have been found very useful in locating conductivity contrasts. With these, when the cause of the anomaly is a concentrated line current, both the position of the line current and its depth can be directly located. The method of hypothetical event analysis is another new technique and this is highly suited for areas having complex subsurface geology or areas under non-uniform source fields or both. The anomaly is more suitable for modelling geophysical structures when it is separated into regional and local components. Model calculations still are not very satisfactory and the importance of one dimensional calculations must be emphasized for they give direct information on the variation of conductivity with depth, which is the purpose of GDS. We need more results, especially from tectonically active areas, before the underlying physical processes can be completely understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号