首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
Continental shield regions are normally characterized by low-to-moderate mantle heat flow. Archaean Dharwar craton of the Indian continental shield also follows the similar global pattern. However, some recent studies have inferred significantly higher mantle heat flow for the Proterozoic northern block of Southern Granulite Terrain (SGT) in the immediate vicinity of the Dharwar craton by assuming that the radiogenic elements depleted exposed granulites constitute the 45-km-thick crust. In this study, we use four-layered model of the crustal structure revealed by integrated geophysical studies along a geo-transect in this region to estimate the mantle heat flow. The results indicate that: (i) the mantle heat flow of the northern block of SGT is 17 ± 2 mW/m2, supporting the global pattern, and (ii) the lateral variability of 10–12 mW/m2 in the surface heat flow within the block is of crustal origin. In terms of temperature, the Moho beneath the eastern Salem–Namakkal region appears to be at 80–100 °C higher temperature than that beneath the western Avinashi region.  相似文献   

2.
Lower crustal xenoliths brought up rapidly by basaltic magma onto the earth surface may provide di-rect information on the lower crust. The main purpose of this research is to gain an insight into the rheology of the lower crust through the detailed study of lower crustal xenoliths collected from the Hannuoba basalt, North China. The lower crustal xenoliths in this area consist mainly of two pyroxene granulite, garnet granulite, and light-colored granulite, with a few exception of felsic granulite. The equilibration temperature and pressure of these xenoliths are estimated by using geothermometers and geobarometers suitable for lower crustal xenoliths. The obtained results show that the equilibration temperature of these xenoliths is within the range of 785―900℃, and the equilibrium pressure is within the range of 0.8―1.2 GPa, corresponding to a depth range of 28―42 km. These results have been used to modify the previously constructed lower crust-upper mantle geotherm for the studied area. The dif-ferential stress during the deformation process of the lower crustal xenoliths is estimated by using recrystallized grain-size paleo-piezometer to be in the range of 14―20 MPa. Comparing the available steady state flow laws for lower crustal rocks, it is confirmed that the flow law proposed by Wilks et al. in 1990 is applicable to the lower crustal xenoliths studied in this paper. The strain rate of the lower crust estimated by using this flow law is within the range of 10-13―10-11 s-1, higher than the strain rate of the upper mantle estimated previously for the studied area (10-17―10-13 s-1); the equivalent viscosity is estimated to be within the range of 1017―1019Pa·s, lower than that of the upper mantle (1019―1021 Pa·s). The constructed rheological profiles of the lower crust indicate that the differential stress shows no significant linear relation with depth, while the strain rate increases with depth and equivalent vis-cosity decrease with depth. The results support the viewpoint of weak lower continental crust.  相似文献   

3.
A compiled gravity anomaly map of the Western Himalayan Syntaxis is analysed to understand the tectonics of the region around the epicentre of Kashmir earthquake of October 8, 2005 (Mw = 7.6). Isostatic gravity anomalies and effective elastic thickness (EET) of lithosphere are assessed from coherence analysis between Bouguer anomaly and topography. The isostatic residual gravity high and gravity low correspond to the two main seismic zones in this region, viz. Indus–Kohistan Seismic Zone (IKSZ) and Hindu Kush Seismic Zones (HKSZ), respectively, suggesting a connection between siesmicity and gravity anomalies. The gravity high originates from the high-density thrusted rocks along the syntaxial bend of the Main Boundary Thrust and coincides with the region of the crustal thrust earthquakes, including the Kashmir earthquake of 2005. The gravity low of HKSZ coincides with the region of intermediate–deep-focus earthquakes, where crustal rocks are underthrusting with a higher speed to create low density cold mantle. Comparable EET (∼55 km) to the focal depth of crustal earthquakes suggests that whole crust is seismogenic and brittle. An integrated lithospheric model along a profile provides the crustal structure of the boundary zones with crustal thickness of about 60 km under the Karakoram–Pamir regions and suggests continental subduction from either sides (Indian and Eurasian) leading to a complex compressional environment for large earthquakes.  相似文献   

4.
Introduction The gravity anomaly is an indicator of the density distribution of the underground material. Therefore the gravity anomalies have been important data used for studying the deep crustal struc-ture for a long time. Many people have made detailed researches on the regional crustal structure inverted by Bouguer anomalies. In particular some empirical formulae and practical algorithms about the crustal thickness were brought forward, and a series of results were obtained (MENG, 1996)…  相似文献   

5.
In order to investigate crustal structure beneath the eastern Marmara region, a seismic refraction survey was conducted across the North Anatolian Fault (NAF) zone in north west Turkey. Two reversed profiles across two strands of the NAF zone were recorded in the Armutlu Highland where a tectonically active region was formed by different continents. We used land explosions in boreholes and quarry blasts as seismic sources. A reliable crustal velocity and depth model is obtained from the inversion of first arrival travel times. The velocity-depth model will improve the positioning of the earthquake activities in this active portion of the NAF. A high velocity anomaly (5.6–5.8 km s−1) in the central highland of Armutlu block and the low velocity (4.90 km s−1) pattern north of Iznik Lake are the two dominant features. The crustal thickness is about 26 ± 2 km in the north and increases to about 32 ± 2 km beneath the central Armutlu block in the south. P-wave velocities are about 3.95 km s−1 to 4.70 km s−1 for the depth range between about 1 km and 5 km in the upper crust. The eastern Marmara region has different units of upper crust with velocities varying with depth to almost 8 km. The high upper crust velocities are associated with Armutlu metamorphic rocks, while the low velocity anomalies are due to unconsolidated sedimentary sequences. The western side of Armutlu block has complex tectonics and is well known for geothermal sources. If these sources are continuous throughout the portions of the crust, it may be associated with a granitic intrusion and deformation along the NAF zone. That is, the geothermal sources associated with the low velocity may be due to the occurrence of widespread shear heating, even shear melting. The presence of shear melting may indicate the presence of crustal fluid imposed by two blocks of the NAF system.  相似文献   

6.
Following Airy and Pratt principles, five kinds of local-compensation models are analysed and a rapid 3-D gravity formula is utilized to calculate isostatic anomalies for 66 models with different parameters. It is noted that isostatic gravity maps appear nearly identical in their main patterns and features. The optimum compensation model in North China is one of modified Airy models in which the different density distribution in the surface, upper crust and lower crust is taken into account and the standard crustal thickness is about 50km. The position of the complete compensation interface is located in the upper mantle. The North China platform as a whole is under sub-isostatic equilibrium status with an isostatic anomaly of about 18·10−5 m/s2 on an average. The distribution of isostatic gravity anomaly shows an obvious blockwise pattern. Most positive anomaly areas occur over the eastern part, the Jiao-Liao Block, Mt. Yan block and northern margin of the Hebei-Shandong block, whereas a negative area occurs in the Shanxi graben. The comparison of models indicates that the Moho discontinuity is not suitable to be taken as a compensation interface, and the compensation effects in Airy model are better than that in Pratt model, which is consistent with the feature of dominant layered structure and less lateral inhomogeneity in crust. Some results about composite compensation, the basic characteristics of isostatic anomaly and deep stucture will be published later in the second part of this paper. Wang Bowen took part in some work in this paper.  相似文献   

7.
For the first time, we present the variation of crust–mantle boundary beneath the northeast Iran continental collision zone which is genetically part of the Alpine–Himalayan orogeny and beneath Central Iran which is a less-deformed tectonic block. The boundary was imaged by stacking teleseismic P–S converted phases and shows a strong variation of Moho from 27.5 km under Central Iran to 55.5 km beneath the Binalud foreland basin. The thickest crust is not located beneath the high topography of the Kopeh Dagh and Binalud mountain ranges suggesting that these mountain ranges are not supported by a crustal root. The simple gravity modeling of the Bouguer anomaly supports this idea.  相似文献   

8.
Wide-angle refraction and multichannel reflection seismic data show that oceanic crust along the Galápagos Spreading Center (GSC) between 97°W and 91°25′W thickens by 2.3 km as the Galápagos plume is approached from the west. This crustal thickening can account for ∼52% of the 700 m amplitude of the Galápagos swell. After correcting for changes in crustal thickness, the residual mantle Bouguer gravity anomaly associated with the Galápagos swell shows a minimum of −25 mGal near 92°15′W, the area where the GSC is intersected by the Wolf-Darwin volcanic lineament (WDL). The remaining depth and gravity anomalies indicate an eastward reduction of mantle density, estimated to be most prominent above a compensation depth of 50-100 km. Melting calculations assuming adiabatic, passive mantle upwelling predict the observed crustal thickening to arise from a small increase in mantle potential temperature of ∼30°C. The associated thermal expansion and increase in melt depletion reduce mantle densities, but to a degree that is insufficient to explain the geophysical observations. The largest density anomalies appear at the intersection of the GSC and the WDL. Our results therefore require the existence of compositionally buoyant mantle beneath the GSC near the Galápagos plume. Possible origins of this excess buoyancy include melt retained in the mantle as well as mantle depleted by melting in the upwelling plume beneath the Galápagos Islands that is later transported to the GSC. Our estimate for the buoyancy flux of the Galápagos plume (700 kg s−1) is lower than previous estimates, while the total crustal production rate of the Galápagos plume (5.5 m3s−1) is comparable to that of the Icelandic and Hawaiian plumes.  相似文献   

9.
由试验均衡的理论出发,得到了该区的均衡响应函数并建立了复合补偿模式。地形高度对重力场的影响很复杂,波长小于300km的地形起伏具有偏高的均衡响应值。 局部补偿是华北地区的主要补偿机制,所占比例达90%。区域补偿的等效弹性板厚度偏小,仅18km, 表明了华北地壳破裂程度严重和下地壳流变性突出。 均衡重力异常具有块体分布和均衡调整方向同新生代构造运动方向不完全符合等特点,其中一些成分是由于表浅层地质体的非均匀载荷所造成,不能简单地归因于欠补偿或过补偿。均衡异常的垂直导数分布清晰地揭示了华北地区几条重要的断块分界线。从深部构造上看,均衡补偿过程发生在下地壳特别是上地幔中。本文从均衡的角度探讨了地震危险性。   相似文献   

10.
The Cape Verde Islands are located on a mid-plate topographic swell and are thought to have formed above a deep mantle plume. Wide-angle seismic data have been used to determine the crustal and uppermost mantle structure along a ~ 440 km long transect of the archipelago. Modelling shows that ‘normal’ oceanic crust, ~ 7 km in thickness, exists between the islands and is gently flexed due to volcano loading. There is no direct evidence for high density bodies in the lower crust or for an anomalously low density upper mantle. The observed flexure and free-air gravity anomaly can be explained by volcano loading of a plate with an effective elastic thickness of 30 km and a load and infill density of 2600 kg m− 3. The origin of the Cape Verde swell is poorly understood. An elastic thickness of 30 km is expected for the ~ 125 Ma old oceanic lithosphere beneath the islands, suggesting that the observed height of the swell and the elevated heat flow cannot be attributed to thermal reheating of the lithosphere. The lack of evidence for high densities and velocities in the lower crust and low densities and velocities in the upper mantle, suggests that neither a crustal underplate or a depleted swell root are the cause of the shallower than expected bathymetry and that, instead, the swell is supported by dynamic uplift associated with the underlying plume.  相似文献   

11.
The Mohorovičić discontinuity is the boundary between the Earth’s crust and mantle. Several isostatic hypotheses exist for estimating the crustal thickness and density variation of the Earth’s crust from gravity anomalies.  相似文献   

12.
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.  相似文献   

13.
During the Pamir Himalayan project in the year 1975 seismic refraction and wide-angle reflection data were recorded along a 270 km long Lawrencepur-Astor (Sango Sar) profile in the northwest Himalayas. The profile starts in the Indus plains and crosses the Main Central Thrust (MCT), the Hazara Syntaxis, the Main Mantle Thrust (MMT) and ends to the east of Nanga Parbat. The seismic data, as published by Guerra et al. (1983), are reinterpreted using the travel-time ray inversion method of Zelt and Smith (1992) and the results of inversion are constrained in terms of parameter resolution and uncertainty estimation. The present model shows that the High Himalayan Crystallines (HHC, velocity 5.4 km s−1) overlie the Indian basement (velocity 5.8–6.0 km s−1). The crust consists of four layers of velocity 5.8–6.0, 6.2, 6.4 and 6.8 km s−1 followed by the upper mantle velocity of 8.2 km s−1 at a depth of about 60 km.  相似文献   

14.
Receiver function study in northern Sumatra and the Malaysian peninsula   总被引:1,自引:0,他引:1  
In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.  相似文献   

15.
The Laccadive Ridge (L-R), trending roughly parallel to the west coast of India, is an intriguing segment of the northernmost Chagos-Laccadive Ridge (C-L-R) system. Although crustal nature and isostatic response of the southern C-L-R is well known, there are no similar studies on the L-R. In the present study, the isostatic response of the lithosphere beneath the L-R is estimated so as to characterize its crustal nature, total crustal as well as effective elastic plate thickness and mode of compensation. Twelve gravity and bathymetry profiles across the ridge were analyzed using linear transfer function and forward model techniques. The observed admittance function within the diagnostic waveband of 250 < λ > 80 km (0.025 < k > 0.080 km−1) fits well with (i) the Airy model whose average crustal thickness (Tc) and density are 17 ± 2 km and 2.7 × 103 kg m−3, respectively, and (ii) the thin plate flexure model of isostasy with an effective elastic plate thickness (Te) of 2–3 km. The estimated average crustal thickness and density are in good agreement with published seismic refraction results over the ridge. The results of the present study support an Airy model of isostasy for the L-R. The low Te value, in view of other published results in the study area, suggests stretched and loaded continental lithosphere of the L-R during the evolution of the western continental margin of India.  相似文献   

16.
The Oligocene Afar mantle plume resulted in the eruption of a large volume of basaltic magma, including major sequences of rhyolitic ignimbrites, in a short span of time across Ethiopia. In order to assess the impact of these magmatic processes on the crust and to investigate the general crustal configuration beneath the Ethiopian plateau, northern part of the Main Ethiopian Rift and the Afar depression, analysis and modeling of the gravity field have been conducted. The Bouguer gravity map is dominated by long-wavelength anomalies that primarily arise from the isostatic compensation of the topography. Consequently, anomalies within the crust/upper mantle are masked and quantitative interpretation becomes difficult. The long-wavelength anomalies are approximated using admittance technique and subsequently removed from the Bouguer anomalies to obtain the residual isostatic anomalies. The residual map contains both short- and intermediate-wavelength anomalies related to geologic and tectonic features. The long-wavelength regional isostatic field is used to map the crust-mantle interface and the results are in good agreement with those determined by other geophysical methods. Seismic constrained gravity inversion was performed on the isostatic residual field and series of three-dimensional models have been constructed for the structures of the crust and upper mantle beneath the uplifted and rifted flood basalt province of northern Ethiopia. The inversion results have shown that the NW plateau has thick crust that rests on normal lithospheric mantle. Afar, On the other hand, is marked by thin stretched crust resting on a low-density upper mantle indicating a hotter thermal regime and partial melt. No lithospheric mantle is observed beneath Afar. The models further indicate the presence of an extensive sub-crustal thick (~12 km on average) and high-density (~3.06 gm/cc) mafic accreted igneous layer of fractionated cumulate (magmatic underplating) beneath the NW plateau. The study suggests that the underplate was fundamental to the accretion process and may have played a role in compensating most of the plateau uplift and in localizing stresses.  相似文献   

17.
Thermal modeling of the Southern Alps,New Zealand   总被引:1,自引:0,他引:1  
Finite-element modeling of the thermal regime across the Southern Alps of New Zealand has been carried out along two profiles situated near the Franz Josef and Haast valleys. The modeling involves viscous deformation beneath the Southern Alps, including both uplift and erosion, and crustal/lithospheric thickening, as a result of crustal shortening extending to 20 mm/y of a 25-km thick crust. Published uplift rates and crustal thickness variations along the two profiles are used to constrain the modeled advection of crustal material, and results are compared with the recent heat flow determinations, 190±50 mW/m2 in the Franz Josef valley and 90±25 mW/m2 in the Haast valley. Comparisons of the model with published K–Ar and fission track ages, show that the observed heat flow in the Franz Josef valley is consistent with observed zircon fission track ages of around 1 Ma, if the present-day uplift rate is close to 10 mm/y. Major thermal differences between the Franz Josef and Haast profiles appear to be due to different uplift and erosion rates. There is weak evidence that frictional heating close to the Alpine fault zone is not significant. The modeling provides explanations for the distribution of seismicity beneath the Southern Alps, and predicts a low surface heat flow over the eastern foothills due to the dominant thermal effect of crustal thickening beneath this region. Predicted temperatures at mid-crustal depth beneath the zone of maximum uplift rate are 50–100°C cooler than those indicated in previously published models, which implies that thermal weakening of the crust may not be the main factor causing the aseismicity of the central Southern Alps. The results of the modeling demonstrate that the different types of reset age data in the region within 25 km of the Alpine fault are critical for constraining models of the deformation and the thermal regime beneath the Southern Alps.  相似文献   

18.
The laboratory experiments with rock samples show that creep under small strains is transient and can be described by the linear hereditary rheological Andrade model. The flows that recover isostasy (including the postglacial rebound flows) cause the strains in the crust and mantle, which are as low as at most 10–3 and, hence, demonstrate transient creep. The effective viscosity characterizing the transient creep is lower than that at the steady creep and depends on the characteristic time of the considered process. The characteristic time of restoration of isostatic equilibrium (isostatic rebound) after the initial perturbation of the Earth’s surface topography is at most 10 kyr and, therefore, the distribution of the rheological properties along the depth of the mantle and the crust differs from the distribution that corresponds to the slow geological processes. When considering the process of isostatic rebound, the upper crust can be modeled by a thin elastic plate, whereas the underlying crust and the mantle can be modeled by the halfspace with transient creep in which the rheological parameter is inhomogeneous with depth. For this system, the continuum mechanics equations are solved by means of the Fourier and Laplace transforms. The vertical displacements that violate the isostasy propagate from the area of the initial perturbation along the Earth’s surface and can be considered as the mechanism of the present-day vertical movements of the crust. Comparing the obtained results with the observation data allows estimating the Andrade parameter. The use of the Andrade rheological model makes it possible to quantify the relationship between the effective viscosity of the asthenosphere corresponding to the postglacial flows and the seismic Q-factor of this layer.  相似文献   

19.
Locations of the Eger Rift, Cheb Basin, Quaternary volcanoes, crustal earthquake swarms and exhalation centers of CO2 and 3He of mantle origin correlate with the tectonic fabric of the mantle lithosphere modelled from seismic anisotropy. We suggest that positions of the seismic and volcanic phenomena, as well as of the Cenozoic sedimentary basins, correlate with a “triple junction” of three mantle lithospheres distinguished by different orientations of their tectonic fabric consistent within each unit. The three mantle domains most probably belong to the originally separated microcontinents – the Saxothuringian, Teplá-Barrandian and Moldanubian – assembled during the Variscan orogeny. Cenozoic extension reactivated the junction and locally thinned the crust and mantle lithosphere. The rigid part of the crust, characterized by the presence of earthquake foci, decoupled near the junction from the mantle probably during the Variscan. The boundaries (transitions) of three mantle domains provided open pathways for Quaternary volcanism and the ascent of 3He- and CO2-rich fluids released from the asthenosphere. The deepest earthquakes, interpreted as an upper limit of the brittle–ductile transition in the crust, are shallower above the junction of the mantle blocks (at about 12 km) than above the more stable Saxothuringian mantle lithosphere (at about 20 km), probably due to a higher heat flow and presence of fluids.  相似文献   

20.
Two-dimensional crustal velocity models are derived from passive seismic observations for the Archean Karelian bedrock of north-eastern Finland. In addition, an updated Moho depth map is constructed by integrating the results of this study with previous data sets. The structural models image a typical three-layer Archean crust, with thickness varying between 40 and 52 km. P wave velocities within the 12–20 km thick upper crust range from 6.1 to 6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust is a fairly homogeneous layer associated with velocities of 6.5–6.8 km/s. The boundary between middle and lower crust is located at depths between 28 and 38 km. The thickness of the lower crust increases from 5–15 km in the Archean part to 15–22 km in the Archean–Proterozoic transition zone. In the lower crust and uppermost mantle, P wave velocities vary between 6.9–7.3 km/s and 7.9–8.2 km/s. The average Vp/Vs ratio increases from 1.71 in the upper crust to 1.76 in the lower crust.The crust attains its maximum thickness in the south-east, where the Archean crust is both over- and underthrust by the Proterozoic crust. A crustal depression bulging out from that zone to the N–NE towards Kuusamo is linked to a collision between major Archean blocks. Further north, crustal thickening under the Salla and Kittilä greenstone belts is tentatively associated with a NW–SE-oriented collision zone or major shear zone. Elevated Moho beneath the Pudasjärvi block is primarily explained with rift-related extension and crustal thinning at ∼2.4–2.1 Ga.The new crustal velocity models and synthetic waveform modelling are used to outline the thickness of the seismogenic layer beneath the temporary Kuusamo seismic network. Lack of seismic activity within the mafic high-velocity body in the uppermost 8 km of crust and relative abundance of mid-crustal, i.e., 14–30 km deep earthquakes are characteristic features of the Kuusamo seismicity. The upper limit of seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth.We found no evidence on microearthquake activity in the lower crust beneath the Archean Karelian craton. However, a data set of relatively well-constrained events extracted from the regional earthquake catalogue implies a deeper cut-off depth for earthquakes in the Norrbotten tectonic province of northern Sweden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号