首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine Geology》1999,153(1-4):275-302
Detailed interpretation of single-channel air-gun and deep-tow boomer profiles demonstrates that the Marmara Sea, Turkey, experienced small-amplitude (∼70 m) fluctuations in sea level during the later Quaternary, limited in magnitude by the sill depth of the Strait of Dardanelles. Moderate subsidence along the southern shelf and Quaternary glacio-eustatic sea-level variations created several stacked deltaic successions, separated by major shelf-crossing unconformities, which developed during the transitions from global glacial to interglacial periods. Near the Strait of Dardanelles, a series of sand-prone deposits are identified beneath an uppermost (Holocene) transparent mud drape. The sandy deposits thicken into mounds with the morphology and cross-sectional geometries of barrier islands, sand waves, and current-generated marine bars. All cross-stratification indicates unidirectional flow towards the Dardanelles prior to the deposition of the transparent drape which began ∼7000 years BP, in strong support of the notion that the Marmara Sea flowed westwards into the Aegean Sea through the Dardanelles at times of deglaciation in northern Europe. The global sea-level curve shows that, at ∼11,000 and ∼9500 years BP, sea level rose to the sill depths of the Straits of Dardanelles and Bosphorus, respectively. The effect from ∼11,000 to ∼9500 years BP was seawater incursion into the Marmara Sea, drowning and formation of algal-serpulid bioherms atop lowstand barrier islands, and transgression of shelves and lowstand deltas. At ∼9500 years BP, glacial meltwater temporarily stored in the Black Sea lake, developed into a vigorous southward flow toward the Aegean Sea, forming west-directed sandy bedforms in the western Marmara Sea and initiating deposition of sapropel S1 in the Aegean Sea. This strong outflow persisted until ∼7000 years BP, after which a mud drape began to accumulate in the Marmara Sea and euryhaline Mediterranean mollusks successfully migrated into a progressively more saline Black Sea where sapropel deposition began. Most eastern Mediterranean sapropels from S1 to S11 appear to correlate with periods of rising sea level and breaching, or near-breaching, of the Bosphorus sill. These events are believed to coincide with times of vigorous outflow of low-salinity (?fresh) surface waters transiting the Black Sea–Marmara Sea corridor, and ultimately derived from melting of northern European ice sheets.  相似文献   

2.
张铭汉 《海洋与湖沼》1995,26(S1):76-82
通过对80年代以来黄、渤海陆架地质调查有关柱状岩芯资料的分析研究,以地层年代为依据,划分晚更新世与全新世地层。研究结果表明,未次冰期低海面时期,黄、渤海陆架沉积物受到来自北方于冷气流的作用,形成独特的分布格局,陆架沉积物的综合特征反映出晚更新世末期黄、渤海陆架曾经发生过沙漠化,并形成一系列的风沙沉积。根据沉积物的分布特征和拉度组成将黄、渤海陆架划分为6个沉积区域和4种主要沉积类型。  相似文献   

3.
The uppermost 5–6 cm of the sediments (between 8 and 2248 m water depths) were studied to understand the effects of varying redox conditions on the Mn distribution in the recent sediments of the Black Sea. It was found that most Mn concentrations are consistent with the average abundance in crustal and/or sedimentary rocks. There exist no important differences between Mn concentrations in oxic (shallower water; <70 m) and anoxic (deeper water; 120 m) sediments. Previously reported Mn-enrichment above the Black Sea oxic/anoxic interface, due to the peculiar redox cycling, shows no significant contribution of Mn to the bottom sediments. A marked relationship between total Mn concentrations and clay/mud contents at shelf depth along the southern Black Sea margin indicates increased accumulation of Mn in association with the fine-grained particles and eastward water circulation.  相似文献   

4.
Hardbottoms are sequence boundaries and condensed sections that offer clues for the interpretation of the incomplete record of Tertiary continental shelf evolution. Seaward of 5 km, 50% of the inner west-central Florida shelf seafloor is flat hardbottom. These lithified surfaces are punctuated by shorefacing, scarped hardbottoms that trend shore-parallel (330°–0°) and vary in relief (up to 4 m). Scarped hardbottoms are the only natural relief on the inner shelf and support a diverse benthic community, the activities of which erode the outcrops, producing undercuts in excess of 1 m. Outcropping hardbottom strata are comprised of distinct, phosphate-rich, mixed carbonate–siliciclastic lithofacies, that range in age from Miocene to Quaternary. Miocene units are dolomite-rich and mark the upper surface of the inner shelf bedrock (Hawthorn Group). Dolomite within these beds (silt-sized, cloudy centered rhombs) fall into two age groups, correlating with highstands at 15 and 5 Ma. This lithofacies is consistent with models that indicate an increased flux of organic matter – resulting from topographically induced upwelling – promoting dolomitization during early burial diagenesis in the sulfate-reduction zone. Quaternary units are calcite-rich and perched atop the shelf bedrock. Samples of these units record a complex diagenetic history and multiple sea-level fluctuations. Based on evidence of primary marine cementation, they are interpreted to be hardground (non-deposition) surfaces, forming as a function of sediment starvation and minimal sediment movement. Decreased highstand magnitude or duration may have resulted in the absence of a significant organic component to Quaternary hardbottoms, which, in turn, may prevent subsequent dolomitization. These outcrops are a potential source for sediments to the inner shelf, not only as habitat for biological sediment production, but also through their destruction. The undercut, shorefacing, scarped hardbottom morphology displayed by west-central Florida hardbottoms is indicative of bio-erosion. Preliminary studies indicate a potential mass of 0.04 kg m−2 yr−1 of siliciclastic sediment is released to the inner shelf.  相似文献   

5.
Analysis of high-resolution seismic reflection profiles and sediment samples has revealed the evolution and sediment budget of the southeastern Yellow Sea mud belt (SEYSM) along the southwestern Korean Peninsula. The SEYSM, up to 50 m thick, over 250 km long and 20–55 km wide, can be divided into three stratigraphic units (A1, A2, and B, from oldest to youngest). Unit A1, overlying the acoustic basement, comprises the northern part of the SEYSM. Unit A2 comprises the southern part of the SEYSM; much of unit A2 is exposed at the seafloor. Unit B completely covers unit A1 and pinches out southward.

14C data suggest that evolution of each unit is closely related to the postglacial sea-level changes. Unit A1 consists of estuarine/deltaic or shallow-water muds deposited during the early to middle stage of postglacial sea-level rise (ca. 14,000–7000 yr B.P.). Unit A2 corresponds to relict muds deposited during the last, deceleration stage of sea-level rise (ca. 7000–3.500 yr B.P.). Unit B consists of shelf muds deposited during the recent sea-level highstand (ca. <3500 yr B.P.).

Very low background activities of 210Pb of the surface sediment of unit A2 suggest that the present-day sediment accumulation is negligible in the southern SEYSM. On the other hand, 210Pb excess activity profiles in unit B yield an average sediment accumulation rate of 3.9 mm/yr, indicating active sediment accumulation in the northern SEYSM. The annual sink (3.0×107 tons/yr) of fine-grained sediment in unit B is about an order of magnitude greater than can be explained by the sediment input from the Korean rivers alone. We propose that reworking of unit A2 has provided large volumes of muds to unit B, resulting in excessive sediment accumulation in the northern SEYSM. Much of unit A2, in turn, is likely to have originated from erosion of unit A1 in the north. This rather unique erosional/depositional regime of the SEYSM is probably owing to the tidal and regional currents characteristic in the southeastern Yellow Sea.  相似文献   


6.
A regional classification of shoreline segments along the Alaskan Beaufort Sea Coast was developed as the basis for quantifying coastal morphology, lithology, and carbon and mineral sediment fluxes. We delineated 48 mainland segments totaling 1,957 km, as well as 1,334 km of spits and islands. Mainland coasts were grouped into five broad classes: exposed bluffs (313 km), bays and inlets (235 km), lagoons with barrier islands (546 km), tapped basins (171 km) and deltas (691 km). Sediments are mostly silts and sands, with occasional gravel, and bank heights generally are low (2–4 m), especially for deltas (<1 m). Mean annual erosion rates (MAER) by coastline type vary from 0.7 m/year (maximum 10.4 m/year) for lagoons to 2.4 m/year for exposed bluffs (maximum 16.7 m/year). MAERs are much higher in silty soils (3.2 m/year) than in sandy (1.2 m/year) to gravelly (–0.3 m/year) soils. Soil organic carbon along eroding shorelines (deltas excluded) range from 12 to 153 kg/m2 of bank surface down to the water line. We assume carbon flux out from depositional delta sediments is negligible. Across the entire Alaskan Beaufort Sea Coast, estimated annual carbon input from eroding shorelines ranges from –47 to 818 Mg/km/year (Metric tones/km/year) across the 48 segments, average 149 Mg/km/year (for 34 nondeltaic segments), and total 1.8×105 Mg/year. Annual mineral input from eroding shorelines ranges from –1,863 (accreting) to 15,752 Mg/km/year, average 2,743 Mg/km/year, and totals 3.3 ×106 Mg/year.  相似文献   

7.
Offshore exploration during the 1960's for gold off southern New South Wales and for tin in Tasmanian waters did not result in the discovery of economic deposits. Although very rich gold-bearing beach placers were worked in the past, individual deposits were small and rested on bed rock; the chances of locating and exploiting similar deposits offshore appear to be remote. In the case of tin, sub-economic resources were outlined in submerged river channels at a number of places off northeastern Tasmania. Such channels can be outlined by seismic methods, but to locate workable tin deposits in the buried alluvium by drilling alone is likely to be impracticable and successful exploration may depend on the development of other geophysical prospecting techniques.

Large resources of rutile- and zircon-bearing heavy-mineral sands have been indicated off the east Australian coast by mining company work, but no economic deposits have been found to date. Studies of the morphology of the eastern shelf by the Bureau of Mineral Resources have revealed linear features believed to be related to shore lines developed during Quaternary low sea-level still stands. The most persistent of these off northern N.S.W. are about 105 m, 85 m, and between 35 and 45 m below present sea level. A widespread change of slope at a depth of 20–30 m marks the base of the main body of the present-day paralic-zone wedge of sediment, but seismic profiles indicate that a veneer of recent sediment commonly extends seawards into water depths of about 100 m. Much of the outer shelf is floored by relict sediments and extensive areas of bed rock crop out on the middle shelf.

Virtually all sub-surface data from company drilling for heavy-mineral sands relates to the present-day paralic-zone wedge of sediments; this wedge includes undisturbed sedimentary sequences deposited during pre-Holocene high sea-level periods. No large economic-grade deposits have been outlined by this work offshore, and there is reason to believe that the bulk of the heavy-mineral deposits formed during Holocene and previous high sea-level stands are located above present sea level. In addition, the best-developed submerged strand lines are in deep water probably inaccessible to mining. Nevertheless, the possibility that substantial deposits occur offshore in moderate water depths exists.

Outcrops of bed rock are extensive in the mid-shelf zone in the southern part of the area, but north of 29° S they are much less common. Significant areas with sediment thicknesses greater than 20 m in water depths of less than 60 m occur to the east of Newcastle, to the southeast of Smoky Cape, and to the north of Yamba. Two sediment sequences, an upper and a lower, are recognizable. Highest heavy-mineral values in surface sediments occur offshore from the Permo-Triassic basins. Subsurface enrichment may occur at the junction of the upper and lower sequences, or where the upper sequence overlies basement. The abundance of heavy minerals is a function of the total sediment throughput, and the intensity and direction of shore-line sorting, so that the highest potential for accumulation occurs in the northern part of the area.

The most likely prospective areas occur mainly near Cape Byron and near Sugarloaf Point. These areas have been defined on the basis of the thickness of sediments, the depth to the base of the upper sequence, the distribution of ancient strand lines, and the abundance of heavy minerals in the surface sediments.  相似文献   


8.
Two well-defined deltaic sequences in the Bohai Sea and in the South Yellow Sea represent post-glacial accumulation of Yellow River-derived sediments. Another prominent depocenter on this epicontinental shelf, a pronounced clinoform in the North Yellow Sea, wraps around the northeastern and southeastern end of the Shandong Peninsula, extending into the South Yellow Sea. This Shandong mud wedge is 20 to 40 m thick and contains an estimated 300 km3 of sediment. Radiocarbon dating, shallow seismic profiles, and regional sea-level history suggest that the mud wedge formed when the rate of post-glacial sea-level rise slackened and the summer monsoon intensified, at about 11 ka. Geomorphic configuration and mineralogical data indicate that present-day sediment deposited on the Shandong mud wedge comes not only from the Yellow River but also from coastal erosion and local rivers. Basin-wide circulation in the North Yellow Sea may transport and redistribute fine sediments into and out of the mud wedge.  相似文献   

9.
Analyses of two years (1992 and 1993) of high-resolution sea surface temperature satellite images of the southern Mid Atlantic Bight (MAB), showed that unusually extensive overhang of shelf water occurs episodically, and coherently over along shelf distances of several 100 km. These episodes are dubbed overrunning of the Slope Sea by shelf water. The overrunning volume has a “face” and a “back” (southern and northern limit). It transports substantial quantities of shelf water southward, and does not retreat onto the shelf, but eventually joins the western edge of the Gulf Stream in the vicinity of Chesapeake Bay. The combined analyses of satellite imagery and various in situ data further demonstrated that the shelf waters overrunning the Slope Sea were not mere surface features but reached depths between 40 and 60 m. Results confirm previous concepts on shelf circulation, shelf–slope exchange and fate of shelf water. They also shed new light on shelf water budget: overrunning of the Slope Sea and southwest transport by upper slope current constitutes an important conduit for shelf water transport. Winter storms move the shelf–slope front, and with it shelf water, offshore to distances 10–40 km. The offshore displacement of shelf water can be related to the onshore veering of the Gulf Stream near Cape Hatteras, producing a blocking effect on the shelf circulation. Such a blocking effect of the southwestward flow of shelf water in the MAB appeared to be the reason for the overrunning of shelf water off New Jersey. In addition, the excess fresh water discharge from the St. Lawerence was also observed to be related to the overflow of shelf water off New Jersey.  相似文献   

10.
The late glacial to Holocene sedimentary record of the northern shelf of the Sea of Marmara (SoM) has been documented by detailed seismo-, chrono-, and biostratigraphic analyses using sub-bottom (Chirp) profiles and sediment cores. During MIS 3 and the main part of MIS 2 (60–15 14C ka b.p.), disconnection from the Mediterranean and Black seas together with a dry climate resulted in a regression in the SoM, when the Sea was transformed into a brackish lake. The river incisions below 105 m water depth along the northern shelf took place during the last glacial maximum, when the lake level was modulated by stillstands at −98 and −93 m. The post-glacial freshwater transgressive stage of the Marmara ‘Lake’ occurred between 15 and 13.5 14C ka b.p., leading to a rise in water level to −85 m by 13.0 14C ka b.p., as evidenced by broad wave-cut terraces along the northern shelf. Since 12 14C ka b.p., high-frequency sea-level fluctuations have been identified at the SoM entrance to the Strait of İstanbul (SoI). Thus, wave-cut terraces have been recorded at water depths of −76 and −71 m that, according to an age model for core MD04-2750, have ages of 11.5 and 10.5 14C ka b.p., respectively. Ancient shoreline at −65 m along the northern shelf presumably formed soon after the Younger Dryas (YD) at ca. 10.1 14C ka b.p. Moreover, there is compelling evidence of Holocene outflow from the Sea of Marmara to the Black Sea. At the SoM entrance to the SoI, the existence of bioherms on the reflector surface together with abundant Brizalina spathulata and Protoglobulimina pupoides in a core suggests a return to higher salinities due to strong Mediterranean water incursion into the SoM at ∼8.8 14C ka b.p. This finding is consistent with earlier suggestions that, after the YD, the Black Sea was flooded by outflow from the SoM as a result of global sea-level rise.  相似文献   

11.
P.J Ramsay 《Marine Geology》1994,120(3-4):225-247
The geostrophic current-controlled northern Zululand shelf displays a unique assemblage of interesting physical, sedimentological and biological phenomena. The shelf in this area is extremely narrow (3 km) and is characterised by submarine canyons, coral reefs, and steep gradients on the continental slope. Three submarine canyons occur in the study area and are classified as mature- or youthful-phase canyons depending on the degree to which they breach the shelf. These canyons originated as mass-wasting features which were exploited by palaeo-drainage during sea-level regressions. Shelf lithology is dominated by a series of coast-parallel patch coral reefs which have colonised beachrock and aeolianite sequences that extend semi-continuously from −5 to −95 m, and delineate late Pleistocene palaeocoastline events. The unconsolidated sediment on the shelf is either shelf sand (mainly terrigenous quartz grains) or bioclastic sediment. Large-scale subaqueous dunes commonly form in the unconsolidated sediment on the outer-shelf due to the Agulhas Current flow. These dunes occur as two distinct fields at depths of −35 to −70 m; the major sediment transport direction is towards the south, but occasional bedload parting zones exist where the bedform migration direction changes from south to north.  相似文献   

12.
This paper examines the distribution of unconsolidated sediment in the KwaZulu-Natal Bight located along the east coast of South Africa. Results show that there is a general shelf-wide sediment distribution of coarser grain sizes between depths of 60 and 100?m, punctuated by a broad swathe of mud offshore of the Thukela River. Seasonal changes in sediment distribution patterns are small, being restricted to seaward fining on the inner shelf off the fluvial sources. Sediment distribution reflects a partitioning between sediment populations that are current- influenced and relict (palimpsest) populations associated with submerged shorelines. Wave ravinement during the deglacial transgression, the reworking of submerged shorelines during sea-level stillstands and, to a lesser extent, the Agulhas Current system, are the dominant controls on sediment distribution.  相似文献   

13.
High resolution Chirp and Sparker data allowed definition and mapping of distinct seismic units in the shallow sediment record (~100 ms) acquired from the southern exit of the Bosphorus Strait; a dynamic depositional environment. The bottommost unit observed in the Chirp data (unit-3) is made up of marine-lacustrine sediments thinning seaward and onlaps the basement rocks which are represented by folded strata in the Sparker data, possibly lower to middle Pleistocene age. It is overlain by a series of prograding deposits along the shelf (unit-2) referring to sediment input from the northern sector depending on the water levels of the paleo Marmara lake’s during MIS 3. The uppermost deposits (unit-1) close to the Bosphorus Strait were represented by three separate subunits, unlike to relatively thin drape of sediments observed at the other places in the surrounding regions. The detailed definition of these subunits deduced from the closely-spaced reflection profiles and available radiocarbon ages helped to explain the history of the latest stratigraphic development depending on the connections between the Black Sea and the Sea of Marmara. In addition to the previously proposed major conduits, which controlled the sedimentary deposition at the southern exit of the Bosphorus, namely the Bosphorus Strait and Kurba?al?dere River, another submarine sedimentary pathway at the eastern bank of the strait’s channel seems to have delivered sediments directly into the basin.  相似文献   

14.
The early Holocene marine flooding of the Black Sea has been the subject of intense scientific debate since the “Noah’s Flood” hypothesis was proposed in the late 1990s. The chronology of the flooding is not straightforward because the connection between the Black Sea and the Mediterranean Sea involves the intermediate Marmara Sea Basin via two sills (Dardanelles and Bosphorus). This study explores the chronology of late Pleistocene–Holocene flooding by examining sedimentary facies and molluscs from 24 gravity cores spanning shelf to slope settings in the southern Marmara Sea Basin. A late Pleistocene Ponto-Caspian (Neoeuxinian) mollusc association is found in 12 of the cores, comprising 14 mollusc species and dominated by brackish (oligohaline–lower mesohaline) endemic taxa (dreissenids, hydrobiids). The Neoeuxinian association is replaced by a TurritellaCorbula association at the onset of the Holocene. The latter is dominated by marine species, several of which are known to thrive under dysoxic conditions in muddy bottoms. This association is common in early Holocene intervals as well as sapropel intervals in younger Holocene strata. It is an indicator of low-salinity outflows from the Black Sea into the Marmara Sea that drive stratification. A marine Mediterranean association (87 species) represents both soft bottom and hard substrate faunas that lived in well-ventilated conditions and upper mesohaline–polyhaline salinities (ca. 25 psu). Shallower areas were occupied by hard substrate taxa and phytopdetritic communities, whereas deeper areas had soft bottom faunas. The middle shelf part of the northern Gemlik Gulf has intervals with irregular and discontinuous sedimentary structures admixed with worn Neoeuxinian and euryhaline Mediterranean faunas. These intervals represent reworking events (slumping) likely related to seismic activity rooted in the North Anatolian Fault system. The core data and faunas indicate an oscillating postglacial sea-level rise and phases of increased/decreased ventilation in the Marmara Sea during the Holocene, as well as palaeobiogeographic reorganisations of Ponto-Caspian and Mediterranean water bodies since the latest Pleistocene (<30 ka). The findings contribute to arguments against a single catastrophic flooding of the Black Sea at about 7.5 ka (Noah’s Flood).  相似文献   

15.
In this study, the fossil microfaunal composition of 28 Recent sediment samples from Lake İznik and 19 samples from Lake Sapanca was investigated. The presence of at least ten marine ostracod and 23 foraminifer species in the sediments of Lake İznik, and at least one marine ostracod and two foraminifer species in the sediments of Lake Sapanca confirm that these lakes must have been connected to the world ocean sometime during the late Quaternary. The most obvious former link between these lakes and the Mediterranean Sea would have been via the Marmara Sea with an eastward extension of the Gemlik and İzmit bays. The proximity of Lake Sapanca to the lower course of the Sakarya River, however, also supports earlier suggestions that there may have been a temporary connection with the Black Sea via this river valley. Whatever the case, the findings of this study clearly demonstrate that vertical tectonic movements need to be taken into account when reconstructing the late Quaternary sea-level history of this region.  相似文献   

16.
Although there are many research studies on the northern and southern branches of the North Anatolian fault, cutting through the deep basins of the Sea of Marmara in the north and creating a series of pull-apart basins on the southern mainland, little data is available about the geometrical and kinematical characteristics of the middle strand of the North Anatolian fault. The first detailed geometry of the middle strand of the North Anatolian fault along the southern Marmara shelf, including the Gemlik and Band?rma Bay, will be given in this study, by a combined interpretation of different seismic data sets. The characteristic features of its segments and their importance on the paleogeographic evolution of the southern shelf sub-basins were defined. The longest one of these faults, the Armutlu-Band?rma segment, is a 75-km long dextral strike-slip fault which connects the W–E trending Gençali segment in the east and NE–SW trending Kap?da?-Edincik segment in the west. In this context, the Gemlik Bay opened as a pull-apart basin under the control of the middle strand whilst a new fault segment developed during the late Pleistocene, cutting through the eastern rim of the bay. In this region, a delta front forming the paleoshoreline of the Gemlik paleolake was cut and shifted approximately 60 ± 5 m by the new segment. The same offset on this fault was also measured on a natural scarp of acoustic basement to the west and integrated with this paleoshoreline forming the slightly descending topset–foreset reflections of the delta front. Therefore the new segment is believed to be active at least for the last 30,000 years. The annual lateral slip rate representing this period of time will be 2 mm, which is quite consistent with modern GPS measurements. Towards the west, the Band?rma Bay is a rectangular transpressional basin whilst the Erdek Bay is a passive basin under the control of NW–SE trending faults. When the water level of the paleo-Marmara lake dropped down to ?90 m, the water levels of the suspended paleolakes of Band?rma and Gemlik on the southern shelf were ?50.3 (?3.3 Global Isostatic Adjustment—GIA) and ?60.5 (?3.3 GIA) m below the present mean sea level, respectively. As of today a similar example can be seen between the Sea of Marmara and the shallow freshwater lakes of Manyas and Uluabat. Similarly, the paleolakes of Gemlik and Bandirma were affected by the water level fluctuations at different time periods, even though both lakes were isolated from the Sea of Marmara during the glacial periods.  相似文献   

17.
A unique Yellow River-derived distal subaqueous delta in the Yellow Sea   总被引:11,自引:0,他引:11  
Z.S. Yang  J.P. Liu   《Marine Geology》2007,240(1-4):169-176
Newly acquired high-resolution Chirp sonar profiles reveal a unique Yellow River-derived, alongshore distributed, bidirectional (landward and seaward) across-shelf transported, omega-shaped (“Ω”) distal subaqueous deltaic lobe deposited around the eastern tip of the Shandong Peninsula in the Yellow Sea. This clinoform deposit directly overlies the postglacial transgressive surface, featured by convex-up seafloor morphology, up to 40 m thick locally. Radiocarbon-14 dates from the underlain pre-Holocene and transgressive sediments indicate this distal lobe has formed since the middle-Holocene highstand under a relatively stable sea level. This along-shelf distributed distal clinoform has been deposited mainly by the resuspended Yellow River sediments carried down by the coastal current, interacting with the local waves, tides and upwelling. Collectively, over the past 7000 years, nearly 30% of the Yellow River-derived sediment has been re-suspended and transported out of the Bohai Sea into the Yellow Sea. Overall, the Yellow River-derived sediment could reach the − 80 m water depth in the central South Yellow Sea, about 700 km from the river mouth; in contrast, a very small fraction of the modern riverine sediment could escape the outer shelf or reach the Okinawa Trough.  相似文献   

18.
《Marine Geology》2001,172(3-4):331-358
Analyses of over 6600 km of reflection seismic profiles on the northern continental margin of the South China Sea permit the recognition of four Quaternary high-frequency type 1 sequences of the 4th order, deposited during the past ca. 690 kyr. At the present-day shelf edge, only lowstand systems tracts characterised by a prograding clinoformal internal reflection pattern are preserved. The prograding complexes can be considered as regressive units accumulated during relative sea-level falls. They exhibit internal discontinuities which might point to minor sea-level fluctuations of the 5th order. A preliminary regional relative sea-level curve for the past 630 kyr is established using the present positions of the delta fronts mapped. The neotectonics curve derived by subtracting eustatic sea-level changes from the relative sea-level curve shows that the depths of the delta fronts today are controlled primarily by regional tectonic movements and the global sea-level.Our seismo-stratigraphic interpretation documents that the area off Hong Kong and around the Dongsha Islands experienced two uplift episodes during the past 5 ma, namely at the Miocene/Pliocene boundary and at the end of the lower Middle Pleistocene, respectively. These uplift events which are centred on the Dongsha Rise led to its subaerial exposure and to the erosion of the Pliocene and most of the Pleistocene strata. The change from thermal subsidence of the continental margin initiated at the end of the drift phase to the phase of magmato-tectonic uplift was caused by a reorientation of the tectonic regime.The Recent depositional environment on the northern continental margin of the South China Sea is dominated by sediment accumulation within the inner shelf and the Zhujiang (Pearl River) estuary. The outer shelf and upper slope, especially around the Dongsha Islands, are characterised by bypass of terrigenous material.The sedimentary column in the deepsea basin has a thickness of more than 2 km and comprises 14 depositional units starting with terrestrial rift deposits. It overlies oceanic as well as transitional crust.  相似文献   

19.
Total-intensity magnetic anomalies observed in a 1973 survey reflect contrasts in the structure of the southern Iceland shelf respectively west and east of 20°W. The western part, which is wider and more evenly sloping than the eastern part, has subdued magnetic relief indicating basement (basalt) depth of at least 400 m. On the eastern part of the shelf there occur pronounced edge anomalies, apparently due to a basement step of at least 1 km mean thickness and of mean width 3–4 km. The distance from the upper edge of this basement step to the bathymetric shelf edge increases from 5–8 km at 19°W to 12–14 km at 14°30W. The basement has alternating magnetic polarities. Linear magnetic anomalies are indistinct or absent in the surveyed region. It is speculated that the sharp basement step represents the trace of the maximum southerly extent of the eastern volcanic zone of Iceland.  相似文献   

20.
The identification of past connection routes between the Black Sea and the Sea of Marmara, other than the traditional one through to the Bosphorus Strait, would be of considerable interest to the international scientific community. Nazik et al. (Geo-Mar Lett 31:75?C86 (2011) doi:10.1007/s00367-010-0216-9) suggest the possibility of two alternative waterway connections via lakes Sapanca and ?znik. Their Black Sea to Sea of Marmara multi-connection hypothesis, which is based on undated marine fossils collected in both lakes from surficial grab samples, conflicts with many earlier studies. In this contribution, the hypothesis and the underlying data are discussed in the light of previous tectonic, sedimentological and limnological findings showing that it is impossible to have had marine connections through lakes Sapanca and ?znik during the last 11.5?ka. Global sea-level trends and tectonic uplift rates would accommodate a connection between the Sea of Marmara and Lake ?znik in the middle Pleistocene. Uplift rates for the northern block of the North Anatolian Fault, when compared with the global sea-level curve, clearly indicate that there cannot have been a connection through the ?zmit Gulf?CLake Sapanca?CSakarya Valley for at least the past 500?ka. Moreover, borehole sediments along the western shores of Lake Sapanca, which reach down to the bedrock, do not contain any marine fossils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号