首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a global static model of the Earth’s gravity field entitled DGM-1S based on GRACE and GOCE data. The collection of used data sets includes nearly 7 years of GRACE KBR data and 10 months of GOCE gravity gradient data. The KBR data are transformed with a 3-point differentiation into quantities that are approximately inter-satellite accelerations. Gravity gradients are processed in the instrumental frame. Noise is handled with a frequency-dependent data weighting. DGM-1S is complete to spherical harmonic degree 250 with a Kaula regularization being applied above degree 179. Its performance is compared with a number of other satellite-only GRACE/GOCE models by confronting them with (i) an independent model of the oceanic mean dynamic topography, and (ii) independent KBR and gravity gradient data. The tests reveal a competitive quality for DGM-1S. Importantly, we study added value of GOCE data by comparing the performance of satellite-only GRACE/GOCE models with models produced without GOCE data: either ITG-Grace2010s or EGM2008 depending on which of the two performs better in a given region. The test executed based on independent gravity gradients quantifies this added value as 25–38 % in the continental areas poorly covered with terrestrial gravimetry data (Equatorial Africa, Himalayas, and South America), 7–17 % in those with a good coverage with these data (Australia, North America, and North Eurasia), and 14 % in the oceans. This added value is shown to be almost entirely related to coefficients below degree 200. It is shown that this gain must be entirely attributed to gravity gradients acquired by the mission. The test executed based on an independent model of the mean dynamic topography suggests that problems still seem to exist in satellite-only GRACE/GOCE models over the Pacific ocean, where noticeable deviations between these models and EGM2008 are detected, too.  相似文献   

2.
First GOCE gravity field models derived by three different approaches   总被引:28,自引:10,他引:18  
Three gravity field models, parameterized in terms of spherical harmonic coefficients, have been computed from 71 days of GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbit and gradiometer data by applying independent gravity field processing methods. These gravity models are one major output of the European Space Agency (ESA) project GOCE High-level Processing Facility (HPF). The processing philosophies and architectures of these three complementary methods are presented and discussed, emphasizing the specific features of the three approaches. The resulting GOCE gravity field models, representing the first models containing the novel measurement type of gravity gradiometry ever computed, are analysed and assessed in detail. Together with the coefficient estimates, full variance-covariance matrices provide error information about the coefficient solutions. A comparison with state-of-the-art GRACE and combined gravity field models reveals the additional contribution of GOCE based on only 71 days of data. Compared with combined gravity field models, large deviations appear in regions where the terrestrial gravity data are known to be of low accuracy. The GOCE performance, assessed against the GRACE-only model ITG-Grace2010s, becomes superior at degree 150, and beyond. GOCE provides significant additional information of the global Earth gravity field, with an accuracy of the 2-month GOCE gravity field models of 10?cm in terms of geoid heights, and 3?mGal in terms of gravity anomalies, globally at a resolution of 100?km (degree/order 200).  相似文献   

3.
This paper examines the influence that certain omission and commission errors can have on the gravity field models estimated from the initial release of data (RL01) from the Gravity Recovery And Recovery Experiment (GRACE) satellite mission. The effects of omission errors were analyzed by limiting the degree and order to which the GPS and K-band range-rate (KBR) measurement partials were extended in the solution process. The commission error studies focused on the impact of an imperfect mean reference gravity field model on the solution. Combinations of both of these error sources were also explored. The nature of these errors makes them difficult to distinguish from the true gravity signal, so the exploration of these error sources was performed using simulations; however, comparisons to real-data solutions are provided. The results show how each of the specific error sources investigated influences the gravity field solution. The simulations also show how all of the errors examined can be sufficiently mitigated through the appropriate choice of processing parameters.  相似文献   

4.
Three GOCE-based gravity field solutions have been computed by ESA’s high-level processing facility and were released to the user community. All models are accompanied by variance-covariance information resulting either from the least squares procedure or a Monte-Carlo approach. In order to obtain independent external quality parameters and to assess the current performance of these models, a set of independent tests based on satellite orbit determination and geoid comparisons is applied. Both test methods can be regarded as complementary because they either investigate the performance in the long wavelength spectral domain (orbit determination) or in the spatial domain (geoid comparisons). The test procedure was applied to the three GOCE gravity field solutions and to a number of selected pre-launch models for comparison. Orbit determination results suggest, that a pure GOCE gravity field model does not outperform the multi-year GRACE gravity field solutions. This was expected as GOCE is designed to improve the determination of the medium to high frequencies of the Earth gravity field (in the range of degree and order 50 to 200). Nevertheless, in case of an optimal combination of GOCE and GRACE data, orbit determination results should not deteriorate. So this validation procedure can also be used for testing the optimality of the approach adopted for producing combined GOCE and GRACE models. Results from geoid comparisons indicate that with the 2 months of GOCE data a significant improvement in the determination of the spherical harmonic spectrum of the global gravity field between degree 50 and 200 can be reached. Even though the ultimate mission goal has not yet been reached, especially due to the limited time span of used GOCE data (only 2 months), it was found that existing satellite-only gravity field models, which are based on 7 years of GRACE data, can already be enhanced in terms of spatial resolution. It is expected that with the accumulation of more GOCE data the gravity field model resolution and quality can be further enhanced, and the GOCE mission goal of 1–2 cm geoid accuracy with 100 km spatial resolution can be achieved.  相似文献   

5.
The GRACE (Gravity Recovery and Climate Experiment) satellite mission relies on the inter-satellite K-band microwave ranging (KBR) observations. We investigate systematic errors that are present in the Level-1B KBR data, namely in the geometric correction. This correction converts the original ranging observation (between the two KBR antennas phase centers) into an observation between the two satellites’ centers of mass. It is computed from data on the precise alignment between both satellites, that is, between the lines joining the center of mass and the antenna phase center of either satellite. The Level-1B data used to determine this alignment exhibit constant biases as large as 1–2 mrad in terms of pitch and yaw alignment angles. These biases induce non-constant errors in the Level-1B geometric correction. While the precise origin of the biases remains to be identified, we are able to estimate and reduce them in a re-calibration approach. This significantly improves time-variable gravity field solutions based on the CNES/GRGS processing strategy. Empirical assessments indicate that the systematic KBR data errors have previously induced gravity field errors on the level of 6–11 times the so-called GRACE baseline error level. The zonal coefficients (from degree 14) are particularly affected. The re-calibration reduces their rms errors by about 50%. As examples for geophysical inferences, the improvement enhances agreement between mass variations observed by GRACE and in-situ ocean bottom pressure observations. The improvement also importantly affects estimates of inter-annual mass variations of the Antarctic ice sheet.  相似文献   

6.
现代低轨卫星对地球重力场探测的实践和进展   总被引:4,自引:4,他引:4  
陈俊勇 《测绘科学》2002,27(1):8-10
综述了现代低轨卫星对地球重力场测量的特点和近况,介绍了已经和即将发射的重力卫星CHAMP、GRACE、GOCE和新型测高卫星,讨论了作为现代重力卫星首次实践--CHAMP卫星的进展和目前尚待解决的问题。  相似文献   

7.
苏勇  范东明  游为 《测绘学报》2015,44(2):142-149
欧空局早期公布的时域法和空域法解算的GOCE模型均采用能量守恒法处理轨道数据, 但恢复的长波重力场信号精度较低, 而且GOCE卫星在两极存在数据空白, 利用其观测数据恢复重力场模型是一个不适定问题, 导致解算的模型带谐项精度较低, 需进行正则化处理。本文分析了基于轨道数据恢复重力场模型的方法用于处理GOCE数据的精度, 对最优正则化方法和参数的选择进行研究。利用GOCE卫星2009-11-01—2010-01-31共92 d的精密轨道数据, 采用不依赖先验信息的能量守恒法、短弧积分法和平均加速度法恢复GOCE重力场模型, 利用Tikhonov正则化技术处理病态问题。结果表明, 平均加速度法恢复模型的精度最高, 能量守恒法的精度最低, 短弧积分法的精度稍差于平均加速度法。未来联合处理轨道和梯度数据时, 建议采用平均加速度法或短弧积分法处理轨道数据, 并且轨道数据可有效恢复120阶次左右的模型。Kaula正则化和SOT处理GOCE病态问题的效果最好, 并且两者对应的最优正则化参数基本一致, 但利用正则化技术不能完全抑制极空白问题的影响, 需要联合GRACE等其他数据才能获得理想的结果。  相似文献   

8.
In March 2013, the fourth generation of European Space Agency’s (ESA) global gravity field models, DIR4 (Bruinsma et al. in Proceedings of the ESA living planet symposium, 28 June–2 July, Bergen, ESA, Publication SP-686, 2010b) and TIM4 (Migliaccio et al. in Proceedings of the ESA living planet symposium, 28 June–2 July, Bergen, ESA, Publication SP-686, 2010), generated from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) gravity observation satellite was released. We evaluate the models using an independent ground truth data set of gravity anomalies over Australia. Combined with Gravity Recovery and Climate Experiment (GRACE) satellite gravity, a new gravity model is obtained that is used to perform comparisons with GOCE models in spherical harmonics. Over Australia, the new gravity model proves to have significantly higher accuracy in the degrees below 120 as compared to EGM2008 and seems to be at least comparable to the accuracy of this model between degree 150 and degree 260. Comparisons in terms of residual quasi-geoid heights, gravity disturbances, and radial gravity gradients evaluated on the ellipsoid and at approximate GOCE mean satellite altitude ( $h=250$  km) show both fourth generation models to improve significantly w.r.t. their predecessors. Relatively, we find a root-mean-square improvement of 39 % for the DIR4 and 23 % for TIM4 over the respective third release models at a spatial scale of 100 km (degree 200). In terms of absolute errors, TIM4 is found to perform slightly better in the bands from degree 120 up to degree 160 and DIR4 is found to perform slightly better than TIM4 from degree 170 up to degree 250. Our analyses cannot confirm the DIR4 formal error of 1 cm geoid height (0.35 mGal in terms of gravity) at degree 200. The formal errors of TIM4, with 3.2 cm geoid height (0.9 mGal in terms of gravity) at degree 200, seem to be realistic. Due to combination with GRACE and SLR data, the DIR models, at satellite altitude, clearly show lower RMS values compared to TIM models in the long wavelength part of the spectrum (below degree and order 120). Our study shows different spectral sensitivity of different functionals at ground level and at GOCE satellite altitude and establishes the link among these findings and the Meissl scheme (Rummel and van Gelderen in Manusrcipta Geodaetica 20:379–385, 1995).  相似文献   

9.
Following an earlier recognition of degraded monthly geopotential recovery from GRACE (Gravity Recovery And Climate Experiment) due to prolonged passage through a short repeat (low order resonant) orbit, we extend these insights also to CHAMP (CHAllenging Minisatellite Payload) and GOCE (Gravity field and steady state Ocean Circulation Explorer). We show wide track-density variations over time for these orbits in both latitude and longitude, and estimate that geopotential recovery will be as widely affected as well within all these regimes, with lesser track density leading to poorer recoveries. We then use recent models of atmospheric density to estimate the future orbit of GRACE and warn of degraded performance as other low order resonances are encountered in GRACE’s free fall. Finally implications for the GOCE orbit are discussed.  相似文献   

10.
The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in \({\vert }0.4{\vert }\) and \({\vert }0.18{\vert }\) mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.  相似文献   

11.
A spatiospectral localization method is discussed for processing the global geopotential coefficients from satellite mission data to investigate time-variable gravity. The time-variable mass variation signal usually appears associated with a particular geographical area yielding inherently regional structure, while the dependence of the satellite gravity errors on a geographical region is not so evident. The proposed localization amplifies the signal-to-noise ratio of the (non-stationary) time-variable signals in the geopotential coefficient estimates by localizing the global coefficients to the area where the signal is expected to be largest. The results based on localization of the global satellite gravity coefficients such as Gravity Recovery And Climate Experiment (GRACE) and Gravity and Ocean Circulation Explorer (GOCE) indicate that the coseismic deformation caused by great earthquakes such as the 2004 Sumatra–Andaman earthquake can be detected by the low-low tracking and the gradiometer data within the bandwidths of spherical degrees 15–30 and 25–100, respectively. However, the detection of terrestrial water storage variation by GOCE gradiometer is equivocal even after localization.  相似文献   

12.
赫林  李建成  褚永海 《测绘学报》2017,46(7):815-823
GRACE、GOCE卫星重力计划的实施,对确定高精度重力场模型具有重要贡献。联合GRACE、GOCE卫星数据建立的重力场模型和我国均匀分布的649个GPS/水准数据可以确定我国高程基准重力位,但我国高程基准对应的参考面为似大地水准面,是非等位面,将似大地水准面转化为大地水准面后确定的大地水准面重力位为62 636 854.395 3m~2s~(-2),为提高高阶项对确定大地水准面的贡献,利用高分辨率重力场模型EGM2008扩展GRACE/GOCE模型至2190阶,同时将重力场模型和GPS/水准数据统一到同一参考框架和潮汐系统,最后利用扩展后的模型确定的我国大地水准面重力位为62 636 852.751 8m~2s~(-2)。其中组合模型TIM_R4+EGM2008确定的我国85高程基准重力位值62 636 852.704 5m~2s~(-2)精度最高。重力场模型截断误差对确定我国大地水准面的影响约16cm,潮汐系统影响约4~6cm。  相似文献   

13.
Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63–84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10–30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.  相似文献   

14.
Precise orbit determination for the GRACE mission using only GPS data   总被引:1,自引:1,他引:1  
The GRACE (gravity recovery and climate experiment) satellites, launched in March 2002, are each equipped with a BlackJack GPS onboard receiver for precise orbit determination and gravity field recovery. Since launch, there have been significant improvements in the background force models used for satellite orbit determination, most notably the model for the geopotential. This has resulted in significant improvements to orbit accuracy for very low altitude satellites. The purpose of this paper is to investigate how well the orbits of the GRACE satellites (about 470 km in altitude) can currently be determined using only GPS data and based on the current models and methods. The orbit accuracy is assessed using a number of tests, which include analysis of orbit fits, orbit overlaps, orbit connecting points, satellite Laser ranging residuals and K-band ranging (KBR) residuals. We show that 1-cm radial orbit accuracy for the GRACE satellites has probably been achieved. These precise GRACE orbits can be used for such purposes as improving gravity recovery from the GRACE KBR data and for atmospheric profiling, and they demonstrate the quality of the background force models being used.  相似文献   

15.
Reducing errors in the GRACE gravity solutions using regularization   总被引:1,自引:0,他引:1  
The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth’s monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003–Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4 solutions (RL04) from the Center for Space Research (CSR). Post-fit residual analysis shows that the regularized solutions fit the data to within the noise level of GRACE. A time series of filtered hydrological model is used to confirm that signal attenuation for basins in the Total Runoff Integrating Pathways (TRIP) database over 320 km radii is less than 1 cm equivalent water height RMS, which is within the noise level of GRACE.  相似文献   

16.
The European Space Agency’s Gravity field and steady-state ocean circulation explorer mission (GOCE) was launched on 17 March 2009. As the first of the Earth Explorer family of satellites within the Agency’s Living Planet Programme, it is aiming at a better understanding of the Earth system. The mission objective of GOCE is the determination of the Earth’s gravity field and geoid with high accuracy and maximum spatial resolution. The geoid, combined with the de facto mean ocean surface derived from twenty-odd years of satellite radar altimetry, yields the global dynamic ocean topography. It serves ocean circulation and ocean transport studies and sea level research. GOCE geoid heights allow the conversion of global positioning system (GPS) heights to high precision heights above sea level. Gravity anomalies and also gravity gradients from GOCE are used for gravity-to-density inversion and in particular for studies of the Earth’s lithosphere and upper mantle. GOCE is the first-ever satellite to carry a gravitational gradiometer, and in order to achieve its challenging mission objectives the satellite embarks a number of world-first technologies. In essence the spacecraft together with its sensors can be regarded as a spaceborne gravimeter. In this work, we describe the mission and the way it is operated and exploited in order to make available the best-possible measurements of the Earth gravity field. The main lessons learned from the first 19 months in orbit are also provided, in as far as they affect the quality of the science data products and therefore are of specific interest for GOCE data users.  相似文献   

17.
The Gravity and steady-state Ocean Circulation Explorer (GOCE) satellite mission measures Earth’s gravity field with an unprecedented accuracy at short spatial scales. In doing so, it promises to significantly advance our ability to determine the ocean’s general circulation. In this study, an initial gravity model from GOCE, based on just 2 months of data, is combined with the recent DTU10MSS mean sea surface to construct a global mean dynamic topography (MDT) model. The GOCE MDT clearly displays the gross features of the ocean’s steady-state circulation. More significantly, the improved gravity model provided by the GOCE mission has enhanced the resolution and sharpened the boundaries of those features compared with earlier satellite only solutions. Calculation of the geostrophic surface currents from the MDT reveals improvements for all of the ocean’s major current systems. In the North Atlantic, the Gulf Stream is stronger and more clearly defined, as are the Labrador and the Greenland currents. Furthermore, the finer scale features, such as eddies, meanders and branches of the Gulf Stream and North Atlantic Current system are visible. Similar improvements are seen also in the North Pacific Ocean, where the Kuroshio and its extension are well represented. In the Southern hemisphere, both the Agulhas and the Brazil-Malvinas Confluence current systems are well defined, and in the Southern ocean the Antarctic Circumpolar Current appears enhanced. The results of this preliminary analysis, using an initial GOCE gravity model, clearly demonstrate the potential of the GOCE mission. Already, at this early stage of the mission, the resolution of the MDT has been improved and the estimated surface current speeds have been increased compared with a GRACE satellite-only MDT. Future GOCE gravity models are expected to build further upon this early success.  相似文献   

18.
地球重力场和海洋环流探测(gravity field and steady-state ocean circulation explorer,GOCE)卫星重力梯度数据有色噪声和低频系统误差的滤波处理是反演高精度地球重力场的一个关键问题。针对GOCE卫星重力梯度数据的滤波处理,基于移动平均(moving average,MA)方法和CPR(circle per revolution)经验参数方法设计了两类低频系统误差滤波器,并分别将这两类滤波器与基于自回归移动平均(auto-regressive and moving average,ARMA)模型设计的有色噪声滤波器组合起来形成级联滤波器。为了分析滤波器处理的实际效果,基于空域最小二乘法采用70 d的GOCE观测数据,并联合重力恢复与气候实验(gravity recovery and climate experiment,GRACE)数据分别反演了224阶次的重力场模型GOGR-MA(MA+ARMA级联滤波)和GOGR-CPR(CPR+ARMA级联滤波)。将反演模型与采用同期数据求解的第一代GOCE系列模型及GOCE和GRACE联合模...  相似文献   

19.
The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods.  相似文献   

20.
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite, launched on 17 March 2009, is designed to measure the Earth’s mean gravity field with unprecedented accuracy at spatial resolutions down to 100?km. The accurate calibration of the gravity gradiometer on-board GOCE is of utmost importance for achieving the mission goals. ESA’s baseline method for the calibration uses star sensor and accelerometer data of a dedicated calibration procedure, which is executed every 2?months. In this paper, we describe a method for monitoring the evolution of calibration parameter during that time. The method works with star sensor and accelerometer data and does not require gravity field models, which distinguishes it from other existing methods. We present time series of calibration parameters estimated from GOCE data from 1 November 2009 to 17 May 2010. The time series confirm drifts in the calibration parameters that are present in the results of other methods, including ESA’s baseline method. Although these drifts are very small, they degrade the gravity gradients, leading to the conclusion that the calibration parameters of the ESA’s baseline method need to be linearly interpolated. Further, we find a correction of ?36 × 10?6 for one calibration parameter (in-line differential scale factor of the cross-track gradiometer arm), which improves the gravity gradient performance. The results are validated by investigating the trace of the calibrated gravity gradients and comparing calibrated gravity gradients with reference gradients computed along the GOCE orbit using the ITG-Grace-2010s gravity field model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号