首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the winter EASAT and East Asian minimum SAT(EAmSAT)display strong in-phase fluctuations and a significant 60-80-year multidecadal variability,apart from a long-term warming trend.The winter EASAT experienced a decreasing trend in the last two decades,which is consistent with the occurrence of extremely cold events in East Asia winters in recent years.The winter NAO leads the detrended winter EASAT by 12-18 years with the greatest significant positive correlation at the lead time of 15 years.Further analysis shows that ENSO may affect winter EASAT interannual variability,but does not affect the robust lead relationship between the winter NAO and EASAT.We present the coupled oceanic-atmospheric bridge(COAB)mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of~15 years on the Atlantic Multidecadal Oscillation(AMO)and Africa-Asia multidecadal teleconnection(AAMT)pattern.An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism,with good hindcast performance.The winter EASAT for 2020-34 is predicted to keep on fluctuating downward until~2025,implying a high probability of occurrence of extremely cold events in coming winters in East Asia,followed by a sudden turn towards sharp warming.The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.  相似文献   

2.
两类ENSO对中国北方冬季平均气温和极端低温的不同影响   总被引:2,自引:0,他引:2  
汪子琪  张文君  耿新 《气象学报》2017,75(4):564-580
利用1961-2012年观测、再分析资料以及全球大气环流模式数值试验,探讨了中国北方冬季平均气温对于不同类型(即东部型和中部型)ENSO事件的气候响应,并分析了不同类型ENSO对极端低温事件的可能影响,重点关注了北大西洋涛动(NAO)在其中的桥梁作用。结果表明,ENSO信号能通过调制北大西洋地区的大气环流改变欧亚中高纬度地区的纬向温度平流输送和西伯利亚高压的强度,进而影响中国北方冬季气温,由于不同类型ENSO事件海温分布的差异,这种影响具有明显的非线性特征。在两类厄尔尼诺和东部型拉尼娜事件冬季,北大西洋涛动均呈现负位相,不利于北大西洋的暖湿空气向欧亚大陆输送,西伯利亚高压偏强,因而中国北方地区较气候态偏冷。中部型厄尔尼诺和东部型拉尼娜事件冬季气温负异常的显著区域分别位于东北大范围地区、内蒙古河套附近;东部型厄尔尼诺事件冬季显著的冷异常信号仅局限于黑龙江北部与大兴安岭地区;而中部型拉尼娜事件冬季虽伴随北大西洋涛动正位相,但其空间结构向西偏移,对下游中国北方地区气温的直接影响并不显著,可能受局地信号干扰较大。数值试验再现了北大西洋涛动以及中国北方冬季气温对不同类型ENSO的响应,进一步佐证了上述结论。此外,两类厄尔尼诺事件冬季中国东北地区日平均气温容易偏低,极端低温事件的发生频次增多;而两类拉尼娜事件对极端低温的影响较弱。   相似文献   

3.
大气环流系统组合性异常与极端天气气候事件发生   总被引:2,自引:0,他引:2       下载免费PDF全文
根据2008年1月我国南方发生的持续严重雨雪冰冻灾害、1998年长江流域的特大洪涝灾害和2009/2010年冬季云南的极端干旱灾害的分析结果,再次强调指出,对于一些小概率的极端天气气候事件的发生,大气环流系统的组合性异常起着极其重要的作用。对于2008年的严重雨雪冰冻灾害的发生,多个大气环流系统的组合性异常包括:乌拉尔山阻塞高压和贝加尔湖-巴尔喀什湖的横槽,这为不断有冷空气从西路向南爆发提供了条件;东亚和日本地区的高度正异常使得北方冷空气的势力不是很强,适于锋面在我国南岭及其以北地区较长时间停留,为持续降水确立了背景;西太平洋副高偏强和偏西也对冷空气的向南推进起了阻挡作用;印-缅槽的持续偏强和西太平洋副高的偏强共同使暖湿空气源源不断地输送到华南地区,有利持续降水的发生,为冰冻造成了条件。对于1998年夏季长江流域的特大洪涝的发生,多个环流系统的异常包括:夏季西南季风涌的活动,西太平洋副热带高压活动,北方冷空气活动和青藏高原对流系统东传的共同作用。对于2009/2010年冬季云南的极端干旱灾害的发生,多个环流系统的异常包括:对流层高层中东地区副热带西风急流减弱,影响Rossby波的活动,不利于青藏高原-孟加拉湾槽的建立;西太平洋副热带高压偏强、位置略为偏南,对低层水汽输入云南起到抑制作用;NAO的负异常所导致的遥相关波列异常,使得东亚北方冷空气活动偏东,不易到达云南地区,还使得南支槽偏弱,暖湿气流也不易到达云南地区。ENSO虽然对中国天气气候变化有相当重要的影响,但并非每次异常天气气候事件的发生都是它的直接影响。对于ENSO影响必须具体分析,才能决定它在异常事件、特别是极端天气气候事件中的确切作用。  相似文献   

4.
Summary We investigate the effects of the North Atlantic Oscillation (NAO) and the El Nino Southern Oscillation (ENSO) on winter precipitation in Central Southwest Asia (CSWA) using an analysis of available observed climate data. The analysis is based on correlations, composites and Singular Value Decomposition (SVD) performed using the gridded dataset of the Climatic Research Unit (CRU) and station data for the region. We find that both the NAO and ENSO affect climate over the region. In particular a positive precipitation anomaly is typically found in correspondence of the positive NAO phase and warm ENSO phase over a sub-region encompassing northern Pakistan, Afghanistan, Tajikistan and southern Uzbekistan. This conclusion is supported by a consistency across the different analysis methods and observation datasets employed in our study. A physical mechanism for such effect is proposed, by which western disturbances are intensified over the region as they encounter a low pressure trough, which is a dominant feature during positive NAO and warm ENSO conditions. Our results give encouraging indications towards the development of statistically-based prediction tools for winter precipitation over the CSWA region.  相似文献   

5.
北大西洋涛动对新疆夏季降水异常的影响   总被引:19,自引:3,他引:16  
杨莲梅  张庆云 《大气科学》2008,32(5):1187-1196
利用1961~2003年NCEP/NCAR再分析和新疆75个气象站月降水资料,分析新疆夏季降水与沿西亚副热带西风急流Rossby波和北大西洋涛动(NAO)的关系,研究表明,夏季斯堪的纳维亚半岛-中欧—西亚和中亚的准静止波传播是联系NAO与沿西亚副热带西风急流波活动和新疆夏季降水变化的纽带。通过波作用量的动力学诊断分析,讨论了夏季NAO正、负位相异常年准静止波传播特征和差异,夏季NAO强弱活动影响斯堪的纳维亚半岛EP通量散度强度和位置异常,该区EP通量散度强度和位置异常导致强辐散中心在中高纬向东传播的准静止波和沿副热带西风急流准静止波活动变化,从而影响新疆夏季降水。  相似文献   

6.
The synoptic-scale winter precipitation variations over southeastern China (22°–32°N, 105°–125°E) and their association with the North Atlantic Oscillation (NAO) during 1951–2007 are investigated in this paper. The variability of wintertime precipitation is characterized by meridional displacement of its maximum center. Two precipitation regimes, with maximum centers located over the Yangtze and Pearl River basins, are identified via cluster analysis. Time-lagged analyses suggest that the two precipitation regimes are connected with the decaying phases of positive NAO (NAO+) events of different amplitudes. A strong (medium) NAO+ event is defined as one when the maximum amplitude of the NAO index exceeds 1.0 (in the range of 0.7–1.0) for at least 4 consecutive days and drops to less than 0.3 within 7 days following the peak index. After the peak of a strong NAO+, southerly winds expand northward to the Yangtze River (about 30°N), a northeast–southwest-tilted trough migrates to east of Lake Baikal, and cold air intrudes into central eastern China; thus, precipitation is strengthened over the Yangtze River basin where warm and cold air masses converge. In comparison, during the decaying phase of medium NAO+ events, the southerly winds are relatively weak, and precipitation tends to be enhanced at lower latitudes (around 25°N). Further analysis indicates that downstream Rossby-wave propagation may account for the latitudinal expansion of the southerly wind anomalies over the eastern coastal area of China during the decaying phase of NAO+ events of different strengths.  相似文献   

7.
A large ensemble modeling experiment with the Melbourne University General Circulation Model is presented. Thirty 17-year-long independent simulations were performed. All integrations were forced by the same observed sea surface temperatures, obtained from the Atmospheric Model Intercomparison Project II. The simulations were analyzed to assess the sensitivity of the North Atlantic Oscillation (NAO) to the El Niño/Southern Oscillation (ENSO) polarity. The results show signals of the ENSO phases both in the mean strength of the NAO as well as in its internal variability. During the cold ENSO phase, the probability density function of the NAO index presents a small but positive mean value, whereas it is negative during the warm ENSO phase. Also, the NAO variability associated with each ENSO phase shows a different behavior: during the warm phase the probability density function of the NAO index presents a larger variance and suggests a bimodality, whereas no bimodality is suggested in the cold phase.  相似文献   

8.
利用再分析数据,以在北半球冬季与北大西洋涛动(North Atlantic Oscillation,NAO)相关的向下游传播的准定常波列在欧洲地区是否发生反射为标准,将1957/1958年至2001/2002年这45个冬季分为高纬型和低纬型两类冬季,分别简称为在H型和L型冬季。在H(L)型冬季,和NAO相联系的向下游传播的Rossby波列主要沿高纬度(低纬度)路径传播。对比了在两种类型冬季NAO与同期大气环流、近地面温度(Surface Air Temperature,SAT)、海表面温度(Sea Surface Tempertaure,SST)和降水的关系。结果表明:大气环流方面,在H型冬季,300 hPa位势高度异常在西-西伯利亚和中-西伯利亚西部与NAO呈现正相关,而在L型冬季300 hPa位势高度异常在亚洲东海岸(约40°N)和北太平洋呈现正相关,在H型冬季与NAO相关的经向风异常在中纬度形成波列,而在L型冬季与NAO相关的经向风异常在副热带形成波列;SAT方面,在H型冬季SAT异常在欧亚大陆腹地高纬度地区与NAO呈现正相关,而在L型冬季与NAO相关的SAT异常在欧亚大陆腹地的高纬度地区相对较弱,但NAO造成的SAT异常可以扩展到亚洲东北部;降水方面,H型冬季与L型冬季主要区别在中国南方,在H型冬季降水异常与NAO的关系相对较弱,而在L型冬季降水异常与NAO呈现正相关关系;SST方面,同期SST异常在北大西洋中纬度海域与NAO呈现正相关,而在L型冬季与NAO相关的SST异常在北大西洋中纬度地区相对较弱,在北大西洋北部和南部较强。总体而言,在H型和L型冬季,NAO具有不同下游影响。  相似文献   

9.
本文基于中国地面气温日值网格数据集(V2.0),采用滑动相关和相关分析等方法,揭示了冬季北大西洋涛动(NAO)对中国北方极端低温影响的事实,进一步证实了东北后冬(1、2月)冷日(夜)与同期NAO相关性的年代际变化。研究发现:在20世纪80年代中期前,东北后冬冷日(夜)频发,与NAO的相关性较好,而在80年代中期后东北后冬冷日(夜)少发,与NAO的相关性减弱。其中,1月在1969~1988阶段,东北冷日(夜)与NAO的相关性最好,相关区域显著,相关系数可达-0.68(-0.66),而在1989~2009阶段二者相关性最弱,相关区域不显著。进一步分析发现,在不同年代际背景下,NAO引起的大气环流异常是导致东北1月冷日(夜)与1月NAO相关性年代际变化的重要原因。相关性较好的年代,NAO引起的环流异常有利于冷涡等天气系统维持在贝加尔湖到东北一带,使东北地区气温偏低,冷日(夜)频发;相关性较弱的年代,不利于冷空气南下,使东北地区气温偏高,冷日(夜)少发。  相似文献   

10.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   

11.
利用NECP/NCAR再分析资料、国家气候中心和NOAA相关资料,研究了与2014年浙江夏季低温多雨事件相关的大尺度环流特征和海温因子。结果表明:中纬度我国东部到日本南部气旋性环流异常的存在有利于浙江夏季出现低温多雨,异常偏强偏南的西太平洋副热带高压(简称副高)是8月罕见低温多雨的直接原因;东亚-太平洋型遥相关(EAP)和欧亚型遥相关(EU)是影响浙江夏季低温阴雨的主要遥相关型,当EAP负位相和EU正位相时,冷空气容易堆积和南下,与暖湿气流交汇,有利于降水降温,8月罕见低温阴雨是EAP负位相和EU正位相协同作用的结果。进一步的分析表明ENSO暖位相激发了西太平洋上空强烈的异常下沉气流和反气旋,使得副高偏南偏强,东亚地区呈EAP波列型响应;热带印度洋海温全区一致模态(IOBW)暖位相的维持进一步减弱了8月海洋性大陆地区的对流活动;北大西洋中部海温季内的变化或许与EU位相的转变有联系。  相似文献   

12.
Huang  Ruping  Chen  Shangfeng  Chen  Wen  Yu  Bin  Hu  Peng  Ying  Jun  Wu  Qiaoyan 《Climate Dynamics》2021,56(11):3643-3664

Compared to the zonal-mean Hadley cell (HC), our knowledge of the characteristics, influence factors and associated climate anomalies of the regional HC remains quite limited. Here, we examine interannual variability of the northern poleward HC edge over western Pacific (WPHCE) during boreal winter. Results suggest that interannual variability of the WPHCE is impacted by the El Niño-Southern Oscillation (ENSO) Modoki, North Pacific Oscillation (NPO) and North Atlantic Oscillation (NAO). The WPHCE tends to shift poleward during negative phase of the ENSO Modoki, and positive phases of the NPO and NAO, which highlights not merely the tropical forcing but also the extratropical signals that modulate the WPHCE. ENSO modoki, NPO and NAO modulate the WPHCE via inducing atmospheric anomalies over the western North Pacific. We further investigate the climatic impacts of the WPHCE on East Asia. The poleward shift of the northern descending branch of the WPHC results in anomalous upward (downward) motions and upper-level divergence (convergence) anomalies over south-central China (northern East-Asia), leading to increased (decreased) rainfall there. Moreover, pronounced cold surface air temperature anomalies appear over south-central China when the sinking branch of the WPHC moves poleward. Based on the temperature diagnostic analysis, negative surface temperature tendency anomalies over central China are mostly attributable to the cold zonal temperature advection and ascent-induced adiabatic cooling, while the negative anomalies over South China are largely due to the cold meridional temperature advection. These findings could improve our knowledge of the WPHCE variability and enrich the knowledge of forcing factors for East Asian winter climate.

  相似文献   

13.
Abstract

We analyzed the relationship between an index of Great Lakes winter severity (winters 1950–1998) and atmospheric circulation characteristics. Classification and Regression Tree analysis methods allowed us to develop a simple characterization of warm, normal and cold winters in terms of teleconnection indices and their combinations. Results are presented in the form of decision trees. The single most important classifier for warm winters was the Polar/Eurasian index (POL). A majority of warm winters (12 out of 15) occurred when this index was substantially positive (POL > 0.23). There were no cold winters when this condition was in place. Warm winters are associated with a positive phase of the Western Pacific pattern and El Niño events in the equatorial Pacific. The association between cold winters and La Niña events was much weaker. Thus, the effect of the El Niño/Southern Oscillation (ENSO) on severity of winters in the Great Lakes basin is not symmetric. The structure of the relationship between the index of winter severity and teleconnection indices is more complex for cold winters than for warm winters. It takes two or more indices to successfully classify cold winters. In general, warm winters are characterized by a predominantly zonal type of atmospheric circulation over the Northern Hemisphere (type W1). Within this type of circulation it is possible to distinguish two sub‐types, W2 and W3. Sub‐type W2 is characterized by a high‐pressure cell over North America, which is accompanied by enhanced cyclonic activity over the eastern North Pacific. Due to a broad southerly “anomalous” flow, surface air temperatures (SATs) are above normal almost everywhere over the continent. During the W3 sub‐type, the polar jet stream over North America, instead of forming a typical ridge‐trough pattern, is almost entirely zonal, thus effectively blocking an advection of cold Arctic air to the south. Cold winters tend to occur when the atmospheric circulation is more meridional (type C1). As with warm winters, there are two sub‐types of circulation, C2 and C3. In the case of C2, the jet stream loops southward over the western part of North America, but its northern excursion over the eastern part is suppressed. In this situation, the probability of a cold winter is higher for Lake Superior than for the lower Great Lakes. Sub‐type C3 is characterized by an amplification of the climatological ridge over the Rockies and the trough over the East Coast. The strongest negative SAT anomalies are located south of the Great Lakes basin, so that the probability of a cold winter is higher for the lower Great Lakes than for Lake Superior.  相似文献   

14.
近65年ENSO事件强度变化及时频特征研究   总被引:6,自引:2,他引:6  
利用海洋尼诺指数(ONI)、南方涛动指数(SOI)和多变量ENSO指数(MEI)等ENSO特征值分析了1951年1月—2016年5月近65年ENSO事件的强度与时频特征,并将其强度划分为5个等级。结果表明:近65年共发生22次暖事件(El Ni?o)和13次冷事件(La Ni?a);对ENSO特征值进行频次分析发现,强El Ni?o月份所占比例比强La Ni?a多;使用连续小波、交叉小波和小波相干分析得出,ENSO循环主要具有2~7 a的周期,还具有10~16 a的年代际变化。   相似文献   

15.
Interannual variations of the Bay of Bengal summer monsoon (BOBSM) onset in association with El Ni?o?Southern Oscillation (ENSO) are reexamined using NCEP1, JRA-55 and ERA20C atmospheric and Hadley sea surface temperature (SST) reanalysis datasets over the period 1900?2017. Decadal changes exist in the dependence of the BOBSM onset on ENSO, varying with the Pacific Decadal Oscillation (PDO). A higher correlation between the BOBSM onset and ENSO arises during the warm PDO epochs, with distinct late (early) onsets following El Ni?o (La Ni?a) events. In contrast, less significant correlations occur during the cold PDO epochs. The mechanism for the PDO modulating the ENSO?BOBSM onset relationship is through the variations in SST anomaly (SSTA) patterns. During the warm PDO epochs, the superimpositions of the PDO-related and ENSO-related SSTAs lead to the SSTA distribution of an El Ni?o (La Ni?a) event exhibiting significant positive (negative) SSTAs over the tropical central?eastern Pacific and Indian Ocean along with negative (positive) SSTAs, especially over the tropical western Pacific (TWP), forming a strong zonal interoceanic SSTA gradient between the TWP and tropical Indian Ocean. Significant anomalous lower tropospheric easterlies (westerlies) together with upper-tropospheric westerlies (easterlies) are thus induced over the BOB, favoring an abnormally late (early) BOBSM onset. During the cold PDO epochs, however, the superimpositions of PDO-related SSTAs with El Ni?o-related (La Ni?a-related) SSTAs lead to insignificant SSTAs over the TWP and a weak zonal SSTA gradient, without distinct circulation anomalies over the BOB favoring early or late BOBSM onsets.  相似文献   

16.
Marine Isotope Stage (MIS) 13, an interglacial about 500,000?years ago, is unique due to an exceptionally strong East Asia summer monsoon (EASM) occurring in a relatively cool climate with low greenhouse gas concentrations (GHG). This paper attempts to find one of the possible mechanisms for this seeming paradox. Simulations with an Earth System model LOVECLIM show that the presence of ice sheets over North America and Eurasia during MIS-13 induces a positive phase of the winter North Atlantic Oscillation (NAO) like feature. The ocean having a longer memory than the atmosphere, the oceanic anomalies associated with NAO persists until summer. The signals of summer NAO are transmitted to East Asia to reinforce the monsoon there through the stationary waves excited at the Asian Jet entrance. The geopotential height shows clearly a mid-latitude wave train with positive anomalies over the eastern Mediterranean/Caspian Sea and the Okhotsk Sea and a negative anomaly over Lake Baikal. This reinforces the effect of the high-latitude wave train induced independently by the Eurasian ice sheet topography as shown in previous study. These features reinforce the Meiyu front and enhance the precipitation over East Asia. The results obtained from LOVECLIM are further confirmed by an atmospheric general circulation model, ARPEGE.  相似文献   

17.
An unprecedented cold wave intruded into East Asia in early January 2021 and led to record-breaking or historical extreme low temperatures over vast regions.This study shows that a major stratospheric sudden warming(SSW)event at the beginning of January 2021 exerted an important influence on this cold wave.The major SSW event occurred on 2 January 2021 and subsequently led to the displacement of the stratospheric polar vortex to the East Asian side.Moreover,the SSW event induced the stratospheric warming signal to propagate downward to the mid-to-lower troposphere,which not only enhanced the blocking in the Urals-Siberia region and the negative phase of the Arctic Oscillation,but also shifted the tropospheric polar vortex off the pole.The displaced tropospheric polar vortex,Ural blocking,and another downstream blocking ridge over western North America formed a distinct inverted omega-shaped circulation pattern(IOCP)in the East Asia-North Pacific sector.This IOCP was the most direct and impactful atmospheric pattern causing the cold wave in East Asia.The IOCP triggered a meridional cell with an upward branch in East Asia and a downward branch in Siberia.The meridional cell intensified the Siberian high and low-level northerly winds,which also favored the invasion of the cold wave into East Asia.Hence,the SSW event and tropospheric circulations such as the IOCP,negative phase of Arctic Oscillation,Ural blocking,enhanced Siberian high,and eastward propagation of Rossby wave eventually induced the outbreak of an unprecedented cold wave in East Asia in early January 2021.  相似文献   

18.
 Analysis of data from seventeen rainfall stations in the Iberian Peninsula, Balearic Islands and Northern Africa has revealed significant El Ni?o-Southern Oscillation (ENSO) signals in Europe. Both North Atlantic Oscillation (NAO) and Southern Oscillation (SO) exert an influence on Iberian climate, but at different temporal and spatial scales. Though most of the peninsula is under NAO influence in winter, some stations in the eastern region show no connection with this phenomenon. The same is found for ENSO, with a positively correlated region appearing in the eastern part of Spain, while the rest of the peninsula remains insensitive. The correlation between ENSO and Iberian rainfall has increased towards the end of the present century, with strong positive signals spanning over half of the area studied. The percentage of springtime variability due to ENSO has similarly increased, reaching up to 50% in certain areas. We also show how there are outstanding climatic sensors of these phenomena such as Lake Gallocanta, which manifests a positive response to ENSO while appears insensitive to NAO. Common long-term patterns are observed between SOI and an inferred lake level series, suggesting a constant influence of the low-frequency component of ENSO throughout the period considered. Lake drying phases every 14 years reflect the impact of this signal, approximately every four ENSO events. Received: 6 June 1996/Accepted: 30 October 1996  相似文献   

19.
基于1961—2020年山东省122站逐月平均气温资料、NOAA逐月海表温度资料以及NCEP/NCAR再分析大气环流资料,对山东强弱冷暖冬年进行了划分,分析了ENSO对山东冬季气温变化的影响.结果表明:山东冬季气温上升趋势明显,在20世纪80年代中期由偏冷阶段进入偏暖阶段,近年波动明显;去趋势项后,59 a中出现4个强...  相似文献   

20.
The atmospheric low frequency variability at a regional or global scale is represented by teleconnection. Using monthly dataset of the Climatic Research Unit (CRU) for the period 1971–2016, the impacts of four large-scale teleconnection patterns on the climate variability over Southwest Asia are investigated. The large-scale features include the El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and the East Atlantic (EA) teleconnection patterns, as well as western tropical Indian Ocean (WTIO) sea surface temperature anomaly index. Results indicate that ENSO and EA are the first leading modes that explain variation of Southwest Asian precipitation, with positive (negative) anomalies during El Niño (La Niña) and the negative (positive) phase of EA. Variation of Southwest Asian near-surface temperature is most strongly related to WTIO index, with above-average (below-average) temperature during the positive (negative) phase of WTIO index, although the negative (positive) phase of NAO also favours the above-average (below-average) temperature. On the other hand, temperature (precipitation) over Southwest Asia shows the least response to ENSO (WTIO). ENSO and EA individually explain 13 percent annual variance of precipitation, while WTIO index explains 36 percent annual variance of near-surface temperature over Southwest Asia. Analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis Interim (ERA-Interim) data indicated establishments of negative (positive) geopotential height anomalies in the middle troposphere over Southwest Asia during El Niño (La Niña) or the negative (positive) phase of NAO, EA and WTIO. The response of precipitation variability over Southwest Asia to NAO is opposite to that expected from the geopotential height anomalies, but the correlation between precipitation and NAO is not statistically significant. Due to predictability of large-scale teleconnections, results of this study are encouraging for improvement of the state-of-the-art seasonal prediction of the climate over Southwest Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号