首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An idealized coupled general circulation model is used to demonstrate that the surface warming due to the doubling of CO2 can still be stronger in high latitudes than in low latitudes even without the negative evaporation feedback in low latitudes and positive ice-albedo feedback in high latitudes, as well as without the poleward latent heat transport. The new climate feedback analysis method formulated in Lu and Cai (Clim Dyn 32:873–885, 2009) is used to isolate contributions from both radiative and non-radiative feedback processes to the total temperature change obtained with the coupled GCM. These partial temperature changes are additive and their sum is convergent to the total temperature change. The radiative energy flux perturbations due to the doubling of CO2 and water vapor feedback lead to a stronger warming in low latitudes than in high latitudes at the surface and throughout the entire troposphere. In the vertical, the temperature changes due to the doubling of CO2 and water vapor feedback are maximum near the surface and decrease with height at all latitudes. The simultaneous warming reduction in low latitudes and amplification in high latitudes by the enhanced poleward dry static energy transport reverses the poleward decreasing warming pattern at the surface and in the lower troposphere, but it is not able to do so in the upper troposphere. The enhanced vertical moist convection in the tropics acts to amplify the warming in the upper troposphere at an expense of reducing the warming in the lower troposphere and surface warming in the tropics. As a result, the final warming pattern shows the co-existence of a reduction of the meridional temperature gradient at the surface and in the lower troposphere with an increase of the meridional temperature gradient in the upper troposphere. In the tropics, the total warming in the upper troposphere is stronger than the surface warming.  相似文献   

2.
This study aims to understand the mechanisms which cause an overall reduction of SH extratropical cyclone activity with a slight increase in the high latitudes in a warmer climate simulated in general circulation models (GCMs) with increasing CO2. For this purpose, we conducted idealized model experiments by forcing warm temperature anomalies to the areas where climate change models exhibit local maximum warming—the tropics in the upper troposphere and the polar regions in the lower troposphere—simultaneously and separately. The Melbourne University atmospheric GCM (R21) coupled with prescribed SST was utilized for the experiments. Our results demonstrate that the reduction of SH extratropical cyclone frequency and depth in the midlatitudes but the slight increase in the high latitudes suggested in climate change models result essentially from the tropical upper tropospheric warming. With this tropical warming, the enhanced static stability which decreases baroclinicity in the low and midlatitudes turns out to be a major contributor to the decrease of cyclone activity equatorward of 45°S whereas the increased meridional temperature gradient in the high latitudes seems an important mechanism for the increase of cyclone activity over 50°–60°S.  相似文献   

3.
This work uses an energy balance climate model (EBCM) with explicit infrared radiative transfer, parametrized tropospheric temperature and humidity profiles, and separate stratosphere, troposphere, and surface energy balances, to investigate claims that a downward redistribution of tropospheric water vapor in response to surface warming could serve as a strong negative feedback on climatic change. A series of sensitivity tests is carried out using: (1) a variety of relationships between total precipitable water in the troposphere and temperature; (2) feedbacks between surface temperature and the vertical distribution of tropospheric water vapor at low latitudes; and (3) feedback between surface temperature or meridional temperature gradient and lapse rate. Fixed relative humidity (RH) enhances the global mean surface temperature response to a CO2 doubling by only 50% compared to fixed absolute humidity, giving a response of 1.8 K. When water vapor is assumed to be redistributed downward between 30°S–30°N such that a 1 K surface warming reduces total precipitable water above 600 hPa by 10%, the global mean surface air temperature response is reduced to 1.2 K. Assuming a stronger downward redistribution in relation to surface temperature change has a rapidly diminishing marginal effect on global mean and tropical surface temperature response, while slightly increasing the warming at high latitudes due to the parametrized dependence of middle-to-high latitude lapse rate on the meridional temperature gradient. A modest downward water vapor redistribution, such that absolute humidity in the upper troposphere at subtropical latitudes is constant as total precipitable water increases, can reduce the tropical temperature sensitivity to less than 1 K, while increasing the equator-to-pole amplification of the surface air temperature response from a factor of about three to a factor of four. However, it is concluded that whatever changes in future GCM response might occur as a result of new parametrizations of subgrid-scale processes, they are exceedingly unlikely to produce a climate sensitivity to a CO2 doubling of less than 1 K even if there is a strong downward shift in the water vapor distribution as climate warms. Received: 23 February 1998 / Accepted: 1 November 1999  相似文献   

4.
R. A. Colman 《Climate Dynamics》2001,17(5-6):391-405
This study addresses the question: what vertical regions contribute the most to water vapor, surface temperature, lapse rate and cloud fraction feedback strengths in a general circulation model? Multi-level offline radiation perturbation calculations are used to diagnose the feedback contribution from each model level. As a first step, to locate regions of maximum radiative sensitivity to climate changes, the top of atmosphere radiative impact for each feedback is explored for each process by means of idealized parameter perturbations on top of a control (1?×?CO2) model climate. As a second step, the actual feedbacks themselves are calculated using the changes modelled from a 2?×?CO2 experiment. The impact of clouds on water vapor and lapse rate feedbacks is also isolated using `clear sky' calculations. Considering the idealized changes, it is found that the radiative sensitivity to water vapor changes is a maximum in the tropical lower troposphere. The sensitivity to temperature changes has both upper and lower tropospheric maxima. The sensitivity to idealized cloud changes is positive (warming) for upper level cloud increases but negative (cooling) for lower level increases, due to competing long and shortwave effects. Considering the actual feedbacks, it is found that water vapor feedback is a maximum in the tropical upper troposphere, due to the large relative increases in specific humidity which occur there. The actual lapse rate feedback changes sign with latitude and is a maximum (negative) again in the tropical upper troposphere. Cloud feedbacks reflect the general decrease in low- to mid-level low-latitude cloud, with an increase in the very highest cloud. This produces a net positive (negative) shortwave (longwave) cloud feedback. The role of clouds in the strength of the water vapor and lapse rate feedbacks is also discussed.  相似文献   

5.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   

6.
We here use a coupled atmosphere-surface single column climate model to illustrate how the CFRAM, a new climate feedback analysis framework formulated in Part I of the two-part series papers, can be applied to isolate individual contributions to the total temperature change of a climate system from the external forcing alone, and from each of individual physical and dynamical processes associated with the energy transfer with the space and within the climate system. We demonstrate that the isolation of individual feedbacks in the CFRAM is achieved without referencing to a virtual climate system as in the online feedback suppression method. We show that partial temperature changes estimated by the online feedback suppression method include the “compensating effects” of other feedbacks when the feedback under consideration is suppressed. The partial temperature changes are addable in the CFRAM but they are not in the online feedback suppression method. We also apply the CFRAM to isolate the contributions to the lapse rate feedback from individual physical and dynamical feedback processes. We show that the lapse rate feedback includes not only the partial effect of each feedback that directly contributes to energy flux perturbations at the TOA (such as water vapor feedback), but also the total effects of those feedbacks that do not contribute to energy flux perturbations at the TOA (such as evaporation and moist convection feedbacks). Because the contributions to the lapse rate feedback from various physical and dynamical processes tend to cancel one another, the net lapse rate feedback is a residual of many large terms. This leads to a large uncertainty not only in estimating the lapse rate feedback itself, but also in other feedbacks whose effects are either partially or totally lumped into the lapse rate feedback.  相似文献   

7.
This paper examines several prominent thermodynamic and dynamic factors responsible for the meridional and vertical warming asymmetries using a moist coupled atmosphere–surface radiative transportive four-box climate model. A coupled atmosphere–surface feedback analysis is formulated to isolate the direct response to an anthropogenic greenhouse gas forcing from individual local feedbacks (water vapor, evaporation, surface sensible heat flux, and ice-albedo), and from the non-local dynamical feedback. Both the direct response and response to water vapor feedback are stronger in low latitudes. The joint effect of the ice-albedo and dynamical greenhouse-plus feedbacks acts to amplify the high latitude surface warming whereas both the evaporation and dynamical greenhouse-minus feedbacks cause a reduction of the surface warming in low latitudes. The enhancement (reduction) of local feedbacks in high (low) latitudes in response to the non-local dynamic feedback further strengthens the polar amplification of the surface warming. Both the direct response and response to water vapor feedback lead to an increase of lapse rate in both low and high latitudes. The stronger total dynamic heating in the mean state in high latitudes is responsible for a larger increase of lapse rate in high latitudes in the direct response and response to water vapor feedback. The local evaporation and surface sensible heat flux feedbacks reduce the lapse rate both in low and high latitudes through cooling the surface and warming the atmosphere. The much stronger evaporation feedback leads to a final warming in low latitudes that is stronger in the atmosphere than the surface.  相似文献   

8.
An overview of radiative climate feedbacks and ocean heat uptake efficiency diagnosed from idealized transient climate change experiments of 14 CMIP5 models is presented. Feedbacks explain about two times more variance in transient climate response across the models than ocean heat uptake efficiency. Cloud feedbacks can clearly be identified as the main source of inter-model spread. Models with strong longwave feedbacks in the tropics feature substantial increases in cloud ice around the tropopause suggestive of changes in cloud-top heights. The lifting of the tropical tropopause goes together with a general weakening of the tropical circulation. Distinctive inter-model differences in cloud shortwave feedbacks occur in the subtropics including the equatorward flanks of the storm-tracks. Related cloud fraction changes are not confined to low clouds but comprise middle level clouds as well. A reduction in relative humidity through the lower and mid troposphere can be identified as being the main associated large-scale feature. Experiments with prescribed sea surface temperatures are analyzed in order to investigate whether the diagnosed feedbacks from the transient climate simulations contain a tropospheric adjustment component that is not conveyed through the surface temperature response. The strengths of the climate feedbacks computed from atmosphere-only experiments with prescribed increases in sea surface temperatures, but fixed CO2 concentrations, are close to the ones derived from the transient experiment. Only the cloud shortwave feedback exhibits discernible differences which, however, can not unequivocally be attributed to tropospheric adjustment to CO2. Although for some models a tropospheric adjustment component is present in the global mean shortwave cloud feedback, an analysis of spatial patterns does not lend support to the view that cloud feedbacks are dominated by their tropospheric adjustment part. Nevertheless, there is positive correlation between the strength of tropospheric adjustment processes and cloud feedbacks across different climate models.  相似文献   

9.
This study examines in detail the ‘atmospheric’ radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale ‘transient’ warming (from a 1% per annum compounded CO2 increase), and those operating under the model’s own unforced ‘natural’ variability. The time evolution of the transient (or ‘secular’) feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a ‘mixed layer’ ocean version of the same model forced by a doubling of CO2. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback—in contrast to the dominant negative low to mid-latitude response seen under secular climate change. Surface albedo feedback is, however, slightly stronger under interannual variability—partly due to regions of extremely weak, or even negative, feedback over Antarctic sea ice in the transient experiment. Both long and shortwave global cloud feedbacks are essentially zero on interannual timescales, with the shortwave term also being very weak under climate change, although cloud fraction and optical property components show correlation with global temperature both under interannual variability and transient climate change. The results of this modelling study, although for a single model only, suggest that the analogues provided by interannual variability may provide some useful pointers to some aspects of climate change feedback strength, particularly for water vapour and surface albedo, but that structural differences will need to be heeded in such an analysis.  相似文献   

10.
Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.  相似文献   

11.
由于全球变暖,极地地区的气候经历了明显的变暖放大.在本项研究中,我们根据CMIP6模式的三种变暖情景(SSP1-2,6,SSP2-4.5和SSP5-8.5)下,极地放大变化对各个反馈机制(包括普朗克,温度递减率,云,水蒸气,反照率反馈,CO2强迫,海洋热吸收和大气热传输)的响应进行了分析.结果表明,通过用“辐射核”方法...  相似文献   

12.
The effects of sea surface temperature (SST), radiation, cloud microphysics, and diurnal variations on the vertical structure of tropical tropospheric temperature are investigated by analyzing 10 two-dimensional equilibrium cloud-resolving model simulation data. The increase of SST, exclusion of diurnal variation of SST, and inclusion of diurnal variation of solar zenith angle, radiative effects of ice clouds, and ice microphysics could lead to tropical tropospheric warming and increase of tropopause height. The increase of SST and the suppression of its diurnal variation enhance the warming in the lower and upper troposphere, respectively, through increasing latent heat and decreasing IR cooling. The inclusion of diurnal variation of solar zenith angle increases the tropospheric warming through increasing solar heating. The inclusion of cloud radiative effects increases tropospheric warming through suppressing IR cooling in the mid and lower troposphere and enhancing solar heating in the upper troposphere. The inclusion of ice microphysics barely increases warming in the mid and lower troposphere because the warming from ice radiative effects is nearly offset by the cooling from ice microphysical effects, whereas it causes the large warming enhancement in the upper troposphere due to the dominance of ice radiative effects. The tropopause height is increased mainly through the large enhancement of IR cooling.  相似文献   

13.
One of the robust features in the future projections made by the state-of-the-art climate models is that the highest warming rate occurs in the upper-troposphere especially in the tropics. It has been suggested that more warming in the upper-troposphere than the lower-troposphere should exert a dampening effect on the sea surface warming associated with the negative lapse rate feedback. This study, however, demonstrates that the tropical upper-tropospheric warming (UTW) tends to trap more moisture in the lower troposphere and weaken the surface wind speed, both contributing to reduce the upward surface latent heat flux so as to trigger the initial sea surface warming. We refer to this as a ‘top-down’ warming mechanism. The rise of tropospheric moisture together with the positive water vapor feedback enhance the downward longwave radiation to the surface and facilitate strengthening the initial sea surface warming. Meanwhile, the rise of sea surface temperature (SST) can feed back to intensify the initial UTW through the moist adiabatic adjustment, completing a positive UTW–SST warming feedback. The proposed ‘top-down’ warming mechanism and the associated positive UTW–SST warming feedback together affect the surface global warming rate and also have important implications for understanding the past and future changes of precipitation, clouds and atmospheric circulations.  相似文献   

14.
依据政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)第一工作组(WGI)报告第七章的内容,详细解读了气候反馈对温度空间模态的依赖性。与第五次评估报告(AR5)相比,AR6对于地表温度空间模态演变在驱动气候反馈变化中作用的理解已有了较大提升。AR6认为,在温室气体强迫下,北极在21世纪的增温幅度很可能大于全球平均水平,南极在百年时间尺度上的增温要强于热带地区;同时,在百年时间尺度上热带太平洋东部的变暖幅度大于西部,即热带太平洋东-西向海表温度梯度减弱。极地放大效应(尤其是南半球)和热带太平洋东-西向海表温度梯度随时间的变化是影响未来气候反馈如何演变的关键因素。随着地表增温空间模态的演变,气候反馈(尤其云反馈)预计将在未来几十年的时间尺度上逐渐增加,对气候变化更多是起放大作用。  相似文献   

15.
In climate simulations we find a pronounced meridional (equator to pole) gradient of climate response to land cover change. Climate response approaches zero in the tropics, and increases towards the poles. The meridional gradient in climate response to land cover change results from damping feedbacks in the tropics, rather than from polar amplification. The main cause for the damping in the tropics is the decrease in cloud cover after deforestation, resulting in increased incoming radiation at the surface and a lower planetary albedo, both counteracting the increase in surface albedo with deforestation. In our simulations, deforestation was also associated with a decrease in sensible heat flux but not a clear signal in evaporation. Meridional differences in climate response have implications for attribution of observed climate change, as well as for climate change mitigation strategies.  相似文献   

16.
This study estimated the largely unstudied downward transport and modification of tropospheric ozone associated with tropical moist convection using a coupled meteorology-chemistry model. High-resolution cloud resolving model simulations were conducted for deep moist convection events over West Africa during August 2006 to estimate vertical transport of ozone due to convection. Model simulations realistically reproduced the characteristics of deep convection as revealed by the estimated spatial distribution of temperature, moisture, cloud reflectivity, and vertical profiles of temperature and moisture. Also, results indicated that vertical transport reduced ozone by 50% (50 parts per billion by volume, ppbv) in the upper atmosphere (12–15 km) and enhanced ozone by 39% (10 ppbv) in the lower atmosphere (<2 km). Field observations confirmed model results and indicated that surface ozone levels abruptly increased by 10–30 ppbv in the area impacted by convection due to transport by downdrafts from the upper troposphere. Once in the lower troposphere, the lifetime of ozone decreased due to enhanced dry deposition and chemical sinks. Ozone removal via dry deposition increased by 100% compared to non-convective conditions. The redistribution of tropospheric ozone substantially changed hydroxyl radical formation in the continental tropical boundary layer. Therefore, an important conclusion of this study is that the redistribution of tropospheric ozone, due to deep convection in non-polluted tropical regions, can simultaneously reduce the atmospheric loading of ozone and substantially impact the oxidation capacity of the lower atmosphere via the enhanced formation of hydroxyl radicals.  相似文献   

17.
热带地区的湿绝热过程会放大地表的增暖幅度,在约200 hPa高度上产生增暖峰值,该现象被称为“热带对流层放大”。热带对流层放大是气候变化的显著特征之一,是检验气候模式性能的重要指标。本文基于RSS4.0卫星数据和ERA5.1再分析资料,系统分析了FGOALS-g3模式对气温变化特别是热带对流层放大的模拟能力,并通过新旧版本模式(FGOALS-g3与FGOALS-g2)的比较指出了新版本模式模拟技巧的提升;通过比较FGOALS-g3历史模拟试验与GAMIL3单独大气模式AMIP试验结果,研究了海气耦合过程对模拟结果的影响。结果表明,FGOALS-g3能够合理再现观测中的全球对流层显著增温趋势,但模拟的增温趋势偏强,这与气候系统内部变率以及两代气候系统模式所使用的历史气候外强迫差异有关。其对于观测中热带平均增温廓线以及热带对流层放大的空间分布均表现出良好的模拟性能,模拟的热带对流层放大现象的量值大小存在正偏差,与模拟的对流层低层温度变化偏强有关。FGOALS-g3较FGOALS-g2在性能上有一定提升,主要表现为增加了对于火山气溶胶强迫的响应,并在热带对流层放大的空间分布及平均气温趋势廓线...  相似文献   

18.
平流层对对流层的作用是准确评估、预测对流层气候变化的一个重要方面。其中平流层成分尤其是臭氧的变化,可以改变平流层乃至对流层的辐射平衡,从而影响平流层、对流层的热动力过程。本文从辐射、动力2个角度介绍了平流层臭氧影响对流层气候变化的若干研究进展。平流层臭氧可以通过长短波辐射的方式对对流层大气造成辐射强迫,利用大气化学气候模式可以定量计算平流层臭氧变化引起的辐射强迫,但是辐射强迫的估算受模式中辐射传输模块本身缺陷的影响存在不确定性。动力方面,平流层臭氧变化产生的辐射效应可以改变温度的垂直和经向梯度,造成波折射指数的变化,进而影响平流层甚至对流层内波的折射与反射,通过上对流层下平流层区域内的波—流相互作用,对对流层气候产生影响。另外,南极臭氧损耗可通过大气环状模影响冬春季中高纬度对流层的天气气候,但是其影响的强度大小以及物理机制仍需进一步的确认。值得注意的是,北极平流层臭氧的变化与北半球中高纬度气候变化之间的关系相比南半球要更加复杂,需要更为深入的研究。  相似文献   

19.
Wilhelm May 《Climate Dynamics》2008,31(2-3):283-313
In this study, concentrations of the well-mixed greenhouse gases as well as the anthropogenic sulphate aerosol load and stratospheric ozone concentrations are prescribed to the ECHAM5/MPI-OM coupled climate model so that the simulated global warming does not exceed 2°C relative to pre-industrial times. The climatic changes associated with this so-called “2°C-stabilization” scenario are assessed in further detail, considering a variety of meteorological and oceanic variables. The climatic changes associated with such a relatively weak climate forcing supplement the recently published fourth assessment report by the IPCC in that such a stabilization scenario can only be achieved by mitigation initiatives. Also, the impact of the anthropogenic sulphate aerosol load and stratospheric ozone concentrations on the simulated climatic changes is investigated. For this particular climate model, the 2°C-stabilization scenario is characterized by the following atmospheric concentrations of the well-mixed greenhouse gases: 418 ppm (CO2), 2,026 ppb (CH4), and 331 ppb (N2O), 786 ppt (CFC-11) and 486 ppt (CFC-12), respectively. These greenhouse gas concentrations correspond to those for 2020 according to the SRES A1B scenario. At the same time, the anthropogenic sulphate aerosol load and stratospheric ozone concentrations are changed to the level in 2100 (again, according to the SRES A1B scenario), with a global anthropogenic sulphur dioxide emission of 28 TgS/year leading to a global anthropogenic sulphate aerosol load of 0.23 TgS. The future changes in climate associated with the 2°C-stabilization scenario show many of the typical features of other climate change scenarios, including those associated with stronger climatic forcings. That are a pronounced warming, particularly at high latitudes accompanied by a marked reduction of the sea-ice cover, a substantial increase in precipitation in the tropics as well as at mid- and high latitudes in both hemispheres but a marked reduction in the subtropics, a significant strengthening of the meridional temperature gradient between the tropical upper troposphere and the lower stratosphere in the extratropics accompanied by a pronounced intensification of the westerly winds in the lower stratosphere, and a strengthening of the westerly winds in the Southern Hemisphere extratropics throughout the troposphere. The magnitudes of these changes, however, are somewhat weaker than for the scenarios associated with stronger global warming due to stronger climatic forcings, such as the SRES A1B scenario. Some of the climatic changes associated with the 2°C-stabilization are relatively strong with respect to the magnitude of the simulated global warming, i.e., the pronounced warming and sea-ice reduction in the Arctic region, the strengthening of the meridional temperature gradient at the northern high latitudes and the general increase in precipitation. Other climatic changes, i.e., the El Niño like warming pattern in the tropical Pacific Ocean and the corresponding changes in the distribution of precipitation in the tropics and in the Southern Oscillation, are not as markedly pronounced as for the scenarios with a stronger global warming. A higher anthropogenic sulphate aerosol load (for 2030 as compared to the level in 2100 according to the SRES A1B scenario) generally weakens the future changes in climate, particularly for precipitation. The most pronounced effects occur in the Northern Hemisphere and in the tropics, where also the main sources of anthropogenic sulphate aerosols are located.  相似文献   

20.
Results are presented from two versions of a global R15 atmospheric general circulation model (GCM) coupled to a nondynamic, 50-m deep, slab ocean. Both versions include a penetrative convection scheme that has the effect of pumping more moisture higher into the troposphere. One also includes a simple prescribed functional dependence of cloud albedo in areas of high sea-surface temperature (SST) and deep convection. Previous analysis of observations has shown that in regions of high SST and deep convection, the upper-level cloud albedos increase as a result of the greater optical depth associated with increased moisture content. Based on these observations, we prescribe increased middle- and upper-level cloud albedos in regions of SST greater than 303 K where deep convection occurs. This crudely accounts for a type of cloud optical property feedback, but is well short of a computed cloud-optical property scheme. Since great uncertainty accompanies the formulation and tuning of such schemes, the prescribed albedo feedback is an intermediate step to examine basic feedbacks and sensitivities. We compare the two model versions (with earlier results from the same model with convective adjustment) to a model from the Canadian Climate Centre (CCC) having convective adjustment and a computed cloud optical properties feedback scheme and to several other GCMs. The addition of penetrative convection increases tropospheric moisture, cloud amount, and planetary albedo and decreases net solar input at the surface. However, the competing effect of increased downward infrared flux (from increased tropospheric moisture) causes a warmer surface and increased latent heat flux. Adding the prescribed cirrus albedo feedback decreases net solar input at the surface in the tropics, since the cloud albedos increase in regions of high SST and deep convection. Downward infrared radiation (from increased moisture) also increases, but this effect is overpowered by the reduced solar input in the tropics. Therefore, the surface is somewhat cooler in the tropics, latent heat flux decreases, and global average sensitivity to a doubling of CO2 with regard to temperature and precipitation/evaporation feedback is reduced. Similar processes, evident in the CCC model with convective adjustment and a computed cloud optical properties feedback scheme, occur over a somewhat expanded latitudinal range. The addition of penetrative convection produces global effects, as does the prescribed cirrus albedo feedback, although the strongest local effects of the latter occur in the tropics.Portions of this study are supported by the Office of Health and Environmental Research of the U.S. Department of Energy as part of its Carbon Dioxide Research Program, and by the Electric Power Research Institute as part of its Model Evaluation Consortium for Climate Assessment ProjectThe National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号