首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
基于正则化方法的高频地波雷达海浪方向谱反演   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种从高频地波雷达海面回波谱中提取海浪方向谱的新方法:基于高频电波海洋探测基本原理将线性化后的非线性积分方程离散为矩阵方程组,通过引入正则化数学模型将不适定方程转化为正规方程,然后采用奇异值分解法求解.对于正则化方法中正则化参数,采用L曲线法来确定.为了验证本文算法的有效性,分别在单部雷达和双部雷达探测下进行了不同噪声水平下的数值模拟,结果表明了该正则化反演方法的有效性.文中还给出了实测数据分析初步结果.该算法的工程性应用还需进一步研究.对于实际的地波雷达海浪反演具有良好的应用前景.  相似文献   

2.
This article presents long period ocean wave (swell) frequencies inverted from a 13-month dataset of high-frequency (HF) phased array radars and an assessment of these estimates by comparison with WAVEWATCH III model data. The method of swell frequency inversion from high-frequency radar sea echo Doppler spectra is described. Radar data were collected from a two-site HF Wellen Radar (WERA) radar system on the west coast of Brittany (France) operating at 12 MHz. A standard beam-forming processing technique has been used to obtain Doppler spectra of processed radar cells. Swell frequencies are obtained from the frequencies of particular spectral peaks of the second-order continuum in hourly averaged Doppler spectra. The data coverage of effective Doppler spectra considered for swell frequency estimates shows the influence of islands and shallow water effects. Swell estimates from both radar stations are in good agreement. The comparison of radar-derived results to WAVEWATCH III (WW3) estimates shows that radar measurements agree quite well with model results. The bias and standard deviation between two estimates are very small for swells with frequency less than 0.09 Hz (period >11 s), whereas radar estimates are generally lower than model estimates for shorter swells, along with higher standard deviation. Statistical analysis suggests that radar measurement uncertainty explains most of the difference between radar and model estimates. For each swell event, time series of frequency exhibits a quasi-linear frequency increase which is associated with the dispersive property of wave phase velocity. The use of swell frequency estimates from both radars on common radar cells only slightly increases the accuracy of swell frequency measurement.  相似文献   

3.
Mesospheric observations were obtained by the EISCAT UHF and VHF radars during the solar proton event of March 1990. We present the first comparison of incoherent-scatter spectral measurements from the middle mesosphere using simultaneous, co-located observations by the two radars. VHF spectra observed with a vertical antenna were found to be significantly narrower than model predictions, in agreement with earlier UHF results. For antenna pointing directions that were significantly away from the vertical, the wider VHF radar beam gave rise to broadening of the observed spectra due to vertical shears in the horizontal wind. In this configuration, UHF spectral measurements were found to be more suitable for aeronomical applications. Both radar systems provide consistent and reliable estimates of the neutral wind. Spectral results using both the multipulse and pulse-to-pulse schemes were intercompared and their suitability for application to combined mesosphere - lower thermosphere studies investigated.  相似文献   

4.
Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.  相似文献   

5.
Possible effects of signal reception from different electrojet heights in a skewness of auroral coherent spectra are studied assuming that the “inherent” spectral line due to plasma turbulence is of type-2 and symmetrical. For reasonable ionospheric parameters, the altitude integrated spectra are expected to be skewed negatively for positive mean Doppler shift, in agreement with radar observations at small aspect angles. However, the spectra could be skewed positively if the turbulent layer or the electron density profile is shifted to high altitudes of \sim120 km. This change of spectral shape will not be observed experimentally if, at the same time, either the electron collision frequency is enhanced or the “inherent” spectral width is increased. Observational results are discussed in view of the predictions given.  相似文献   

6.
T. Ogawa 《Annales Geophysicae》1997,14(12):1454-1461
We briefly overview the radar observations that have been made for 30 years at Syowa Station, Antarctica for studying small-scale electron-density irregularities in the southern high-latitude E- and F-region ionosphere. Some observational results (i.e., long-term variations of radio aurora, Doppler spectra with narrow spectral widths and low Doppler velocities, and simultaneous observations of radar and optical auroras) from VHP radars capable of detecting 1.3- to 3-m scale irregularities are presented. A new 50-MHz radar system equipped with phased-antenna arrays began operation in February 1995 to observe two-dimensional behaviors of E-region irregularities. An HF radar experiment also began in February 1995 to explore decameter-scale E- and F-region irregularities in the auroral zone and polar cap. These two radars will contribute to a better understanding of the ionospheric irregularities and ionospheric physics at southern high latitudes.  相似文献   

7.
Wind-speed inversion from HF radar first-order backscatter signal   总被引:2,自引:1,他引:1  
Land-based high-frequency (HF) radars have the unique capability of continuously monitoring ocean surface environments at ranges up to 200 km off the coast. They provide reliable data on ocean surface currents and under slightly stricter conditions can also give information on ocean waves. Although extraction of wind direction is possible, estimation of wind speed poses a challenge. Existing methods estimate wind speed indirectly from the radar derived ocean wave spectrum, which is estimated from the second-order sidebands of the radar Doppler spectrum. The latter is extracted at shorter ranges compared with the first-order signal, thus limiting the method to short distances. Given this limitation, we explore the possibility of deriving wind speed from radar first-order backscatter signal. Two new methods are developed and presented that explore the relationship between wind speed and wave generation at the Bragg frequency matching that of the radar. One of the methods utilizes the absolute energy level of the radar first-order peaks while the second method uses the directional spreading of the wind generated waves at the Bragg frequency. For both methods, artificial neural network analysis is performed to derive the interdependence of the relevant parameters with wind speed. The first method is suitable for application only at single locations where in situ data are available and the network has been trained for while the second method can also be used outside of the training location on any point within the radar coverage area. Both methods require two or more radar sites and information on the radio beam direction. The methods are verified with data collected in Fedje, Norway, and the Ligurian Sea, Italy using beam forming HF WEllen RAdar (WERA) systems operated at 27.68 and 12.5 MHz, respectively. The results show that application of either method requires wind speeds above a minimum value (lower limit). This limit is radar frequency dependent and is 2.5 and 4.0 m/s for 27.68 and 12.5 MHz, respectively. In addition, an upper limit is identified which is caused by wave energy saturation at the Bragg wave frequency. Estimation of this limit took place through an evaluation of a year long database of ocean spectra generated by a numerical model (third generation WAM). It was found to be at 9.0 and 11.0 m/s for 27.68 and 12.5 MHz, respectively. Above this saturation limit, conventional second-order methods have to be applied, which at this range of wind speed no longer suffer from low signal-to-noise ratios. For use in operational systems, a hybrid of first- and second-order methods is recommended.  相似文献   

8.
Long period variations in the mesosphere wind have been observed for some time by ground-based radars. These planetary scale disturbances have reoccurring periods at or near 5–7, 10, and 16 days and at times dominate the wind field at mesospheric heights. Recently, due to the continuous operation of several of the MLT radars and the availability of measurements from the UARS satellite, it has been possible to compare observations during periods of large planetary wave activity. Wind measurements from four MLT radars; the meteor radars at Durham, NH (43°N,71°W) and Sheffield, UK (53°N,2°W) and MF radars at Urbana, IL (40°N,88°W) and Saskatoon, Canada (52°N,107°W) were compared with the HRDI measurements during intervals when 7-d planetary waves were present. Wind data from the HRDI instrument on UARS has been processed to show the latitudinal structure and the seasonal variation of the planetary scale wind variation. The phases and amplitudes of the waves as determined by both the satellite and the radars are in good agreement. The ground-based measurements show large modulation of tides by these long period components, and also show comparable responses of these low frequency components over thousands of kilometers. The satellite and the ground-based results both indicate a preponderance of wave occurrence during the equinoxes and at preferred latitudes.  相似文献   

9.
The Bay of Biscay, located in the Northeast Atlantic Ocean, is exposed to energetic waves coming from the open ocean that have crucial effects on the coast. Knowledge of the wave climate and trends in this region are critical to better understand the last decade’s evolution of coastal hazards and morphology and to anticipate their potential future changes. This study aims to characterize the long-term trends of the present wave climate over the second half of the twentieth century in the Bay of Biscay through a robust and homogeneous intercomparison of five-wave datasets (Corrected ERA-40 (C-ERA-40), ECMWF Reanalysis Interim (ERA-Interim), Bay Of Biscay Wave Atlas (BOBWA-10kH), ANEMOC, and Bertin and Dodet 2010)). The comparison of the quality of the datasets against offshore and nearshore measurements reveals that at offshore locations, global reanalyses slightly underestimate wave heights, while regional hindcasts overestimate wave heights, especially for the highest quantiles. At coastal locations, BOBWA-10kH is the dataset that compares the best with observations. Concerning long time-scale features, the comparison highlights that the main significant trends are similarly present in the five datasets, especially during summer for which there is an increase of significant wave heights and mean wave periods (up to +15 cm and +0.6 s over the period 1970–2001) as well as a southerly shift of wave directions (around ?0.4° year?1). Over the same period, an increase of high quantiles of wave heights during the autumn season (around 3 cm year?1 for 90th quantile of significant wave heights (SWH90)) is also apparent. During winter, significant trends are much lower than during summer and autumn despite a slight increase of wave heights and periods during 1958–2001. These trends can be related to modifications in the wave-type occurrence. Finally, the trends common to the five datasets are discussed by analyzing the similarities with centennial trends issued from longer time-scale studies and exploring the various factors that could explain them.  相似文献   

10.
A simple new technique for measuring gravity-wave activity using meteor radars is described. The technique uses the variance of horizontal wind velocities measured by individual meteors as a proxy for the activity of the gravity-wave field. It is sensitive to gravity waves with horizontal wavelengths of up to about 400 km and periods up to about 3 h. The technique can be used to investigate the vertical structure of the gravity-wave field at heights between approximately 80 and 100 km and with a time resolution of approximately 6 h. The technique is demonstrated using data from an all-sky meteor radar based at Rothera, Antarctica (68°S, 68°W). Observations made over Rothera for 2006 and 2007 reveal a seasonal behaviour with a semi-annual cycle in wave activity. Wave activity maximises in summer and winter and minimises at the equinoxes. Monthly mean gravity-wave activity increases with height in all seasons except in summer when gravity-wave variances show little or no increase with height below 90 km. Comparisons between the gravity-wave activity determined by this meteor-variance technique and other measurements at similar latitudes in the Antarctic reveal generally good agreement.  相似文献   

11.
The wave climate of Liverpool Bay—observations and modelling   总被引:1,自引:1,他引:0  
Directional wave measurements have been made in Liverpool Bay by means of wave buoys and acoustic instruments within the footprint of a phased-array high frequency (HF) radar system, which measures currents and waves. Several years of data have now been collected and are supplemented by an 11-year wave model hindcast. Wave parameters have been derived from the various instruments and compared: the directional waverider buoy is taken to provide the ground truth, confirming the good observations obtained from the ADCP; the HF radar wave data have a positive bias, while the model data have a negative bias. The variation of wave climate over various time-scales from seasonal and inter-annual to inter-decadal is examined. Significant wave–current interactions may occur in this area of shallow water and high tidal range and the measurements provide a good test of coupled hydrodynamic-wave models. The waves are mainly fetch-limited: largest events are due to depressions, which track across the UK from SW, generating westerly and WNW winds in the right rear quadrant. Hence, the future extreme wave events will be closely related to future North Atlantic storm tracks. Projections of 50-year return period wave heights differ between different instruments and model datasets. The future wave climate of Liverpool Bay is not expected to change much from the present day; although a slight increase in the severity of the most extreme events is projected, the frequency of extreme wind and wave events in general is slightly reduced. There is evidence for variability on decadal time-scales, with some correlation with the North Atlantic oscillation.  相似文献   

12.
Besides their common use in atmospheric studies, Doppler radars are promising tools for the active remote sensing of volcanic eruptions but were little applied to this field. We present the observations made with a mid-power UHF Doppler radar (Voldorad) during a 7-h Strombolian eruption at the SE crater of Mount Etna on 11–12 October 1998. Main characteristics of radar echoes are retrieved from analysis of Doppler spectra recorded in the two range gates on either side of the jet axis. From the geometry of the sounding, the contribution of uprising and falling ejecta to each Doppler spectrum can be discriminated. The temporal evolution of total power backscattered by uprising targets is quite similar to the temporal evolution of the volcanic tremor and closely reproduces the overall evolution of the eruption before, during and after its paroxysm. Moreover, during the sharp decrease of eruptive activity following the paroxysm, detailed analysis of video (from camera recording), radar and seismic measurements reveals that radar and video signals start to decrease simultaneously, approximately 2.5 min after the tremor decline. This delay is interpreted as the ascent time through a magma conduit of large gas slugs from a shallow source roughly estimated at about 500 m beneath the SE crater. Detailed analysis of eruptive processes has been also made with Voldorad operating in a high sampling rate mode. Signature of individual outburst is clearly identified on the half part of Doppler spectra corresponding to rising ejecta: temporal variations of the backscattered power exhibit quasi periodic undulations, whereas the maximum velocity measured on each spectrum displays a sharp peak at the onset of each outburst followed by a slow decay with time. Periodicity of power variations (between 3.8 and 5.5 s) is in agreement with the occurrence of explosions visually observed at the SE vent. Maximum vertical velocities of over 160 m s–1 were measured during the paraoxysmal stage and the renewed activity. Finally, by using a simplified model simulating the radar echoes characteristics, we show that when Voldorad is operating in high sampling rate mode, the power and maximum velocity variations are directly related to the difference in size and velocity of particles crossing the antenna beam.Editorial responsibility: A. Woods  相似文献   

13.
Detailed comparisons have been completed between the MF radars (MFR) in the Canadian prairies and three other systems: two ground-based Fabry-Perot interferometers (FPI) and the UARS high resolution Doppler imager (HRDI) system. The radars were at Sylvan Lake (52°N, 114°W), Robsart (49°N, 109°W) and the main continuing facility is at Saskatoon (52°N, 107°W). Statistical comparisons of hourly mean winds (1988–1992) for the Saskatoon MFR and FPI (557.7 nm green line) using scatter plots, wind speed-ratios, and direction-difference histograms show excellent agreement for Saskatoon. No serious biases in speeds or directions occur at the height of best agreement, 98 km. If anything, the MFR speeds appear bigger. The same applies to the Sylvan Lake MFR and Calgary FPI, where the best height is 88 km. In both cases these are close to the preferred heights for the emission layers. Differences between measurements seen on individual days are likely related to the influence of gravity waves (GW) upon the optical and radar systems, each of which have inherent spatial averaging (350, 50 km respectively), as well as the spatial difference between the nominal measurement locations. For HRDI, similar statistical comparisons are made, using single-overpass satellite winds and hourly means (to improve data quality) from MFR. Heights of best agreement, based upon direction-difference histograms, are shown; there is a tendency, beginning near 87 km, for these MFR heights to be 2 or 3 km greater than the HRDI heights. Speeds at these heights are typically larger for the satellite (MFR/HRDI = 0.7-0.8). Reasons for the differences are investigated. It is shown that the estimated errors and short-term (90 min) differences are larger for HRDI than for the MFR, indicating more noise or GW contamination. This leads to modest but significant differences in median speed-ratio (MFR/HRDI < 1). Also, comparison of the two systems is made under conditions when they agree best and when they show large disagreement. For the latter cases both systems show higher relative errors, and the HRDI vectors are frequently small. It is suggested that spatial or temporal GW wind fluctuations are the likely cause of the larger HRDI-MFR disagreement when wind speeds are small. No satisfactory explanation exists for the overall discrepancy is speeds between the MFR and HRDI.  相似文献   

14.
VHF wind-profiling radars often measure a decrease of echo power with zenith angle, which can be explained from in situ measurements of horizontal layering or anisotropy of metre-scale temperature structure in the atmosphere. There can also be an azimuthal variation of echo power, which is increased in an azimuth opposite to the vertical shear vector of horizontal wind. This paper checks if the azimuth variation can also be linked to in situ observations of temperature structure, using aircraft flights in the tropopause region near a VHF radar. At heights where VHF radar measures wind shear and aspect sensitivity, there can be an asymmetry in the probability distribution of horizontal gradient of potential temperature, for horizontal scale of e.g. hundreds of metres. The asymmetry is often of opposite sign for up-shear and down-shear flights, and less when VHF echoes are isotropic instead of aspect sensitive. The range of horizontal scales with asymmetry can be used to distinguish e.g. sheared anisotropic turbulence and Kelvin–Helmholtz instability as causes of azimuthal VHF echo power variations.  相似文献   

15.
Abstract

Theoretical studies predict a parametric instability of finite-amplitude internal gravity waves which hitherto has been observed only in laboratory experiments. The occurrence of this process in the atmosphere is of basic interest because finite-amplitude gravity waves, which are almost ubiquitous especially at upper atmospheric heights, would produce unstable flows even at large Richardson numbers. Maximum entropy power spectra of a strong internal gravity wave in the thermosphere, which was generated by a volcanic eruption and detected on records of the Doppler shift of high-frequency radio waves, in fact show good agreement with the spectra of synthetic Doppler records obtained from a calculated unstable gravity wave. The frequencies and wavenumbers observed in the gravity wave domain satisfy in particular the theoretically predicted resonance conditions. The observed Doppler records also show two significant lines in the acoustic domain which probably result from a nonlinear interaction with the basic gravity wave. It is suggested that acoustic double peaks, which are commonly observed in high-frequency Doppler spectra in the presence of nearby thunderstorms, represent parametric instabilities of internal gravity waves generated by penetrative cumulus convection.  相似文献   

16.
Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magneto spheric cavity modes whose resonant frequencies are independent of latitude. Fieldline resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.  相似文献   

17.
The skewness of broad Type 2-like spectra has been studied using data collected by two orthogonal CW 50-MHz radio links with co-located scattering volumes. Geometrical aspect angles of observations were about 10. One short event was considered. For this event, the electron flow direction was changing periodically (period about 9 minutes) presumably due to the passage of a magnetospheric MHD wave through the ionosphere. It was found that for the radar observations along the electrojet flow, the skewness had the same sign as the mean Doppler shift with average absolute values in between 0.5–1.0. For observations perpendicular to the electrojet flow, spectra were more symmetrical (average skewness was around 0) and the sign of the skewness was sometimes opposite to the sign of the mean Doppler shift. These observations are interpreted in terms of contribution from both the Farley-Buneman and gradient-drift instabilities to the resultant spectrum. Differences with radar observations at small aspect angles are discussed.  相似文献   

18.
Wave climate plays an important role in the air-sea interaction over marginal seas. Extreme wave height provides fundamental information for various ocean engineering practices, such as hazard mitigation, coastal structure design, and risk assessment. In this paper, we implement a third generation wave model and conduct a high-resolution wave hindcast over the East China Sea to reconstruct a 15-year wave field from 1988 to 2002 for derivation of monthly mean wave parameters and analysis of extreme wave conditions. The numerical results of the wave field are validated through comparison with satellite altimetry measurements, low-resolution reanalysis, and the ocean wave buoy record. The monthly averaged wave height and wave period show seasonal variation and refined spatial patterns of surface waves in the East China Sea. The climatological significant wave height and mean wave period decrease from the open ocean in the southeast toward the continental area in the northwest, with the pattern generally following the bathymetry. Extreme analysis on the significant wave height at the buoy station indicates the hindcast data underestimate the extreme values relative to the observations. The spatial pattern of extreme wave height shows single peak emerges at the southwest of Ryukyu Island although a wind forcing with multi-core structure at the extreme is applied.  相似文献   

19.
Severe sea states in the North Sea present a challenge to wave forecasting systems and a threat to offshore installations such as oil and gas platforms and offshore wind farms. Here, we study the ability of a third-generation spectral wave model to reproduce winter sea states in the North Sea. Measured and modeled time series of integral wave parameters and directional wave spectra are compared for a 12-day period in the winter of 2013–2014 when successive severe storms moved across the North Atlantic and the North Sea. Records were obtained from a Doppler radar and wave buoys. The hindcast was performed with the WAVEWATCH III model (Tolman 2014) with high spectral resolution both in frequency and direction. A good general agreement was obtained for integrated parameters, but discrepancies were found to occur in spectral shapes.  相似文献   

20.
“龙王”台风期间高频地波雷达数据分析   总被引:2,自引:0,他引:2       下载免费PDF全文
OSMAR2003岸基高频地波雷达系统由武汉大学电波传播实验室研制并于2005年应用于福建沿海,能够全天候、大面积探测台湾海峡内海洋表面动力学要素. 本文首先将0519号台风期间高频地波雷达的测量数据与局部点的浮标数据对比,然后又对大面积海域内雷达测量风场与uikSCAT卫星遥感数据进行了对比分析. 结果表明高频地波雷达较好地反映了台风期间台湾海峡内风场的空间分布及其发展变化情况,具有一定的灾害性海洋天气监测能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号