首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
In a previous paper (Paper I), several superposed Weyl solutions of Einstein equations were investigated that might have some astrophysical relevance. We drew the gravitational field lines in the superposed space–times and the distortions of the Schwarzschild event horizon induced by the additional matter. Here we are concerned with the motion of free test particles in the same fields. In particular, the influence of the parameters (mass and location) of the additional sources on the positions of important circular equatorial geodesics is studied.  相似文献   

4.
The properties of four superposed static axisymmetric (Weyl) space–times are illustrated by plotting their gravitational field lines and the shapes of their event horizons. The superpositions considered represent multiple Weyl systems, which are the most realistic astrophysically: the Schwarzschild black hole and the Appell ring are chosen as 'background' sources (each of them bears some features of the non -static Kerr source), and the Bach–Weyl ring and the 'annular' disc (inverted first Morgan–Morgan disc) of Lemos & Letelier are considered in their equatorial planes as additional sources. We study the influence of the parameters of additional sources on the fields of the central bodies.  相似文献   

5.
6.
7.
8.
Equations of fully general relativistic radiation hydrodynamics in Kerr space–time are derived. While the interactions between matter and radiation are introduced in the comoving frame, the derivatives used when describing the global evolutions of both the matter and the radiation are given in the Boyer–Lindquist frame (BLF) which is a frame fixed to the coordinate describing the central black hole. Around a rotating black hole, both the matter and the radiation are influenced by the frame-dragging effects due to the black hole's rotation. As a fixed frame, we use the locally non-rotating reference frame (LNRF) which is one of the orthonormal frame. While the special relativistic effects such as beaming effects are introduced by the Lorentz transformation connecting the comoving frame and the LNRF, the general relativistic effects such as frame dragging and gravitational redshift are introduced by the tetrads connecting the LNRF and the BLF.  相似文献   

9.
10.
11.
Gravitational wave signal characteristics from a binary black hole system in which the companion moves through the accretion disc of the primary are studied. We chose the primary to be a super-massive  ( M = 108 M)  Kerr black hole and the companion to be a massive black hole  ( M = 105 M)  to clearly demonstrate the effects. We show that the drag exerted on the companion by the disc is sufficient to reduce the coalescence time of the binary. The drag is primarily due to the fact that the accretion disc on a black hole deviates from a Keplerian disc and becomes sub-Keplerian due to inner boundary condition on the black hole horizon. We consider two types of accretion rates on to the companion. The companion is deeply immersed inside the disc and it can accrete at the Bondi rate which depends on the instantaneous density of the disc. However, an accretion disc can also form around the smaller black hole and it can accrete at its Eddington rate. Thus, this case is also studied and the results are compared. We find that the effect of the disc will be significant in reducing the coalescence time and one needs to incorporate this while interpreting gravitational wave signals emitted from such a binary system.  相似文献   

12.
13.
14.
15.
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates.  相似文献   

16.
In a novel approach to studying viscous accretion flows, viscosity has been introduced as a perturbative effect, involving a first-order correction in the α-viscosity parameter. This method reduces the problem of solving a second-order non-linear differential equation (Navier–Stokes equation) to that of an effective first-order equation. Viscosity breaks down the invariance of the equilibrium conditions for stationary inflow and outflow solutions, and distinguishes accretion from wind. Under a dynamical systems classification, the only feasible critical points of this 'quasi-viscous' flow are saddle points and spirals. On large spatial scales of the disc, where a linearized and radially propagating time-dependent perturbation is known to cause a secular instability, the velocity evolution equation of the quasi-viscous flow has been transformed to bear a formal closeness with Schrödinger's equation with a repulsive potential. Compatible with the transport of angular momentum to the outer regions of the disc, a viscosity-limited length-scale has been defined for the full spatial extent over which the accretion process would be viable.  相似文献   

17.
18.
We show that it is possible for the information paradox in black hole evaporation to be resolved classically. Using standard junction conditions, we attach the general closed spherically symmetric dust metric to a space–time satisfying all standard energy conditions but with a single point future c-boundary. The resulting Omega Point space–time, which has NO event horizons, nevertheless has black hole type trapped surfaces and hence black holes. However, since there are no event horizons, information eventually escapes from the black holes. We show that a scalar quintessence field with an appropriate exponential potential near the final singularity would give rise to an Omega Point final singularity.  相似文献   

19.
We performed detailed calculations of the relativistic effects acting on both the reflection continuum and the iron line from accretion discs around rotating black holes. Fully relativistic transfer of both illuminating and reprocessed photons has been considered in Kerr space–time. We calculated overall spectra, line profiles and integral quantities, and present their dependences on the black hole angular momentum. We show that the observed EW of the lines is substantially enlarged when the black hole rotates rapidly and/or the source of illumination is near above the hole. Therefore, such calculations provide a way to distinguish between different models of the central source.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号