首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The emission from individual X-ray sources in the Chandra Deep Fields and XMM – Newton Lockman Hole shows that almost half of the hard X-ray background above 6 keV is unresolved and implies the existence of a missing population of heavily obscured active galactic nuclei (AGN). We have stacked the 0.5–8 keV X-ray emission from optical sources in the Great Observatories Origins Deep Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these galaxies, which are individually undetected in X-rays, are hosting the hypothesized missing AGN. In the 0.5–6 keV energy range, the stacked-source emission corresponds to the remaining 10–20 per cent of the total background – the fraction that has not been resolved by Chandra . The spectrum of the stacked emission is consistent with starburst activity or weak AGN emission. In the 6–8 keV band, we find that upper limits to the stacked X-ray intensity from the GOODS galaxies are consistent with the ∼40 per cent of the total background that remains unresolved, but further selection refinement is required to identify the X-ray sources and confirm their contribution.  相似文献   

2.
We present predictions for the counts of extragalactic sources, the contributions to fluctuations and their angular power spectrum in each channel foreseen for the Planck Surveyor (formerly COBRAS/SAMBA ) mission. The contribution to fluctuations owing to clustering of both radio and far-IR sources is found to be generally small in comparison with the Poisson term; however the relative importance of the clustering contribution increases and may eventually become dominant if sources are identified and subtracted down to faint flux limits. The central Planck frequency bands are expected to be 'clean': at high galactic latitude (| b | > 20°), where the reduced galactic noise does not prevent the detection of the extragalactic signal, only a tiny fraction of pixels is found to be contaminated by discrete extragalactic sources. Moreover, the 'flat' angular power spectrum of fluctuations resulting from extragalactic sources substantially differs from that of primordial fluctuations; therefore, the removal of contaminating signals is eased even at frequencies where point sources give a sizeable contribution to the foreground noise.  相似文献   

3.
A detailed study of the infrared radiation from galactic X-ray sources indicates that the galactic bulge sources and X-ray binary sources have different infrared emission characteristics. The galactic bulge sources seem to show a power law dependence between the X-ray flux and the infrared flux emitted by the X-ray source. The results presented suggests that the infrared radiation in the galactic bulge sources is dominated by free-free radiation and, in the case of eclipsing binary sources, the black-body emission from the early-type companion star contributes significantly to the infrared radiation.  相似文献   

4.
I use ASCA data to investigate the 2–10 keV X-ray emission of active galactic nuclei (AGN) taken from the ROSAT International X-ray Optical Survey (RIXOS). I find that the integrated spectrum of these faint, soft X-ray-selected AGN in the 2–10 keV band is harder (best-fitting α = 0.8 ± 0.1) than the slope measured with ROSAT between 0.1 and 2 keV, but softer than the 2–10 keV X-ray background, and consistent with the average 2–10 keV spectrum of bright, nearby Seyfert galaxies. With this spectral slope and using measurements of the AGN contribution to the 1–2 keV X-ray background, I estimate that the AGN percentage contribution to the 2–10 keV background is 0.60 +0.19−0.14 times the AGN percentage contribution to the 1–2 keV background. Hence AGN produce between 12 and 32 per cent of the 2–10 keV X-ray background. This is only the contribution from the types of AGN which are found in soft X-ray surveys; a population of absorbed AGN could represent an additional component of the 2–10 keV X-ray background.  相似文献   

5.
Fermi卫星对GeV能段的河外伽马射线背景(Extragalactic Gamma-ray Background, EGB)进行了较为精确的测量, 极大提高了对高能伽马射线背景的认识, 但是在TeV能段, 使用空间探测器进行观测非常困难, 只能依赖地面伽马射线探测器, 如成像大气切伦科夫望远镜. 目前, 对于TeV能段的河外伽马射线背景的认识还不完善. 使用有低活跃状态能谱的61个TeV源(包含2个星暴星系、6个射电星系以及53个耀变体)的累计流量给出河外TeV伽马射线背景的下限. 结果显示, 低能段(0.5--4.5TeV)流量由两个临近的耀变体Mrk 421和Mrk 501主导, 贡献了大约58%的累计背景流量; 而大于4.5TeV的能段, 由3个已观测到10TeV以上能段流量的极端耀变体H 1426+428、1ES 1959+650以及1ES 0229+200主导. 最后分别探究了星暴星系、射电星系以及耀变体对河外TeV伽马射线背景的贡献, 不同耀变体子类对河外TeV伽马射线背景的贡献以及不同红移区间TeV源对河外伽马射线背景的贡献.  相似文献   

6.
We present a catalog of cross-correlated radio, infrared and X-ray sources using a very restrictive selection criteria with an IDL-based code developed by us. The significance of the observed coincidences was evaluated through Monte Carlo simulations of synthetic sources following a well-tested protocol. We found 3320 coincident radio/X-ray sources with a high statistical significance characterized by the sum of error-weighted coordinate differences. For 997 of them, 2MASS counterparts were found. The percentage of chance coincidences is less than 1%. X-ray hardness ratios of well-known populations of objects were used to provide a crude representation of their X-ray spectrum and to make a preliminary diagnosis of the possible nature of unidentified X-ray sources. The results support the fact that the X-ray sky is largely dominated by Active Galactic Nuclei at high galactic latitudes (|b|≥10°). At low galactic latitudes (|b|≤10°) most of unidentified X-ray sources (∼94%) lie at |b|≤2°. This result suggests that most of the unidentified sources found toward the Milky Way plane are galactic objects. Well-known and unidentified sources were classified in different tables with their corresponding radio/infrared and X-ray properties. These tables are intended as a useful tool for researchers interested in particular identifications.  相似文献   

7.
We present a catalogue of 147 serendipitous X-ray sources selected to have hard spectra ( α <0.5) from a survey of 188 ROSAT fields. Such sources must be the dominant contributors to the X-ray background at faint fluxes. We have used Monte Carlo simulations to verify that our technique is very efficient at selecting hard sources: the survey has 10 times as much effective area for hard sources as it has for soft sources above a 0.5–2 keV flux level of 10−14 erg cm−2 s−1. The distribution of best-fitting spectral slopes of the hard sources suggests that a typical ROSAT hard source in our survey has a spectral slope α ∼0. The hard sources have a steep number flux relation (d N /d S ∝ S − γ with a best-fitting value of γ =2.72±0.12) and make up about 15 per cent of all 0.5–2 keV sources with S >10−14 erg cm−2 s−1. If their N ( S ) continues to fainter fluxes, the hard sources will comprise ∼40 per cent of sources with 5×10−15< S <10−14 erg cm−2 s−1. The population of hard sources can therefore account for the harder average spectra of ROSAT sources with S <10−14 erg cm−2 s−1. They probably make a strong contribution to the X-ray background at faint fluxes and could be the solution to the X-ray background spectral paradox.  相似文献   

8.
A high density of massive dark objects (MDOs), probably supermassive black holes, in the centres of nearby galaxies has been inferred from recent observations. There are various indications that much of the accretion responsible for producing these objects took place in dust-enshrouded active galactic nuclei (AGNs). If so, then measurements of the intensity of background radiation and the source counts in the far-infrared and submillimetre wavebands constrain the temperature of dust in these AGNs. An additional constraint comes from the hard X-ray background, if this is produced by accretion. One possibility is that the dust shrouds surrounding the accreting AGNs are cold, about 30 K. In this event, the dusty AGNs could be some subset of the population of luminous distant sources discovered at 850 μm using the SCUBA array on the James Clerk Maxwell Telescope, as proposed by Almaini, Lawrence & Boyle. An alternative is that the dust shrouds surrounding the accreting AGNs are much hotter (>60 K). These values are closer to the dust temperatures of a number of well-studied low-redshift ultraluminous galaxies that are thought to derive their power from accretion. If the local MDO density is close to the maximum permitted, then cold sources cannot produce this density without the submillimetre background being overproduced if they accrete at high radiative efficiency, and thus a hot population is required. If the dust-enshrouded accretion occurred at similar redshifts to that taking place in unobscured optical quasars, then a significant fraction of the far-infrared background radiation measured by COBE at 140 μm, but very little of the submillimetre background at 850 μm, may have been produced by hot dust-enshrouded AGNs which may have already been seen in recent Chandra X-ray surveys.  相似文献   

9.
A method is proposed to estimate the contribution from Seyfert galaxies and quasars to the diffuse 1 MeV background. First of all, we calculate the contribution from these active galactic nuclei (AGNs) to the 2 keV background using traditional methods. We then choose a suitable spectral X-ray index, which is found to be universal, to find the 1 MeV contribution from these AGNs by extrapolation. Results show that quasars generate about 40% of the 1 MeV background while Seyfert galaxies produce more than 40% taking into account the Penrose Compton Scattering gamma ray emissions. These results indicate that the 1 MeV background is likely to be generated by discrete objects.  相似文献   

10.
Q uick D etection S ystem or qds is a software package that has been developed for detecting point sources in the Planck satellite data as soon as the data become available, a few days after transmission to the Earth. Point sources are detected by filtering the data with a filter defined by the Mexican hat wavelet. An alert is generated on those detections that are found to be interesting, such as prominent flaring, according to the criteria specified to the software. The goal is to detect spectral or flux variability in active galactic nuclei so that instant multifrequency follow-up observations with other instruments could be arranged to study the interesting behaviour.  相似文献   

11.
We use simple energetic arguments to estimate the contribution of massive X-ray binaries and supernova remnants to the cosmic X-ray background (XRB) at energies in excess of 2 keV. Recent surveys have shown that active galactic nuclei (AGN) probably account for most of the hard XRB ( E >2 keV), but there have been many suggestions that star-forming galaxies could emerge at fainter fluxes and perhaps account for a significant fraction of the soft and hard X-ray energy density. Assuming that the formation rate of massive X-ray binaries (MXRBs) traces the global star-formation rate, we find that their integrated contribution to the hard XRB can be estimated and is shown to be small (at less than the 1 per cent level). Similarly, the integrated flux of supernovae (SN) is also shown to be insignificant, or at most comparable to MXRBs. AGN therefore remain the most viable candidates for producing the hard XRB, unless additional processes can be shown to dominate the global hard X-ray emission in distant starburst galaxies.  相似文献   

12.
Population studies of EGRET gamma-ray sources indicate that there is a distinctive population of bright sources at low galactic latitudes. The sources have a distribution consistent with that of young galactic objects, with a concentration toward the inner spiral arms. There is a subgroup that displays strong variability with timescales from days to months. Following an earlier suggestion by Kaufman Bernadó et al. (2002), we explore the possibility that these sources could be high-mass microquasars. Detailed models for the gamma-ray emission that include inverse Compton interactions of electrons in the relativistic jets and photons from all local fields (stellar UV photons, synchrotron photons, soft X-ray photons from the accretion disk, and hard X-ray photons from a corona) are presented. We conclude that microquasars are excellent candidates for the parent population of the subgroup of variable low-latitude EGRET sources.  相似文献   

13.
The spectral and temporal measurements in the hard X-ray region between 20-200 keV not only determines the extended behaviour of thermal X-ray spectrum below 10 keV but also provide a unique insight into the non-thermal processes in relativistic astrophysical plasma. From our present understanding of the X-ray sources, a significant fluxin the 20-200 keV band is expected from a variety of astrophysical phenomena, however, the available spectral data on the galactic and extragalactic X-ray source is very limited. This is mainly due to the fact that sensitivity of the detector systems used for earlier measurements was relatively poor. Since 1997, we have been carrying out a programme of hard X-ray observations galactic and extragalactic sources, in the 20-200 keV energy band using a highly sensitive balloon borne experiment. The X-ray telescope consists of three modules of large area scintillation counters specially configured in the back-to-back geometry and have a combined sensitivity of ∼ 10-6 ph cm-2 s-1 keV-1 for an on-source observations of 3 hrs. A total of 30 hours of ceiling data above an altitude of 3 mbar has been collected in 4 successful balloon flights from Hyderabad, India. Almost a dozen galactic and extragalactic X-ray sources were targeted and tracked during these observations. A positive detection was made in each case and in some cases the observed spectra extended right up to 150 keV. A brief account of the observed spectral and temporal features on some of the sources along with accurate measurement of diffuse background spectrum and a weak gamma ray burst will be presented in the paper. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We provide our estimates of the intensity of the gamma-ray emission with an energy near 0.1 TeV generated in intergalactic space in the interactions of cosmic rays with background emissions. We assume that the cosmic-ray sources are pointlike and that these are active galactic nuclei. The following possible types of sources are considered: remote and powerful ones, at redshifts up to z = 1.1, with a monoenergetic particle spectrum, E = 1021 eV; the same objects, but with a power-law particle spectrum; and nearby sources at redshifts 0 < z ≤ 0.0092, i.e., at distances no larger than 50 Mpc also with a power-law particle spectrum. The contribution of cosmic rays to the extragalactic diffuse gammaray background at an energy of 0.1 TeVhas been found to depend on the type of sources or, more specifically, the contribution ranges from f ? 10?4 to f ≈ 0.1, depending on the source model. We conclude that the data on the extragalactic background gamma-ray emission can be used to determine the characteristics of extragalactic cosmic-ray sources, i.e., their distances and the pattern of the particle energy spectrum.  相似文献   

15.
We have surveyed 188 ROSAT Position Sensitive Proportional Counter (PSPC) fields for X-ray sources with hard spectra ( α <0.5); such sources must be major contributors to the X-ray background at faint fluxes. In this paper we present optical identifications for 62 of these sources: 28 active galactic nuclei (AGN) which show broad lines in their optical spectra (BLAGN), 13 narrow emission line galaxies (NELGs), five galaxies with no visible emission lines, eight clusters and eight Galactic stars.
The BLAGN, NELGs and galaxies have similar distributions of X-ray flux and spectra. Their ROSAT spectra are consistent with their being AGN obscured by columns of 20.5< log( N H/cm−2)<23 . The hard spectrum BLAGN have a distribution of X-ray to optical ratios which is similar to that found for AGN from soft X-ray surveys (1< α OX<2) . However, a relatively large proportion (15 per cent) of the BLAGN, NELGs and galaxies are radio loud. This could be because the radio jets in these objects produce intrinsically hard X-ray emission, or if their hardness is caused by absorption, it could be because radio-loud objects are more X-ray luminous than radio-quiet objects. The eight hard sources identified as clusters of galaxies are the brightest, and softest group of sources and hence clusters are unlikely to be an important component of the hard, faint population.
We propose that BLAGN are likely to constitute a significant fraction of the faint, hard, 0.5–2 keV population and could be important to reproducing the shape of the X-ray background, because they are the most numerous type of object in our sample (comprising almost half the identified sources), and because all our high redshift ( z >1) identified hard sources have broad lines.  相似文献   

16.
I suggest that there are two classes of ultraluminous X-ray sources (ULXs), corresponding to super-Eddington mass inflow in two situations: (a) thermal-time-scale mass transfer in high-mass X-ray binaries, and (b) long-lasting transient outbursts in low-mass X-ray binaries. These two classes are exemplified by SS433 and microquasars like GRS 1915+105 respectively. The observed ULX population is a varying mixture of the two, depending on the star formation history of the host galaxy. ULXs in galaxies with vigorous star formation (such as the Antennae) are generally SS433-like, while ULXs in elliptical galaxies must be of the microquasar type. The latter probably have significantly anisotropic radiation patterns. They should also be variable, but demonstrating this may require observations over decades. The close analogy between models of X-ray binaries and active galactic nuclei (AGN) suggests that there should exist an apparently super-Eddington class of the latter, which may be the ultrasoft AGN, and a set of X-ray binaries with Doppler-boosted X-ray emission. These are presumably a subset of the ULXs, but remain as yet unidentified.  相似文献   

17.
Emission lines have been found in the spectra of seven objects that coincide with the X-ray sources in the spiral galaxy M 101 within 10 arsec box. Five objects are H II regions, one is a star-like source near the galactic center, and another is a distant galaxy projected on the disk of M 101. Three H II regions have a narrow emission line H?? in their spectra, while the spectra of two other H II regions contain a wide emission component that contribute approximately 12% and 2%, respectively, to the H?? flux. The forbidden lines [O III] ?? 500.7 nm and [S II] ?? 671.7 + ?? 673.1 nm in the spectra of all these H II regions have no wide components in their profiles. This suggests that the X-ray sources inside or near the H II regions have only a weak effect (if any) on the optical emission spectra of those H II regions.  相似文献   

18.
We present the results of our optical identifications of a set of X-ray sources from the INTEGRAL and SWIFT all-sky surveys. The optical data have been obtained with the 1.5-m Russian-Turkish Telescope (RTT-150). Nine X-ray sources have been identified with active galactic nuclei (AGNs). Two of them are located in the nearby spiral galaxies MCG-01-05-047 and NGC 973 seen almost edge-on. One source, IGR J16562-3301, is probably a BL Lac object (blazar). The remaining AGNs are observed as the starlike nuclei of spiral galaxies whose spectra exhibit broad emission lines. The relation between the hard X-ray (17–60 keV) luminosity and the [O III] 5007 line luminosity, log L x/L [O III] ≈ 2.1, holds good for most of the AGNs detected in hard X rays. However, the luminosities of some AGNs deviate from this relation. The fraction of such objects can reach ~20%. In particular, the [O III] line flux is lower for two nearby edge-on spiral galaxies. This can be explained by the effect of absorption in the galactic disks.  相似文献   

19.
The International Gamma-Ray Astrophysics Laboratory observatory has been (re-)discovering new X-ray sources since the beginning of nominal operations in early 2003. These sources include X-ray binaries, active galactic nuclei, cataclysmic variables, etc. Amongst the X-ray binaries, the true nature of many of these sources has remained largely elusive, though they seem to make up a population of highly absorbed high-mass X-ray binaries. One of these new sources, IGR J19140+0951, was serendipitously discovered on 2003 March 6 during an observation of the galactic microquasar GRS 1915+105. We observed IGR J19140+0951 with the United Kingdom Infrared Telescope in order to identify the infrared counterpart. Here we present the H - and K -band spectra. We determined that the companion is a B0.5-type bright supergiant in a wind-fed system, at a distance ≲5 kpc.  相似文献   

20.
It is pointed out that the all old supernova remnants are not in general sources of soft X-ray emission. Again it is pointed out that the galactic radio spur (Cetus arc) may be an old supernova remnant but it has already ceased to be a source of X-ray emission. Finally X-ray flux from Vela is ostimated from cooling rate of neutron star by neutrino emission. The results agree approximately with the observed X-ray flux from Vela X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号