首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Divergent plate boundaries, such as the one crossing Iceland, are characterized by a high density of subparallel volcanic fissures and tectonic fractures, collectively termed rift zones, or fissure swarms when extending from a specific volcano. Volcanic fissures and tectonic fractures in the fissure swarms are formed during rifting events, when magma intrudes fractures to form dikes and even feeds fissure eruptions. We mapped volcanic fissures and tectonic fractures in a part of the divergent plate boundary in northern Iceland. The study area is ~1,800 km2, located within and north of the Askja central volcano. The style of fractures changes with distance from Askja. Close to Askja the swarm is dominated by eruptive fissures. The proportion of tectonic fractures gets larger with distance from Askja. This may indicate that magma pressure is generally higher in dikes close to Askja than farther away from it. Volcanic fissures and tectonic fractures are either oriented away from or concentric with the 3–4 identified calderas in Askja. The average azimuth of fissures and fractures in the area deviates significantly from the azimuth perpendicular to the direction of plate velocity. As this deviation decreases gradually northward, we suggest that the effect of the triple junction of the North American, Eurasian and the Hreppar microplate is a likely cause for this deviation. Shallow, tectonic earthquakes in the vicinity of Askja are often located in a relatively unfractured area between the fissure swarms of Askja and Kverkfjöll. These earthquakes are associated with strike-slip faulting according to fault plane solutions. We suggest that the latest magma intrusions into either the Askja or the Kverkfjöll fissure swarms rotated the maximum stress axis from being vertical to horizontal, causing the formation of strike-slip faults instead of the dilatational fractures related to the fissure swarms. The activity in different parts of the Askja fissure swarm is uneven in time and switches between subswarms, as shown by a fissure swarm that is exposed in an early Holocene lava NW of Herðubreið but disappears under a younger (3500–4500 BP) lava flow. We suggest that the location of inflation centres in Askja central volcano controls into which part of the Askja fissure swarm a dike propagates. The size and amount of fractures in the Kollóttadyngja lava shield decrease with increasing elevation. We suggest that this occurred as the depth to the propagating dike(s) was greater under central Kollóttadyngja than under its flanks, due to topography.  相似文献   

2.
Rift zones at the divergent plate boundary in Iceland consist of central volcanoes with swarms of fractures and fissures extending away from them. Fissure swarms can display different characteristics, in accordance with their locations within the ∼50-km-wide rift zones. To better discern the characteristics of fissure swarms, we mapped tectonic fractures and volcanic fissures within the Kverkfj?ll volcanic system, which is located in the easternmost part of the Northern Volcanic Rift Zone (NVZ). To do this, we used aerial photographs and satellite images. We find that rifting structures such as tectonic fractures, Holocene volcanic fissures, and hyaloclastite ridges are unevenly distributed in the easternmost part of the NVZ. The Kverkfj?ll fissure swarm extends 60 km north of the Kverkfj?ll central volcano. Holocene volcanic fissures are only found within 20 km from the volcano. The Fjallgarear area, extending north of the Kverkfj?ll fissure swarm, is characterized by narrow hyaloclastite ridges indicating subglacial volcanism. We suggest that the lack of fractures and Holocene volcanic fissures there indicates decreasing activity towards the north in the easternmost part of the NVZ, due to increasing distance from the long-term spreading axis. We argue that arcuate hyaloclastite ridges at the eastern boundary of the Northern Volcanic Rift Zone are mainly formed during deglaciations, when three conditions may occur; firstly, eruption rate increases due to decompression of the mantle. Secondly, the high tensile stresses accumulated during glaciations due to lack of magma supply may be relieved as magma supply increases during deglaciations. Thirdly, faulting may occur during unloading due to differential movements between the thinner and younger Northern Volcanic Rift Zone crust and the thicker and older crust to the east of it.  相似文献   

3.
Extensive measurements of ground deformation at the Krafla volcano, Iceland, have been made since the beginning in 1975 of a series of eruptions and intrusions into the fissure system that extends north and south of the volcano. I concentrate on measurements before and after the eruption of September 1984, the last event of this series when the largest volume of lava was erupted. The patterns of ground deformation associated with the 1984 eruption, determined by precision levelling, electronic distance measurements and lake level observations, were similar to earlier intrusions and eruptions, in that the surface of the volcano subsided and the fissure system widened as magma moved laterally from a shallow central reservoir into the fissure system. The shallow magma reservoir of Krafla continued to expand for about five years after the eruption, but a slow subsidence of the central area began in 1989. Besides the presence of an inflating and deflating shallow magma reservoir at a depth of 2.5 km beneath the Krafla caldera, another inflating magma reservoir may exist at much greater depth below Krafla. The accumulation of compressive strain by numerous rift intrusions and eruptions since 1975 along the flanks of the north-south Krafla fissure swarm is being released slowly and will probably be reflected in the results of deformation measurements near Krafla for the next several decades. The total horizontal extension of the Krafla rift system in 1975–1984 was about 9 m, equal to about 500 years of constant plate divergence. The extension is twice the accumulated divergence since previous rifting events and eruptions in 1724–1729  相似文献   

4.
Frequent distance measurements across the Krafla fissure swarm, North Iceland, recorded the extension accompanying the sequence of rifting events which started in December, 1975, and lasted for 6 years.An 80 to 90 km long section of the fissure swarm extended during this sequence of rifting and volcanic events. Maximum widening of about 8 m occurred 10 to 12 km north of Leirhnjúkur. which is located above the center of the Krafla magma reservoir. From that location, the amount of widening decreased north-wards and is estimated to exceed 2 m where the seismicity indicated the northern termination of the present rifting, off the north coast, about 70 km north of Leirhnjúkur. The amount of widening also decreased southwards and approached zero at 15 to 20 km south of Leirhnjúkur.The ground deformation associated with these rifting events can be summarised as:A narrow strip, 1 to 2 km wide, along the fissure swarm is heavily fractured with numerous open cracks parallel to the fissure swarm. This fractured strip has subsided 2 to 3 m relative to its flanks.The flanks of the fractured zone have been uplifted relative to regions farther away. The uplift is not well constrained, but tilt observations at several locations indicate about 1 m uplift. The flanks of the rift zone have contracted, perpendicular to the fissure swarm. The maximum contractional strain exceeds 300 mm per km.The amount of areal expansion (windening of the fissure swarm times the length of the fractured zone) associated with these rifting events is estimated to be about 0.30 km2. For individual events, the area of expansion has been roungly proportional to the volume of subsidence above the Krafla magma reservoir.If the width of a new dike is equal widening of surface fissures, the ratio of the subsidence volume to the area of expansion for the best observed events indicated a height of a new dike system as 2.4 to 2.8 km. This ratio is significantly less for events of large lava production, but even during these events, the majority of magma leaving the Krafla reservoir was apparently emplaced in subsurface fissures.  相似文献   

5.
In 1874 and 1875 the fissure swarm of Askja central volcano was activated during a major rifting episode. This rifting resulted in a fissure eruption of 0.3 km3 basaltic magma in Sveinagja graben, 50 to 70 km north of Askja and subsequent caldera collapse forming the Oskjuvatn caldera within the main Askja caldera. Five weeks after initial collapse, an explosive mixed magma eruption took place in Askja. On the basis of matching chemistry, synchronous activity and parallels with other rifted central volcanoes, the events in Askja and its lissure swarm are attributed to rise of basaltic magma into a high-level reservoir in the central volcano, subsequent rifting of the reservoir and lateral flow magma within the fissure swarm to emerge in the Sveinagja eruption. This lateral draining of the Askja reservoir is the most plausible cause for caldera collpse. The Sveinagja basalt belong to the group of evolved tholejites characteristie of several Icelandic central volcanoes and associated fissure swarms. Such tholeiites, with Mgvalues in the 40 to 50 tange, represent magmas which have suffered extensive fractional crystallization within the crust. The 12% porphyritic Sveinagja basalt contains phenocrysts of olivine (Fo62–67), plagioclase (An57–62), clinopyroxene (Wo38En46Wo16) and titanomagnetite. Extrusion temperature of the lava, calculated on the basis of olivine and plagioclase geothermometry, is found to be close to 1150°C.  相似文献   

6.
Four volcano-structural stages have accompanied the building of Piton des Neiges: 1) Emergent growth stage of the island. The major eruptive system is a rift zone trending N 120°, associated with dextral strike-slip faults trending N 30° and en-echelon extensional fissures trending N 70°. Breccias and lava tubes produced by aerial and phreatomagmatic activity are injected with outward-dipping dike-swarms along ring fractures suggesting a mechanism analogous to cauldron subsidence. 2) Shield building stages of growth are related to fissures along the main rift zone and three minor rifts trending N 160°, N 45° and N 10°. The summit of the basaltic shield volcano is stretched and collapsed in a graben-like caldera depression along normal and antithetic faults. 3) Differentiated lavas are erupted during two stages separated by the opening of a new caldera corresponding to an explosive activity, a silicic cone-sheet system and a collapse structure. 4) Younger volcanic activity restricted to the inside caldera, has presumably emptied the underlying magma reservoir, building a central volcano collapsed along ring internal dip fractures. The relationships between magnetic anomalies and transform faults in the Mascarene basin and observed fissure and faults on Piton des Neiges suggest that volcanism would be structurally controlled. Active volcanism occurring possibly as a result of tension at the intersection of an northeast-southwest fracture zone with the paleorift axis (dated by the magnetic anomaly 27). Models illustrating the gradual evolution of Piton des Neiges would explain successive caldera collapses controlled by the size, the shape and the depth of the magma reservoir.  相似文献   

7.
2002年8月20日长白山天池火山小震震群研究   总被引:17,自引:2,他引:17  
2002年7~9月,采用15台宽频带流动地震仪在长白山天池火山区进行了近3个月的地震观测,记录到大量发生在天池火山附近的地震和多次小震群。对2002年8月20日的小震群进行了分析,结果表明这些地震发生在长白山天池内的西南部,震源深度距离天池水面一般小于4km深,震群的震中位置呈北西向线性分布。地震记录的频谱分析表明,该震群为典型的火山构造类型地震。在观测中发现HSZ和DZD台的地震记录低频成份丰富,这可能与台站附近的局部介质变化或低速的断层带有关。我们认为震群可能是由火山深部活动诱发的局部断裂活动所引起。  相似文献   

8.
Inward-dipping (cone) sheet swarms and an associated central volcano are well-exposed in the deeply-eroded Tertiary crust of Vatnsdalur, Skagi Peninsula region, northern Iceland. Spatially registered orientations of 389 mafic sheets, mapped in three distinct sheet swarms define both the overall shape and magmatic source of each swarm. The Vatnsdalur sheet swarms consist of planar inward-dipping sheets that collectively define a conical shape rather than a bowl- or trumpet-shape as have been found in swarms in other locations. In the best exposed swarm, three-dimensional projection of mafic sheets into the subsurface defines two distinct foci, which are interpreted as the magmatic sources of two temporally distinct sub-swarms. These results help to establish the influence of inclined sheet intrusion on crustal accretion at central volcanoes. The geometry of the swarm constrains the thickness of material that was added to the crust during sheet intrusion. When combined with estimates of surface relief, we calculate that 2.2 to 4.1 km of subsidence were required beneath the central volcano in order to accommodate the intrusion of the sheet swarm. Similar processes of crustal thickening and subsidence likely occur in a wide variety of both continental rift and mid-ocean ridge systems where magmatic activity is focused at central volcanoes.  相似文献   

9.
During the present tectonic activity in the volcanic rift zone in NE-Iceland it has become apparent that the attenuation of seismic waves is highly variable in the central region of the Krafla volcano. Earthquakes associated with the inflation of the volcano have been used to delineate two regions of high attenuation of S-waves within the caldera. These areas are located near the center of inflation have horizontal dimensions of 1–2 km and are interpreted as the expression of a magma chamber. The top of the chamber is constrained by hypocentral locations and ray paths to be at about 3 km depth. Small pockets of magma may exist at shallower levels. The bottom of the chamber is not well constrained, but appears to be above 7 km depth. Generally S-waves propagate without any anomalous aftenuation through laver 3 (vp=0.5 km sec?1) across the volcanic rift zone in NE-Iceland. The rift zone therefore does not appear to be underlain by an estensive magma chamber at crustal levels. The Krafla magma chamber is a localized feature of the Krafla central volcano.  相似文献   

10.
An introduction to the flood basalt volcanism of the Columbia Plateau and Eastern Iceland is followed by more detailed comparative notes. These stress that the volcanism in the two areas was of the same general type. In both regions sub-aerial fissure eruptions gave rise to very extensive basalt flows, particularly on the Columbia Plateau, where some individual lavas cover more than 10,000 km2. The feeding fissures were localized in swarms, and this led in each case to the development of thick, low, shield-like accumulations of flows over the source areas. Progressive (isostatic?) subsidence of the central parts of the basalt pile accentuated the natural tendency for the succession to be thickest in the neighborhood of the feeding fissure swarms. Related differentiates were erupted from the central parts of the fissure vent areas, while olivine-rich basalt flows were apparently often erupted from the edges of the main swarm. Volcanism in Iceland is clearly directly related to the tensional stresses associated with part of the world ridge-rift system. However, this does not appear to be the case on the Columbia Plateau. Consequently it is suggested that flood basalt volcanism of the type described above is simply related to tensional zones in the crust and not directly to the ridge-rift system.  相似文献   

11.
The Reykjanes Peninsula rift zone in southwest Iceland is a highly oblique segment of the Mid-Atlantic ridge system which accommodates NW–SE extension during rifting episodes that consist of eruptions and normal faulting, and E–W left-lateral shear strain along strike-slip faults during longer amagmatic periods. Dominant tectonic features on the peninsula are a series of generally NE-striking, sub-parallel eruptive fissures and normal faults, and a cross-cutting zone of N–S striking, right-lateral strike-slip faults. The last series of rifting episodes ended in 1227, and a proposed 1,000 year cyclicity predicts the start of a new series of eruptions within the next 200 years. In order to more accurately characterize the nature of eruptions on the Reykjanes Peninsula, we present a new, spatially accurate map of the ∼2,350 year old Sundhnúkur crater row in the western part of the peninsula, which was examined in detail in order to determine the structural controls on crater row geometry and to understand the interactions that take place between eruptive fissures and pre-existing geological structures. Volcanism is sometimes influenced by small perturbations in the surroundings such as gravitational loading, topography, changes in crustal properties or the presence of fault zones, but there are few field examples showing how fissures are influenced by these pre-existing structures. We identify 27 fissure segments, ranging in strike from 006° to 053°, with varying spacing and overlap between them. Significant local variability in strike and stepping sense of segments occurs in proximity to topographic highs as well as within zones of faulting that pre-date the crater row. Strike also varies at the northern end of the crater row as it approaches a region of older crust at the rift margin. Our data support numerical and laboratory modeling results which show that local topography, pre-existing fractures and crustal properties influence the path taken by magma on its way through the shallow crust.  相似文献   

12.
The andesitic stratovolcano Volcán de Colima is one of the most active volcanoes in Mexico. The recent eruption of Volcán de Colima began in November 1998 and was preceded by a 12-month period of seismic activity that included five earthquake swarms. About 600 events with magnitudes from -0.5 to 2.7 were located within a 50-km2 area extending northward from the crater of Volcán de Colima to the Pleistocene volcano Nevado de Colima. The majority of hypocenters within this area did not exceed 5 km depth below sea level. We investigated earthquake focal mechanisms and seismotectonic deformations of the volcanic edifice. Focal mechanisms during four earthquake swarms indicated normal faulting associated with extensional processes, which is in agreement with the general stress regime near the volcano revealed by field measurements of fault slips. Earthquakes in the fifth swarm had focal mechanisms associated with inverse faulting, showing a significant change in the stress situation just before the beginning of the eruption. The calculated deformations varied from 1.3᎒-11 to 2.7᎒-9. The first swarm of November-December 1997 resulted in a N-S horizontal elongation that was two times greater than the E-W horizontal shortening. The volume was also subject to vertical shortening. The second and third swarms, observed in March and May 1998, showed uniform horizontal N-S and E-W elongations accompanied by a vertical elongation of the volume. In June-July 1998, the situation of November-December 1997 was repeated, with N-S horizontal elongation greater than the E-W horizontal shortening of the volume accompanied by intensive vertical shortening. During the last swarm of October-November 1998, slight E-W elongation of the seismic volume was accompanied by strong N-S shortening and very slight vertical shortening. We assume that the seismic activity prior to the 1998 eruption of Volcán de Colima developed along two intersecting tectonic structures, the N-S-trending Colima rift, and the E-W-trending system of faults associated with Tamazula fault. During the first stage (November 1997-July 1998) the passageway for magma was developed along the Tamazula fault system under horizontal extension without any surface manifestation. In October-November 1998, the seismic events began to cluster along the Colima rift structures under predominantly compressional stresses; this condition culminated with the extrusion of andesitic block lava from the summit crater.  相似文献   

13.
Seismic data collected at four volcanoes in Central America during 1973 and 1974 indicate three sources of seismicity: regional earthquakes with hypocentral distances greater than 80 km, earthquakes within 40 km of each volcano, and seismic activity originating at the volcanoes due to eruptive processes. Regional earthquakes generated by the underthrusting and subduction of the Cocos Plate beneath the Caribbean Plate are the most prominent seismic feature in Central America. Earthquakes in the vicinity of the volcanoes occur on faults that appear to be related to volcano formation. Faulting near Fuego and Pacaya volcanoes in Guatemala is more complex due to motion on a major E-W striking transform plate boundary 40 km north of the volcanoes. Volcanic activity produces different kinds of seismic signatures. Shallow tectonic or A-type events originate on nearby faults and occur both singly and in swarms. There are typically from 0 to 6 A-type events per day withb value of about 1.3. At very shallow depths beneath Pacaya, Izalco, and San Cristobal large numbers of low-frequency or B-type events are recorded with predominant frequencies between 2.5 and 4.5 Hz and withb values of 1.7 to 2.9. The relative number of B-type events appears to be related to the eruptive states of the volcanoes; the more active volcanoes have higher levels of seismicity. At Fuego Volcano, however, low-frequency events have unusually long codas and appear to be similar to tremor. High-amplitude volcanic tremor is recorded at Fuego, Pacaya, and San Cristobal during eruptive periods. Large explosion earthquakes at Fuego are well recorded at five stations and yield information on near-surface seismic wave velocities (α=3.0±0.2 km/sec.).  相似文献   

14.
Seismological observations provided consistent information on the course and mechanism of the complicated large fissure eruption at Tolbachik volcano in Kamchatka from July 6, 1975 to December 10, 1976. Seismicity indicates that the initial magnesian basalts were rising ten days before the eruption from depths of more than 20 km. The formation of new feeding dykes was accompanied by earthquake swarms which decreased sharply one to two days before the opening of new eruptive fissures. The seismological data indicate that the main source of the different erupted basalts (2 km3) was a vast system (diameter ca. 80 km) of hydraulically connected magma chambers located in the lower crustal layers or in the crust-mantle transition layer.  相似文献   

15.
长白山天池火山区的震群活动研究   总被引:7,自引:3,他引:4       下载免费PDF全文
2002和2003年夏季流动地震观测揭示,天池火山口附近存在大量的微震活动和一系列震群活动.地震定位结果表明地震主要发生在火山口附近,以震群形式发生的地震全部集中在天池火山口西南部,东北部地震密集区没有观测到震群活动.在夏季以外的其他季节,天池火山区只有一个固定地震台站(CBS)用于地震监测.利用CBS台不同时间的观测纪录,通过波形相关分析发现其他季节的主要震群活动仍然集中在天池西南部.震群的高精度相对定位揭示震源位置沿北西-南东向分布,倾向西南,倾角约80°. 2003年7月13日的震群发生期间,地震震源位置出现从深到浅的迁移现象,同时震源深度较大的地震在不同台站的地震波初动方向几乎全部向上,表明震源具有明显的膨胀分量.考虑到长白山天池火山2002年以来出现明显的地表形变、地球化学异常和谐频地震等现象,我们认为震群活动可能与5 km深度附近存在岩浆热液活动和岩浆增压有关.  相似文献   

16.
A major seismic swarm occurred near Parícutin volcano between the end of May and early July 2006. More than 700 earthquakes with magnitude (M L ) exceeding 2.4 were located. Parícutin, located in the Michoacán–Guanajuato volcanic field in western Mexico, is well known as the site of the 1943 eruption in which a new 400 m cinder cone was constructed in what had been farmland. The 2006 swarm exhibits all of the characteristics typically associated with swarms of volcanic origins. The earthquake rate showed the typical ramp up and ramp down over the course of several days. Magnitudes were evenly distributed in time with a notably high b-value of 2.45. The earthquake locations cluster around a northeast-striking trend extending approximately 6 km. Over the first two weeks, hypocenters migrated steadily a few hundred meters per day, rising from 9 to 5 km depth and moving northeast about 5 km. On approximately June 7, the ascent of hypocenters stalled. For the next three weeks, hypocenters held their depth while migrating laterally back to the southwest. Focal mechanisms during the first part of the swarm reflected the increased stress caused by dike inflation. Following June 7, the stress orientation changed and became more consistent with the inflation of horizontal sill-like structures. Though only limited information is available from the seismic swarm preceding the 1943 eruption, several features, including the swarm duration and magnitude relationships, were comparable to those of the 2006 episode. The strong indicators of a magmatic origin to the 2006 swarm suggest that at this location there are few, if any, traditional seismic discriminants that could be used to distinguish which seismic swarms and dike emplacement events might culminate in eruption.  相似文献   

17.
Maps of the eruptive vents on the active shield volcanoes of Fernandina and Isabela islands, Galapagos, made from aerial photographs, display a distinctive pattern that consists of circumferential eruptive fissures around the summit calderas and radial fissures lower on the flanks. On some volcano flanks either circumferential or radial eruptions have been dominant in recent time. The location of circumferential vents outside the calderas is independent of caldera-related normal faults. The eruptive fissures are the surface expression of dike emplacement, and the dike orientations are interpreted to be controlled by the state of stress in the volcano. Very few subaerial volcanoes display a pattern of fissures similar to that of the Galapagos volcanoes. Some seamounts and shield volcanoes on Mars morphologically resemble the Galapagos volcanoes, but more specific evidence is needed to determine if they also share common structure and eruptive style.  相似文献   

18.
The occurrence time of earthquakes can be anticipated or delayed by external phenomena that induce strain energy changes on the faults. ??Anticipated?? earthquakes are generally called ??triggered??; however, it can be controversial to label a specific earthquake as such, mostly because of the stochastic nature of earthquake occurrence and of the large uncertainties usually associated to stress modelling. Here we introduce a combined statistical and physical approach to quantify the probability that a given earthquake was triggered by a given stress-inducing phenomenon. As an example, we consider an earthquake that was likely triggered by a natural event: the M?=?6.2 13 Jan 1976 Kópasker earthquake on the Grímsey lineament (Tj?rnes Fracture Zone, Iceland), which occurred about 3?weeks after a large dike injection in the nearby Krafla fissure swarm. By using Coulomb stress calculations and the rate-and-state earthquake nucleation theory, we calculate the likelihood of the earthquake in a scenario that contains only the tectonic background and excludes the dike and in a scenario that includes the dike but excludes the background. Applying the Bayes?? theorem, we obtain that the probability that the earthquake was indeed triggered by the dike, rather than purely due to the accumulation of tectonic strain, is about 60 to 90?%. This methodology allows us to assign quantitative probabilities to different scenarios and can help in classifying earthquakes as triggered or not triggered by natural or human-induced changes of stress in the crust.  相似文献   

19.
New and previously published micro-gravity data are combined with InSAR data, precise levelling and GPS measurements to produce a model for the processes operating at Krafla volcano, 20 years after its most recent eruption. The data have been divided into two periods: from 1990 to 1995 and from 1996 to 2003 and show that the rate of deflation at Krafla is decaying exponentially. The net micro-gravity change at the centre of the caldera is shown, using the measured free air gradient, to be −85 μGal for the first and −100 μGal for the second period. After consideration of the effects of water extraction by the geothermal power station within the caldera, the net gravity decreases are −73±17 μGal for the first and −65±17 μGal for the second period. These decreases are interpreted in terms of magma drainage. Following a Mogi point source model, we calculate the mass decrease to be ∼2×1010 kg/year reflecting a drainage rate of ∼0.23 m3/s, similar to the ∼0.13 m3/s drainage rate previously found at Askja volcano, N. Iceland. Based on the evidence for deeper magma reservoirs and the similarity between the two volcanic systems, we suggest a pressure-link between Askja and Krafla at deeper levels (at the lower crust or the crust-mantle boundary). After the Krafla fires, co-rifting pressure decrease of a deep source at Krafla stimulated the subsequent inflow of magma, eventually affecting conditions along the plate boundary in N. Iceland, as far away as Askja. We anticipate that the pressure of the deeper reservoir at Krafla will reach a critical value and eventually magma will rise from there to the shallow magma chamber, possibly initiating a new rifting episode. We have demonstrated that by examining micro-gravity and geodetic data, our knowledge of active volcanic systems can be significantly improved.Editorial responsibility: A. Harris  相似文献   

20.
The seismotectonic characteristics of 1983–1984, 1993 and 2005 swarms in Andaman Sea are analysed. These swarms are characterised by their typical pulsating nature, oval shaped geometry and higher b values. The migration path of the swarms from north to south along the Andaman Spreading Ridge is documented. While the first two swarms are located along existing mapped rift segments, the 2005 swarm appears to have generated a new rift basin along 8°N. The analysis and supporting evidences suggest that these swarms were generated by intruding magmatic dyke along the weak zones in the crust, followed by rifting, spreading and collapse of rift walls. CMT solutions for 2005 swarm activity indicate that intrusion of magmatic dyke in the crustal weak zone is documented by earthquakes showing strike slip solution. Subsequent events with normal fault mechanism corroborate the rift formation, collapse and its spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号