首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviour of niobium and tantalum in magmatic processes has been investigated by conducting MnNb2O6 and MnTa2O6 solubility experiments in nominally dry to water-saturated peralkaline (aluminium saturation index, A.S.I. 0.64) to peraluminous (A.S.I. 1.22) granitic melts at 800 to 1035 °C and 800 to 5000 bars. The attainment of equilibrium is demonstrated by the concurrence of the solubility products from dissolution, crystallization, Mn-doped and Nb- or Ta-doped experiments at the same pressure and temperature. The solubility products of MnNb2O6 (Ksp Nb) and MnTa2O6 (Ksp Ta) at 800 °C and 2 kbar both increase dramatically with alkali contents in water-saturated peralkaline melts. They range from 1.2 × 10−4 and 2.6 × 10−4 mol2/kg2, respectively, in subaluminous melt (A.S.I. 1.02) to 202 × 10−4 and 255 × 10−4 mol2/kg2, respectively, in peralkaline melt (A.S.I. 0.64). This increase from the subaluminous composition can be explained by five non-bridging oxygens being required for each excess atom of Nb5+ or Ta5+ that is dissolved into the melt. The Ksp Nb and Ksp Ta also increase weakly with Al content in peraluminous melts, ranging up to 1.7 × 10−4 and 4.6 × 10−4 mol2/kg2, respectively, in the A.S.I. 1.22 composition. Columbite-tantalite solubilities in subaluminous and peraluminous melts (A.S.I. 1.02 and 1.22) are strongly temperature dependent, increasing by a factor of 10 to 20 from 800 to 1035 °C. By contrast columbite-tantalite solubility in the peralkaline composition (A.S.I. 0.64) is only weakly temperature dependent, increasing by a factor of less than 3 over the same temperature range. Similarly, Ksp Nb and Ksp Ta increase by more than two orders of magnitude with the first 3 wt% H2O added to the A.S.I. 1.02 and 1.22 compositions, whereas there is no detectable change in solubility for the A.S.I. 0.64 composition over the same range of water contents. Solubilities are only slightly dependent on pressure over the range 800 to 5000 bars. The data for water-saturated sub- and peraluminous granites have been extrapolated to 600 °C, conditions at which pegmatites and highly evolved granites may crystallize. Using a melt concentration of 0.05 wt% MnO, 70 to 100 ppm Nb or 500 to 1400 ppm Ta are required for manganocolumbite and manganotantalite saturation, respectively. The solubility data are also used to model the fractionation of Nb and Ta between rutile and silicate melts. Predicted rutile/melt partition coefficients increase by about two orders of magnitude from peralkaline to peraluminous granitic compositions. It is demonstrated that the γNb2O5/γTa2O5 activity coefficient ratio in the melt phase depends on melt composition. This ratio is estimated to decrease by a factor of 4 to 5 from andesitic to peraluminous granitic melt compositions. Accordingly, all the relevant accessory phases in subaluminous to peraluminous granites are predicted to incorporate Nb preferentially over Ta. This explains the enrichment of Ta over Nb observed in highly fractionated granitic rocks, and in the continental crust in general. Received: 9 August 1996 / Accepted: 26 February 1997  相似文献   

2.
Robert L. Linnen   《Lithos》2005,80(1-4):267-280
The solubilities of columbite, tantalite, wolframite, rutile, zircon and hafnon were determined as a function of the water contents in peralkaline and subaluminous granite melts. All experiments were conducted at 1035 °C and 2 kbar and the water contents of the melts ranged from nominally dry to approximately 6 wt.% H2O. Accessory phase solubilities are not affected by the water content of the peralkaline melt. By contrast, solubilities are affected by the water content of the subaluminous melt, where the solubilities of all the accessory phases examined increase with the water content of the melt, up to 2 wt.% H2O. At higher water contents, solubilities are nearly constant. It can be concluded that water is not an important control of accessory phase solubility, although the water content will affect diffusivities of components in the melt, thus whether or not accessory phases will be present as restite material. The solubility behaviour in the subaluminous and peralkaline melts supports previous spectroscopic studies, which have observed differences in the coordination of high field strength elements in dry vs. wet subaluminous granitic glasses, but not for peralkaline granitic glasses. Lastly, the fact that wolframite solubility increases with increasing water content in the subaluminous melt suggests that tungsten dissolved as a hexavalent species.  相似文献   

3.
The behavior of tantalum and zirconium in pegmatitic systems has been investigated through the determination of Ta and Zr solubilities at manganotantalite and zircon saturation from dissolution and crystallization experiments in hydrous, Li-, F-, P- and B-bearing pegmatitic melts. The pegmatitic melts are synthetic and enriched in flux elements: 0.7–1.3 wt% Li2O, 2–5.5 wt% F, 2.8–4 wt% P2O5 and 0–2.8 wt% B2O3, and their aluminum saturation index ranges from peralkaline to peraluminous (ASILi = Al/[Na + K + Li] = 0.8 to 1.3) with various K/Na ratios. Dissolution and crystallization experiments were conducted at temperatures varying between 700 and 1,150°C, at 200 MPa and nearly water-saturated conditions. For dissolution experiments, pure synthetic, end member manganotantalite and zircon were used in order to avoid problems with slow solid-state kinetics, but additional experiments using natural manganotantalite and zircon of relatively pure composition (i.e., close to end member composition) displayed similar solubility results. Zircon and manganotantalite solubilities considerably increase from peraluminous to peralkaline compositions, and are more sensitive to changes in temperature or ASI of the melt than to flux content. A model relating the enthalpy of dissolution of manganotantalite to the ASILi of the melt is proposed: ∆H diss (kJ/mol) = 304 × ASILi − 176 in the peralkaline field, and ∆H diss (kJ/mol) = −111 × ASILi + 245 in the peraluminous field. The solubility data reveal a small but detectable competitivity between Zr and Ta in the melt, i.e., lower amounts of Zr are incorporated in a Ta-bearing melt compared to a Ta-free melt under the same conditions. A similar behavior is observed for Hf and Ta. The competitivity between Zr (or Hf) and Ta increases from peraluminous to peralkaline compositions, and suggests that Ta is preferentially bonded to non-bridging oxygens (NBOs) with Al as first-neighbors, whereas Zr is preferentially bonded to NBOs formed by excess alkalies. As a consequence Zr/Ta ratios, when buffered by zircon and manganotantalite simultaneously, are higher in peralkaline melts than in peraluminous melts.  相似文献   

4.
Melt composition control of Zr/Hf fractionation in magmatic processes   总被引:9,自引:0,他引:9  
Zircon (ZrSiO4) and hafnon (HfSiO4) solubilities in water-saturated granitic melts have been determined as a function of melt composition at 800° and 1035°C at 200 MPa. The solubilities of zircon and hafnon in metaluminous or peraluminous melts are orders of magnitude lower than in strongly peralkaline melt. Moreover, the molar ratio of zircon and hafnon solubility is a function of melt composition. Although the solubilities are nearly identical in peralkaline melts, zircon on a molar basis is up to five times more soluble than hafnon in peraluminous melts. Accordingly, calculated partition coefficients of Zr and Hf between zircon and melt are nearly equal for the peralkaline melts, whereas for metaluminous and peraluminous melts DHf/DZr for zircon is 0.5 to 0.2. Consequently, zircon fractionation will strongly decrease Zr/Hf in some granites, whereas it has little effect on the Zr/Hf ratio in alkaline melts or similar depolymerized melt compositions.The ratio of the molar solubilities of zircon and hafnon for a given melt composition, temperature, and pressure is proportional to the Hf/Zr activity coefficient ratio in the melt. The data imply that this ratio is nearly constant and probably close to unity for a wide range of peralkaline and similar depolymerized melts. However, it changes by a factor of two to five over a relatively small interval of melt compositions when a nearly fully polymerized melt structure is approached. For most ferromagnesian minerals in equilibrium with a depolymerized melt, DHf > DZr. Typical values of DHf/DZr range from 1.5 to 2.5 for clinopyroxene, amphibole, and titanite. Because of the change in the Hf/Zr activity ratio in the melt, the relative fractionation of Zr and Hf by these minerals will disappear or even be reversed when the melt composition approaches that of a metaluminous or peraluminous granite. It is thus not surprising that fractional crystallization of such granitic magmas leads to a decrease in Zr/Hf, whereas fractional crystallization of depolymerized melts tends to increase Zr/Hf. There is no need to invoke fluid metasomatism to explain these effects. Results demonstrate that for ions with identical charge and nearly identical radius, crystal chemistry does not alone determine relative compatibilities. Rather, the effect of changing activity coefficients in the melt may be comparable to or even larger than elastic strain effects in the crystal lattice.  相似文献   

5.
I. A. Andreeva 《Petrology》2016,24(5):462-476
Melt inclusions were studied by various methods, including electron and ion microprobe analysis, to determine the compositions of melts and mechanisms of formation of rare-metal peralkaline granites of the Khaldzan Buregtey massif in Mongolia. Primary crystalline and coexisting melt inclusions were found in quartz from the rare-metal granites of intrusive phase V. Among the crystalline inclusions, we identified potassium feldspar, albite, tuhualite, titanite, fluorite, and diverse rare-metal phases, including minerals of zirconium (zircon and gittinsite), niobium (pyrochlore), and rare earth elements (parisite). The observed crystalline inclusions reproduce almost the whole suite of major and accessory minerals of the rare-metal granites, which supports the possibility of their crystallization from a magmatic melt. Melt inclusions in quartz from these rocks are completely crystallized. Their daughter mineral assemblage includes quartz, microcline, aegirine, arfvedsonite, polylithionite, a zirconosilicate, pyrochlore, and a rare-earth fluorocarbonate. The melt inclusions were homogenized in an internally heated gas vessel at a temperature of 850°C and a pressure of 3 kbar. After the experiments, many inclusions were homogeneous and consisted of silicate glass. In addition to silicate glass, some inclusions contained tiny quench zircon crystals confined to the boundary of inclusions, which indicates that the melts were saturated in zircon. In a few inclusions, glass coexisted with a CO2 phase. This allowed us to estimate the content of CO2 in the inclusion as 1.5 wt %. The composition of glasses from the homogeneous melt inclusions is similar to the composition of the rare-metal granites, in particular, with respect to SiO2 (68–74 wt %), TiO2 (0.5–0.9 wt %), FeO (2.2–4.6 wt %), MgO (0.02 wt %), and Na2O + K2O (up to 8.5 wt %). On the other hand, the glasses of melt inclusions appeared to be strongly depleted compared with the rocks in CaO (0.22 and 4 wt %, respectively) and Al2O3 (5.5–7.0 and 9.6 wt %, respectively). The agpaitic index is 1.1–1.7. The melts contain up to 3 wt % H2O and 2–4 wt % F. The trace element analysis of glasses from homogenized melt inclusions in quartz showed that the rare-metal granites were formed from extensively evolved rare-metal alkaline melts with high contents of Zr, Nb, Th, U, Ta, Hf, Rb, Pb, Y, and REE, which reflects the metallogenic signature of the Khaldzan Buregtey deposit. The development of unique rare metal Zr–Nb–REE mineralization in these rocks is related to the prolonged crystallization differentiation of melts and assimilation of enclosing carbonate rocks.  相似文献   

6.
The effect of fluorine on the solubilities of Mn-columbite (MnNb2O6), Mn-tantalite (MnTa2O6), zircon (ZrSiO4) and hafnon (HfSiO4) were determined in highly fluxed, water-saturated haplogranitic melts at 800 to 1000 °C and 2 kbar. The melt composition corresponds to the intersection of the granite minimum with the albite–orthoclase tieline (Ab72Or28) in the quartz–albite–orthoclase system (Q–Ab–Or), which is representative of a highly fluxed melt, from which high field strength element minerals may crystallize. The melt contains 1.7 wt.% P2O5, 1.05 wt.% Li2O and 1.83 wt.% B2O3. The main purpose of this study is to examine the effect of F on columbite, tantalite, zircon and hafnon solubility for a melt with this composition. Up to 6 wt.% fluorine was added as AgF in order to keep the aluminum saturation index (ASI, molar Al/[Na + K]) of the melt constant. In an additional experiment F was added as AlF3 to make a glass peraluminous. The nominal ASI of the melts are close to 1 for the minimum composition and approximately 1.32 in peraluminous glasses, but if Li is considered as an alkali, the molar ratio Al/[Na + K + Li] of the melts are alkaline (0.87) and subaluminous (1.09), respectively.The molar solubility products [MnO] 1 [Nb2O5] and [MnO] 1 [Ta2O5] are nearly independent of the F content of the melt, at approximately 18.19 ± 1.2 and 43.65 ± 2.5 × 10 4 (mol2/kg2), respectively for the minimum composition. By contrast, there is a positive dependence of zircon and hafnon solubilities on the fluorine content in the minimum composition, which increases from 2.03 ± 0.03 × 10 4 (mol/kg) ZrO2 and 4.04 ± 0.2 × 10 4 (mol/kg) HfO2 for melts with 0 wt.% F to 3.81 ± 0.3 × 10 4 (mol/kg) ZrO2 and 6.18 ± 0.04 × 10 4 (mol/kg) HfO2 for melts with 8 wt.% F. Comparison of the data from this work and previous studies indicates that ASI of the melt seems to have a stronger effect than the contents of fluxing elements in the melt and the overall conclusion is that fluorine is less important (relative to melt compositions) than previously thought for the control on the behavior of high field strength elements in highly evolved granitic melts. Moreover, this study confirms that although Nb, Ta, Zr and Hf are all high field strength elements, Nb–Ta and Zr–Hf are complexed differently in the melt.  相似文献   

7.
The Humr Akarim and Humrat Mukbid plutons, in the central Eastern Desert of Egypt, are late Neoproterozoic post-collisional alkaline A-type granites. Humr Akarim and Humrat Mukbid plutonic rocks consist of subsolvus alkali granites and a subordinate roof facies of albite granite, which hosts greisen and Sn–Mo-mineralized quartz veins; textural and field evidence strongly suggest the presence of late magmatic F-rich fluids. The granites are Si-alkali rich, Mg–Ca–Ti poor with high Rb/Sr (20–123), and low K/Rb (27–65). They are enriched in high field strength elements (e.g., Nb, Ta, Zr, Y, U, Th) and heavy rare earth elements (La n /Yb n ?=?0.27–0.95) and exhibit significant tetrad effects in REE patterns. These geochemical attributes indicate that granite trace element distribution was controlled by crystal fractionation as well as interaction with fluorine-rich magmatic fluids. U–Pb SHRIMP zircon dating indicates an age of ~630–620?Ma but with abundant evidence that zircons were affected by late corrosive fluids (e.g., discordance, high common Pb). εNd at 620?Ma ranges from +3.4 to +6.8 (mean?=?+5.0) for Humr Akarim granitic rocks and from +4.8 to +7.5 (mean?=?+5.8) for Humrat Mukbid granitic rocks. Some slightly older zircons (~740?Ma, 703?Ma) may have been inherited from older granites in the region. Our U–Pb zircon data and Nd isotope results indicate a juvenile magma source of Neoproterozoic age like that responsible for forming most other ANS crust and refute previous conclusions that pre-Neoproterozoic continental crust was involved in the generation of the studied granites.  相似文献   

8.
The Zr/Hf ratio as a fractionation indicator of rare-metal granites   总被引:1,自引:0,他引:1  
The Zr-Hf geochemical indicator, i.e., the Zr/Hf ratio (in wt %) in granitic rocks is proposed to be used as the most reliable indicator of the fractionation and ore potential of rare-metal granites. It was empirically determined that the fractional crystallization of granitic magma according to the scheme granodiorite → biotite granite → leucogranite → Li-F granite is associated with a decrease in the Zr/Hf ratio of the granites. The reason for this is the stronger affinity of Hf than Zr to granitic melt. This was confirmed by experiments on Zr and Hf distribution between granitic melt and crystals of Hf-bearing zircon (T = 800°C, P= 1 kbar). The application of the Zr/Hf indicator was tested at three classic territories of rare-metal granites: eastern Transbaikalia, central Kazakhstan, and the Erzgebirge in the Czech Republic and Germany. The reference Kukul’bei complex of rare-metal granites in eastern Transbaikalia (J3) is characterized by a uniquely high degree of fractionation of the parental granitic melt, with the granites and their vein derivatives forming three intrusive phases. The biotite granites of phase 1 are barren, the leucogranites of phase 2 are accompanied by greisen Sn-W mineral deposits (Spokoininskoe and others), and the final dome-shaped stocks of amazonite Li-F granites of phase 3 host (in their upper parts) Ta deposits of the “apogranite” type: Orlovka, Etyka, and Achikan. The Kukul’bei Complex includes also dikes of ongonites, elvanes, amazonite granites, and miarolitic pegmatites. All granitic rocks of the complex are roughly coeval and have an age of 142±0.6 Ma. The Zr/Hf ratio of the rocks systematically decreases from intrusive phase 1 (40–25) to phases 2 (20–30) and 3 (10–2). Compared to other granite series, the granites of the Kukul’bei Complex are enriched in Rb, Li, Cs, Be, Sn, W, Mo, Ta, Nb, Bi, and F but are depleted in Mg, Ca, Fe, Ti, P, Sr, Ba, V, Co, Ni, Cr, Zr, REE, and Y. From earlier to later intrusive phases, the rocks become progressively more strongly enriched or depleted in these elements, and their Zr/Hf ratio systematically decreases from 40 to 2. This ratio serves as a reliable indicator of genetic links, degree of fractionation, and rare-metal potential of granites. Greisen Sn, W, Mo, and Be deposits are expected to accompany granites with Zr/Hf < 25, whereas granites related to Ta deposits should have Zr/Hf < 5.  相似文献   

9.
Dikes, stocks and/or sheet flows of felsic volcanic and subvolcanic rocks are typically observed in the vicinity of rare-metal Li-F granite massifs. Their ubiquitous spatial association to rare-metal granites and, often, geochemical affinity to them suggest their certain petrological relation. Compositionally unique ultrapotassic trachydacites enriched in many rare elements were found among these rocks within the Khangilay complex of ore deposits in Eastern Transbaikalia. Melt inclusions in rock-forming quartz were studied to reconstruct the composition and evolution of parent melt. The obtained data demonstrated the existence of a super-potassic peraluminous melt (K2O = 6.12 wt %, Na2O = 1.08 wt %) having elevated contents of rare lithophile elements (730 ppm Rb2O and 900 ppm BaO). The ion-microprobe content of Li is 354.23 ppm at a relatively low F content (up to 0.5 wt %). The residual melt is characterized by the most unusual composition: extremely low contents of mafic components and basicity (< 0.5 wt % femic oxides), a high Al index (A/CNK = 1.53) at comparatively low SiO2 (60 wt %), and high total sodic alkalinity (more than 10 wt % K2O + Na2O; 6.11 wt % Na2O). Such a composition corresponds to ongonite magma. However, the melt contains no F but has a high Cl content (0.34 wt %), which corresponds to the limit Cl saturation of haplogranite melt. SHRIMP-II U-Pb zircon dating showed significant difference between rare metal granites and trachyrhyodacites of the Khangilay complex of ore deposits: 139.9 ± 1.9 Ma and 253.4 ± 2.4 Ma, respectively. The geochemical similarity of these rocks, primarily in terms of abundance of refractory elements, REE distribution patterns, and initial Sr ratio, indicates their derivation from similar protolith.  相似文献   

10.
U–Pb zircon geochronological, geochemical, and whole-rock Sr–Nd isotopic analyses are reported for a suite of Karamay A-type granites from the Central Asian Orogenic Belt (CAOB) in the western Junggar region of northern Xinjiang, Northwest China, with the aim of investigating the sources and petrogenesis of A-type granites. The Karamay pluton includes monzogranite and syenogranite. Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating yielded a concordant weighted mean 206Pb/238U age of 304 ± 5 Ma (n = 11), defining a late Carboniferous magmatic event. Geochemically, the rock suite is characterized by high SiO2, FeOt/MgO, total alkalies (K2O + Na2O), Zr, Nb, Y, Ta, Ga/Al, and rare earth elements (REEs) (except for Eu), and low contents of MgO, CaO, and P2O5, with negative Ba, Sr, P, Eu, and Ti anomalies. These features indicate an A-type affinity for the Karamay granitic intrusions. Isotopically, they display consistently depleted Sr–Nd isotopic compositions (initial 87Sr/86Sr = 0.7014–0.7022, ?Nd(t) = +5.6–+7.0). Geochronological, geochemical, and isotopic data suggest that the Karamay A-type granites were derived from remelting juvenile lower crust, followed by fractional crystallization. The Karamay A-type granites as well as widespread late Carboniferous magmatism in the western Junggar region of the southwestern CAOB may have been related to ridge subduction and a resultant slab window. This further demonstrates the importance of the late Palaeozoic granitic magmatism in terms of vertical crustal growth in northern Xinjiang.  相似文献   

11.
The effects of F, B2O3 and P2O5 on the H2O solubility in a haplogranite liquid (36 wt. % SiO2, 39 wt. % NaAlSi3O8, 25 wt. % KAlSi3O8) have been determined at 0.5, 1, 2, and 3 kb and 800, 850, and 900°C. The H2O solubility increases with increasing F and B content of the melt. The H2O solubility increase in more important at high pressure (2 and 3 kb) than at low pressure (0.5 kb). At 2 kb and 800°C, the H2O solubility increases from 5.94 to 8.22 wt. % H2O with increasing F content in the melt from 0 to 4.55 wt. %, corresponding to a linear H2O solubility increase of 0.53 mol H2O/mol F. With addition of 4.35 wt. % B2O3, the H2O solubility increases up to 6.86 wt. % H2O at 2 kb and 800°C, corresponding to a linear increase of 1.05 mol H2O/mol B2O3. The results allow to define the individual effects of fluorine and boron on H2O solubility in haplogranitic melts with compositions close to that of H2O-saturated thermal minima (at 0.5–3 kb). Although P has a dramatic effect on the phase relations in the haplogranite system, its effect on the H2O solubility was found to be negligible in natural melt compositions. The concominant increase in H2O solubility and F can not be interpreted on the basis of the available spectroscopic data (existence of hydrated aluminofluoride complexes or not). In contrast, hydrated borates or more probably boroxol complexes have been demonstrated in B-bearing hydrous melts.  相似文献   

12.
The Egyptian black sands contain several economic minerals, such as ilmenite, magnetite, garnet, zircon, rutile and monazite. During the concentration and separation of a high-grade rutile concentrate a bulk magnetic fraction is obtained. This fraction is composed mainly of opaques, titanhematite, ilmenite–titanhematite exsolved intergrown grains, magnetic leucoxene in addition to chromite, and magnetic rutile. The magnetic rutile occupies 6 wt.% of the bulk magnetic fraction or approx. 4 wt.% of the original rutile content in the raw sands. Most of magnetic rutile crystals are contaminated with opaque inclusions, staining-coating and/or composite locked grains. This magnetic rutile has a magnetic range from strongly paramagnetic to very weak paramagnetic. Electron microprobe analysis for twenty-three magnetic rutile grains identified mineral components of rutile, titanhematite, pseudorutile, leached pseudorutile and ilmenite in decreasing order of abundance. Some other inclusions are also detected in the different magnetic rutile grains. They are most probably garnet, silica, amphibole, ilmenite, feldspar, mica and zircon. The presence of these inclusions reflect the derivation of magnetic rutile of various crystalline igneous and metamorphic rocks. The magnetic susceptibility of magnetic rutile depends on the associated mineral components and their relative volumes in comparison to the rutile mineral component. Magnetic susceptibility of magnetic rutile is also related to both type and size of the associated mineral inclusions. The average chemical composition of the magnetic rutile is 66.34 wt.% TiO2, 21.71 wt.% Fe2O3, 6.39 wt.% SiO2, 1.80 wt.% Al2O3, 1.19 wt.% CaO and 0.10 wt.% Cr2O3. Thus, the contamination of magnetic rutile in the non-magnetic rutile concentrate would decrease the market value of the rutile concentrate. Alternatively these magnetic rutile grains are recommended to be blended with magnetic leucoxene or some types of ilmenite concentrate to improve the overall marketable specifications especially for both of Ti, Fe and Cr contents.  相似文献   

13.
Triassic A-type granites in eastern South China Block (SCB) are abundant in the Wuyi–Yunkai tectonic domain and provide an important opportunity to explore the early Mesozoic evolution of continental crust of the SE part of the SCB. We carried out U–Pb zircon dating, Lu–Hf isotope analyses of zircon, and whole-rock geochemical analyses for two granitic plutons, the Guiyantou (GYT) and Luoguyan (LGY) granites, from northwestern Fujian Province. LA–ICP–MS U–Pb zircon analyses yielded ages of 232 ± 4 to 231 ± 7 Ma and 221 ± 5 Ma (Middle-Late Triassic) for the GYT and LGY granites. These two granites belong to metaluminous to weakly peraluminous high K calc-alkaline A-type granite that are enriched in K, Al, light rare earth element and Rb, Th, U, and Pb, and depleted in Nb, Ta, P, and Ti. Their rare earth element patterns are highly fractionated with (La/Yb)N ratios of 2–21 and strong negative Eu anomalies (Eu/Eu* = 0.02–0.31). In situ Hf isotopic analysis of zircon from the GYT and LGY granites yielded εHf(t) values ranging from –11.5 to –1.1, with corresponding two-stage Hf model ages from 1.98 to 1.33 Ga, from which it is inferred that the GYT and LGY magmas formed by partial melting of Proterozoic metasedimentary rock in the Cathaysia block. The two granites were emplaced at 232 and 221 Ma and together with Triassic A-type granites in coastal region of the SCB, which is in agreement with an extensional tectonic setting in the Middle-Late Triassic. We suggest that the Middle-Late Triassic A-type granites in eastern SCB were probably formed in an intracontinental, post-orogenic extensional regime that collision was between the SCB and an ‘unknown block’ or the eastern extension of Indochina block.  相似文献   

14.
Zircon grains from the Nile Delta beach sediments were mineralogically investigated for their provenance perspective. Electron microprobe backscattered electron images, and wavelength dispersive spectroscopy line scans showed well-developed oscillatory and sector zoning in the majority of the studied zircon grains. In addition, some grains showed inclusions represented mainly by apatite. The zoning in zircon reflects compositional variations of Zr, Si, Hf, P, Y, and rare earth elements (REE). Based on the electron probe microanalyzer data, the calculated formula of the studied detrital zircon is A(Zr3.82Hf0.05Th0.003Ca0.10Fe0.008REE0.033Tl0.03Y0.001)∑4.04 T(Si3.90P0.08Al0.011V0.003Sc0.004)∑4.00O4. Th, Y, P, Sc, and Fe are substituted into zircon either by simple or coupled substitution mechanisms. Additional zircon grains separated from Abu Swayel granites and metamorphic gneisses, south Eastern Desert of Egypt were similarly investigated for comparison. Although evidence based on morphological characteristics, zoning, apatite inclusions, and mineral chemistry supports a derivation of zircon from granitic rocks including the hydrothermally altered varieties, the possibility that the zircon grains may have more than one source cannot be ruled out due to the large area of the Nile watershed.  相似文献   

15.
Solubility of tin,tungsten and molybdenum oxides in felsic magmas   总被引:8,自引:0,他引:8  
Saturation versus undersaturation of granitic melts in tin, tungsten and molybdenum oxides is discussed on the basis of experimental data. Results of dry and hydrothermal experiments are evaluated under the assumption of ideal solubility of Sn, W and Mo oxides in granitic melts. A conservative interpretation arrives at concentration levels of 1000 ppm SnO2, WO3 and MoO3 respectively, considered as the maximum solubility of these components in granitic melts at 750°C-800 °C. Such values are never reached in natural granites unaffected by hydrothermal alteration and therefore even highly evolved granites are expected to be undersaturated in these metals. Consequently cassiterite and scheelite are neither common liquidus minerals of ore-bearing granites nor restite minerals from partial melting events.  相似文献   

16.
ABSTRACT

The Ordovician plutons in the Erguna Block, NE China, can be classified into two groups: Early Ordovician diorites with zircon U–Pb ages ranging from 486 to 485 Ma and Middle Ordovician gabbros and granites with zircon U–Pb ages ranging from 466 to 463 Ma. The diorites are calc-alkaline in nature and are characterized by weak to moderate enrichments of large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high field strength elements (HFSE) and heavy rare earth elements (HREE). The gabbros and granites have high total alkali contents, and all samples are enriched in LREE and LILE and depleted in HFSE such as Nb, Ta, and Ti. Isotopically, Early Ordovician diorites display values that are less radiogenic [εHf(t) = + 9.9–+16.8] compared to those of Middle Ordovician gabbros [εHf(t) = ? 3.0–+5.0]. Middle Ordovician granites have positive εHf(t) values of +1.4 to +4.3 and two-stage Hf model ages (TDM2) of 1167 to 1356 Ma. These data indicate that the diorites may have been generated by the partial melting of a recently metasomatized mantle source, whereas the gabbros and granites may have been formed by the partial melting of enriched lithospheric mantle and Mesoproterozoic crust, respectively. Our results, combined with other regional results, suggest that Early Ordovician magmatism was likely associated with the northward subduction of the Heihe–Xilinhot oceanic plate beneath the Erguna–Xing’an Block, whereas the Middle Ordovician gabbros and granites were most likely formed in an extensional setting controlled by the rollback of this subducted oceanic plate.  相似文献   

17.
《International Geology Review》2012,54(11):1067-1077
Mineral chemistry and typomorphic characteristics are used to monitor the physicochemical evolution of late-magmatic to postmagmatic alteration processes that resulted in the development of a radioactive and albite-enriched microgranite stock. The mineral paragenesis indicates that postmagmatic fluids were enriched in Nb, Zn, Mn, U., Th, Zr, and Y, in addition to Rb, Li, and F Manganocolumbite with extremely high Nb/(Nb+Ta) (0.99), Mn/(Mn+Fe) (0.82), and zircon with high Zr/(Zr+Hf) (0.97) indicate crystallization under alkaline, relatively high-temperature conditions (>425° C). The close association of manganocolumbite, Nb-Mn-Zn- rich ilmenite (with 1.2 to 14.5 wt% ZnO), spessartine garnet (with 68.2-89.4 mol% spessartine), zircon, xenotime, zinnwaldite mica (up to 5.98 wt% F), and fluorite indicates the strong affinity of the elements of Nb, Y., Zr, Mn, and Zn for stable complexing by K+, Na+, Li+, and F? rich supercritical fluids during the course of extraction and transportation.

The enrichment of the interacting fluid in U and Th is depicted by the presence of up to 1.6% UO2 in manganocolumbite and Hf-bearing zircon, and up to 10.5% ThO2 in monazite, in addition to locally abundant thorite and uranophane. It is suggested that the uranium mineralization, mainly as fracture fillings, formed during the waning stage of hydrothermal activity.  相似文献   

18.
Alkaline intrusions in the eastern Shandong Province consist of quartz monzonite and granite. U-Pb zircon ages, geochemical data, and Sr-Nd-Pb isotopic data for these rocks are reported in the present paper. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon analyses yielded consistent ages ranging from 114.3?±?0.3 to 122.3?±?0.4 Ma for six samples of the felsic rocks. The felsic rocks are characterised by a wide range of chemical compositions (SiO2?=?55.14–77.63 wt. %, MgO?=?0.09–4.64 wt. %, Fe2O3?=?0.56–7.6 wt. %, CaO?=?0.40–5.2 wt. %), light rare earth elements (LREEs) and large ion lithophile elements (LILEs) (i.e., Rb, Pb, U) enrichment, as well as significant rare earth elements (HREEs) and heavy field strength (HFSEs) (Nb, Ta, P and Ti) depletion, various and high (87Sr/86Sr) i ranging from 0.7066 to 0.7087, low ε Nd (t) values from ?14.1 to ?17.1, high neodymium model ages (TDM1?=?1.56–2.38Ga, TDM2?=?2.02–2.25Ga), 206Pb/204Pb?=?17.12–17.16, 207Pb/204Pb?=?15.44–15.51, and 208Pb/204Pb?=?37.55–37.72. The results suggested that these rocks were derived from an enriched crustal source. In addition, the alkaline rocks also evolved as the result of the fractionation of potassium feldspar, plagioclase, +/? ilmenite or rutile and apatite. However, the alkaline rocks were not affected by crustal contamination. Moreover, the generation of the alkaline rocks can be attributed to the structural collapse of the Sulu organic belt due to various processes.  相似文献   

19.
Zircon and xenotime, from two mineralogically and chemically contrasting granite suites occurring in the Kru?né Hory/Erzgebirge Mts., display extended compositional variability with respect to abundances of Zr, Hf, REE, Y, P, Th, Ca, Al, Fe and As. According to their geochemical signatures, P-rich (S-type) and P-poor (A-type) granites could be distinguished here. Both granite suites display high Ga/Al ratios (>2.6) and according to FeOtot./(FeOtot. + MgO) ratio can be classified as ferrous granites. Consequently, the both ratios cannot be used for discrimination S- and A-type granites. Both minerals are characterized by a variety of complex zircon-xenotime textures. They are usually strong hydrated and enriched in F. Zircon from P-rich granites displays a significant enrichment in P (up 0.24 apfu P), whereas zircon from P-poor granites has lower P and higher Y (up to 0.15 apfu Y). The xenotime-type substitution is the most important mechanism of isomorphic substitution in zircon in both granite suites. Zircon from both granite suites is typically enriched in Hf, especially unaltered zircon from P-rich granites (up to 8.2 wt. % HfO2). However in altered zircons the Hf/Zr ratio is higher in the P-poor granites. The Hf-rich zircon from unaltered P-rich granite crystallised from low temperature granite melt, whereas altered zircons crystallised during post-magmatic hydrothermal alteration (greisenization). Xenotime from P-poor granites displays a considerable enrichment in HREE (up to 40 mol. % HREEPO4) compared to xenotime from P-rich granites (up to 20 mol. % HREEPO4). Xenotime compositions from P-rich granites are influenced by brabantite-type substitution, whereas for xenotime from P-poor granites the huttonite-type substitution is dominant. Unusual enrichments in HREE is significant for xenotime from P-poor granites, especially in Yb (up to 0.17 apfu Yb) and Dy (up to 0.11 apfu).  相似文献   

20.
余海军  李文昌 《岩石学报》2016,32(8):2265-2280
本文首次在格咱岛弧休瓦促Mo-W矿区识别出印支晚期似斑状黑云母花岗岩,并确定其结晶年龄为200.93±0.65Ma,同时获得燕山晚期二长花岗岩结晶年龄83.57±0.32Ma;即首次在休瓦促Mo-W矿区内厘定出印支晚期和燕山晚期两期花岗岩浆叠加活动,而Mo-W成矿作用与燕山晚期二长花岗岩具有成因关系。岩石地球化学显示燕山晚期二长花岗岩具有较高的SiO_2和全碱含量及较低的Fe、Mg、Ca和P含量,呈准铝质-弱过铝质;富集Rb、Th、U、Nb、Zr和轻稀土元素,亏损Ba、Sr、P、Eu,具有高分异I型花岗岩特征;其形成于与拉萨-羌塘板块碰撞相关的陆内伸展环境,主要来自中-基性下地壳物质的部分熔融,为Mo-W成矿作用提供了重要的物质基础。相对于二长花岗岩,印支晚期似斑状黑云母花岗岩具有较低的SiO_2、Na_2O+K_2O含量和A/CNK比值,较高的Mg、Ca和P含量;富集Th、U、Rb和轻稀土元素,强烈亏损Nb、Ta、Zr、Hf等高场强元素,为准铝质高钾钙碱性具有岛弧岩浆性质的花岗岩,可能形成于甘孜-理塘洋壳俯冲作用结束后,松潘-甘孜地块和义敦岛弧碰撞后伸展环境,为俯冲期改造后形成的下地壳部分熔融的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号