首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used a combined field and modeling approach to estimate the potential for submergence for one rapidly deteriorating (Bayou Chitigue Marsh) and one apparently stable (Old Oyster Bayou Marsh) saltmarsh wetland in coastal Louisiana, given two eustatic sea level rise scenarios: the current rate (0.15 cm year−1); and the central value predicted by the Intergovernmental Panel on Climate Change (48 cm by the year 2100). We also used the model to determine what processes were most critical for maintaining and influencing salt marsh elevation including, mineral matter deposition, organic matter production, shallow subsidence (organic matter decomposition + primary sediment compaction), deep subsidence, and sediment pulsing events (e.g., hurricanes). Eight years of field measurements from feldspar marker horizons and surface elevation tables revealed that the rates of vertical accretion at the Bayou Chitigue Marsh were high (2.26 (0.09) cm yr−1 (mean ± SE)) because the marsh exists at the lower end of the tidal range. The rate of shallow subsidence was also high (2.04 (0.1) cm yr−1), resulting in little net elevation gain (0.22 (0.06) cm yr−1). In contrast, vertical accretion at the Old Oyster Bayou Marsh, which is 10 cm higher in elevation, was 0.48 (0.09) cm yr−1. However, there was a net elevation gain of 0.36 (0.08) cm yr−1 because there was no significant shallow subsidence. When these rates of elevation gain were compared to rates of relative sea level rise (deep subsidence plus eustatic sea level rise), both sites showed a net elevation deficit although the Bayou Chitigue site was subsiding at approximately twice the rate of the Old Oyster Bayou site (1.1 cm yr−1 versus 0.49 cm yr−1 respectively). These field data were used to modify, initialize, and calibrate a previously published wetland soil development model that simulates primary production and mineral matter deposition as, feedback functions of elevation. Sensitivity analyses revealed that wetland elevation was most sensitive to changes in the rates of deep subsidence, a model forcing function that is difficult to measure in the field and for which estimates in the literature vary widely. The model also revealed that, given both the current rate of sea level rise and the central value estimate, surface elevation at both sites would fall below mean sea level over the next 100 years. Although these results were in agreement with the field study, they contradicted long term observations that the Old Oyster Bayou site has been in equilibrium with sea level for at least the past 50 years. Further simulations showed that the elevation at the Old Oyster Bayou site could keep pace with current rates of sea level rise if either a lower rate for deep subsidence was used as a forcing function, or if a periodic sediment pulsing function (e.g., from hurricanes) was programmed into the model.  相似文献   

2.
Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetatedSpartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic Coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4–4.5 yr record with the long-term (>50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, theSpartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh-dependent seaside sparrowsAmmodramus maritimus, saltmarsh sharp-tailed sparrowsAmmodramus caudacutus, black railsLaterallus jamaicensis, clapper railsRallus longirostris. Forster's ternsSterna forsteri, common ternsSterna hirundo, and gull-billed ternsSterna nilotica. Although short-term inundation of many lagoonal marshes may benefit some open-water feeding ducks, geese, and swans during winter, the long-term ecosystem effects may be detrimental, as wildlife resources will be lost or displaced. With the reduction in area of emergent marsh, estuarine secondary productivity and biotic diversity will also be reduced.  相似文献   

3.
One of the most critical problems facing many deltaic wetlands is a high rate of relative sea-level rise due to a combination of eustatic sea-level rise and local subsidence. Within the Rhône delta, the main source of mineral input to soil formation is from the river, due to the low tidal range and the presence of a continuous sea wall. We carried out field and modeling studies to assess the present environmental status and future conditions of the more stressed sites, i.e.,Salicornia-type marshes with a shallow, hypersaline groundwater. The impacts of management practices are considered by comparing impounded areas with riverine areas connected to the Rhône River. Analysis of vegetation transects showed differences between mean soil elevation ofArthrocnemum fruticosum (+31.2 cm),Arthrocnemum glaucum (+26.5 cm), bare soil (+16.2 cm), and permanently flooded soil (?12.4 cm). Aboveground and belowground production showed that root:shoot ratio forA. fruticosum andA. glaucum was 2.9 and 1.1, respectively, indicating more stressful environmental conditions forA. glaucum with a higher soil salinity and lack of soil drainage. The annual leaf litter production rate of the two species is 30 times higher than annual stem litter production, but with a higher long-term decomposition rate associated with leaves. We developed a wetland elevation model designed to predict the effect of increasing rates of sea-level rise on wetland elevation andSalicornia production. The model takes into account feedback mechanisms between soil elevation and river mineral input, and primary production. In marshes still connected to the river, mineral input decreased quickly when elevation was over 21 cm. Under current sea-level rise conditions, the annual amount of riverine mineral input needed to maintain the elevation of the study marshes is between 3,000 and 5,000 g m?2 yr?1. Simulations showed that under the Intergovernmental Panel on Climate Change best estimate sea-level rise scenario, a mineral input of 6,040 g m?2 yr?1 is needed to maintain marsh elevation. The medium term response capacity of the Rhône deltaic plain with rising sea level depends mainly on the possibility of supplying sediment from the river to the delta, even though the Rhône Delta front is wave dominated. Within coastal impounded marshes, isolated from the river, the sediment supply is very low (10 to 50 g m?2 yr?1), and an increase of sea-level rise would increase the flooding duration and dramatically reduce vegetation biomass. New wetland management options involving river input are discussed for a long-term sustainability of low coastal Mediterranean wetlands.  相似文献   

4.
The purpose of this study was to determine how vertical accretion rates in marshes vary through the millennia. Peat cores were collected in remnant and drained marshes in the Sacramento–San Joaquin Delta of California. Cubic smooth spline regression models were used to construct age–depth models and accretion histories for three remnant marshes. Estimated vertical accretion rates at these sites range from 0.03 to 0.49 cm year−1. The mean contribution of organic matter to soil volume at the remnant marsh sites is generally stable (4.73% to 6.94%), whereas the mean contribution of inorganic matter to soil volume has greater temporal variability (1.40% to 7.92%). The hydrogeomorphic position of each marsh largely determines the inorganic content of peat. Currently, the remnant marshes are keeping pace with sea level rise, but this balance may shift for at least one of the sites under future sea level rise scenarios.  相似文献   

5.
Coastal salt marshes represent an important coastal wetland system. In order to protect coastlines from erosion and rapid increase in accumulation rate, Spartina alterniflora (S. alterniflora) was introduced into the Chinese coast. Two study areas (Wanggang and Quanzhou Bay) were selected that represent the plain type and embayment type of the coastal salt marshes. In situ measurements show that the tidal current velocities are stronger on the intertidal mudflat without S. alterniflora than that with S. alterniflora, and the velocity above the canopy surface is larger than that in the salt marsh canopy. The existence of S. alterniflora also influences the velocity structure above the bare flat during ebb tide. With the decrease in current flow velocity when seawater enters into the S. alterniflora marsh, suspended sediments are largely entrapped on the marsh surface, leading to increase in sedimentation rates and change in physical evolution processes of the coastal salt marshes. The highly developed root systemof S. alterniflora induces sediment mixing and exchange between subsurface sediment strata and affects the vertical sediment distribution remarkably. The sedimentation rate of S. alterniflora marsh at the Wanggang area is much higher than the relative sea level rise rate, where rapid progradation of theWanggang saltmarshes that is protecting the coast from sea erosion is observed.  相似文献   

6.
We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0–4 m), the shallow root zone (0–0.35 m), and the full sediment profile (0–6 m) in response to site hydrology (daily river stage and daily groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0–0.35 m], middle zone [0.35–4 m], and bottom zone [4–6]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly, with changes in soil elevation for the entire profile (Adjusted R2 = 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 = 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.  相似文献   

7.
To predict the impacts of climate change, a better understanding is needed of the foundation species that build and maintain biogenic ecosystems. Spartina alterniflora Loisel (smooth cordgrass) is the dominant salt marsh-building plant along the US Atlantic coast. It maintains salt marsh elevation relative to sea level by the accumulation of aboveground biomass, which promotes sediment deposition and belowground biomass, which accretes as peat. Peat accumulation is particularly important in elevation maintenance at high latitudes where sediment supply tends to be limited. Latitudinal variation in S. alterniflora growth was quantified in eight salt marshes from Massachusetts to South Carolina. The hypothesis that allocation to aboveground and belowground biomass is phenotypically plastic was tested with transplant experiments among a subset of salt marshes along this gradient. Reciprocal transplants revealed that northern S. alterniflora decreased allocation to belowground biomass when grown in the south. Some northern plants also died when moved south, suggesting that northern S. alterniflora may be stressed by future warming. Southern plants that were moved north showed phenotypic plasticity in biomass allocation, but no mortality. Belowground biomass also decomposed more quickly in southern marshes. Our results suggest that warming will lead northern S. alterniflora to decrease belowground allocation and that belowground biomass will decompose more quickly, thus decreasing peat accumulation. Gradual temperature increases may allow for adaptation and acclimation, but our results suggest that warming will lower the ability of salt marshes to withstand sea-level rise.  相似文献   

8.
The invasion ofPhragmites australis into tidal marshes formerly dominated bySpartina alterniflora has resulted in considerable interest in the consequences of this invasion for the ecological functions of marsh habitat. We examined the provision of trophic support for a resident marsh fish,Fundulus heteroclitus, in marshes dominated byP. australis, byS. alterniflora, and in restored marshes, using multiple stable isotope analysis. We first evaluated our ability to distinguish among potential primary producers using the multiple stable isotope approach. Within a tidal creek system we found significant marsh and elevation effects on microalgal isotope values, and sufficient variability and overlap in primary producer isotope values to create some difficulty in identifying unique end members. The food webs supportingF. heteroclitus production were examined using dual isotope plots. At both sites, the δ13C values ofF. heteroclitus were clustered over values for benthic microalgae (BMI) and approximately midway between δ13C values ofSpartina andPhragmites. Based on comparisons of fish and primary producer δ13C, δ15N, and δ34S values, and consideration ofF. heteroclitus feeding habits, we conclude that BMI were a significant component of the food web supportingF. heteroclitus in these brackish marshes, especially recently-hatched fish occupying pools on the marsh surface. A 2‰ difference in δ13C betweenFundulus occupying nearly adjacentSpartina andPhragmites marshes may be indicative of relatively less reliance on BMI and greater reliance onPhragmites production inPhragmites-dominated marshes, a conclusion consistent with the reduced BMI biomass found inPhragmites marshes. The mean δ13C value ofF. heteroclitus from restored marshes was intermediate between values of fish from naturally occurringSpartina marshes and areas invaded byPhragmites. We also examined the isotopic evidence for ontogenetic changes in the trophic position of larval and juvenileF. heteroclitus. We found significant positive relationships betweenF. heteroclitus δ15N values and total length, reflective of an increase in trophic position as fish grow.F. heteroclitus δ15N values indicate that these fish are feeding approximately two trophic levels above primary producers.  相似文献   

9.
Sea level rise is a major stressor on many salt marshes, and its impacts include creek widening, ponding, vegetation dieback, and drowning. Marsh vegetation changes have been associated with sea level rise across southern New England, but most of these studies pre-date the current period of rapidly accelerating sea level rise coupled with episodic events of extreme increases in water levels. Here, we combine data from two salt marsh monitoring and assessment programs in Rhode Island that were designed to assess marsh responses to sea level rise and use these data to document temporal and spatial patterns in marsh vegetation during the current period of extreme water level increases. Vegetation monitoring at two Narragansett Bay salt marshes confirms the ongoing decline of the salt meadow species Spartina patens during this period as it becomes replaced by Spartina alterniflora. Bare ground resulting from vegetation dieback was significantly related to mean high water levels and led to the rapid conversion of mixed Spartina assemblages to S. alterniflora monocultures. A broader spatial assessment of RI marshes shows that S. alterniflora dominance increases at lower elevation marshes toward the mouth of Narraganset Bay. Our data provide additional evidence that S. patens continues to decline in southern New England marshes and show that losses can accelerate during periods of extreme high water levels. Unless adaptive management actions are taken, we predict that marshes throughout RI will continue to lose salt meadow habitat and eventually resemble lower elevation marshes that are already dominated by S. alterniflora monocultures.  相似文献   

10.
To test whether invasive Spartina alterniflora marshes were functionally equivalent to native Scirpus mariqueter marshes, the present study used bottomless lift nets (20 m2) during 12 high-tide events from August to October 2008 to compare nekton densities and biomass between the two marsh types in the Dongtan wetland. A total of eight species of fish, two species of shrimp, and three species of crab were collected. So-iny mullet Chelon haematocheilus, keeled mullet Liza carinata, Asian freshwater goby Acanthogobius ommaturus, and ridge-tail prawn Exopalaemon carinicauda dominated samples from the two marsh types and accounted for over 90% of the total catch. There were significantly greater densities and biomass (p < 0.05) of total nekton (all species combined) and two mullets (C. haematocheilus and L. carinata) in S. alterniflora marshes than in S. mariqueter marshes in August 2008, while no significant differences (p > 0.05) between the two marsh types were observed for densities and biomass of any species or total nekton in September and October 2008. Non-metric multidimensional scaling ordination did not show clear separation of samples between the two marsh types (r = 0.071, p = 0.159). Furthermore, there were no habitat-specific differences (p > 0.05) in the size distributions of the three numerically dominant species (C. haematocheilus, L. carinata, and A. ommaturus). We concluded that S. alterniflora marshes were utilized by nekton in a fashion similar to their utilization of native S. mariqueter marshes under similar physical conditions.  相似文献   

11.
Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r 2?=?0.96; p?=?0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt marshes are already experiencing deterioration and fragmentation in response to sea level rise and may not be stable as tidal flooding increases in the future.  相似文献   

12.
《China Geology》2019,2(1):26-39
Bulletins of China’s National Sea Level show that the average rising rate of sea-levels in China is 3.3 mm/a over the past 40 years, with an obviously accelerated rising trend in the last decade. The rate of relative sea-level rise of the Yangtze River Delta reached >10 mm/a after considering the land subsidence, and Bohai Bay is even greater than 25 mm/a. The impact of the sea level rise to the coastal area will be greater in the coming years, so carrying out an assessment of this rising trend is urgent. This paper, taking the coastal area of Tianjin and Hebei as examples, comprehensively evaluates the impact of sea-level rise through multitemporal remote sensing shoreline interpretation, ground survey verification, elevation measurements for both seawall and coastal lowlands. The results show that the average elevation of the measured coastal areas of Tianjin and Hebei is about +4 m, and the total area of >100 km2 is already below the present mean sea level. More than 270 km, ca. 31% of the total length of the seawall, cannot withstand a 1-in-100-year storm surge. Numerical simulations of the storm flooding on the west coast of Bohai Bay, for 1-in-50-years, 1-in-100-years, 1-in-200-years and 1-in-500-years, show that if there were no coastal dykes, the maximum flooding area would exceed 3000 km2, 4000 km2, 5300 km2 and 7200 km2, respectively. The rising sea has a direct and potential impact on the coastal lowlands of Tianjin and Hebei. Based on the latest development in international sea-level rise prediction research, this paper proposes 0.5 m, 1.0 m and 1.5 m as low, middle and high sea level rise scenarios by 2100 for the study area, and combines the land subsidence and other factors to the elevation of the existing seawall. Comprehensive evaluation results indicate that even in the case of a low scenario, the existing seawall will not be able to withstand a 1-in-100-years storm surge in 2030, and the potential flooding areas predicted by the model will become a reality in the near future. Therefore, the seawall design in the coastal areas of Tianjin and Hebei must consider the combined effects of land subsidence, sea level rise and the extreme storm surges caused by it.©2019 China Geology Editorial Office.  相似文献   

13.
Landsat enhanced thematic mapper imagery (ETM) of 2002 and aerial photography of 1955, combined with published charts and field observations were used to interpret coastal changes in the zone between Kitchener drain and Damietta spit in the northeastern Nile delta, previously recognized as a vulnerable zone to the effects of any sea level rise resulting from global warming. The interpretation resulted in recognition of several changes in nine identified geomorphological land types: beach and coastal flat, coastal dunes, agricultural deltaic land, sabkhas, fish farms, Manzala lagoon, saltpans, marshes and urban centers. Reclamation of vast areas of the coastal dunes and of Manzala lagoon added about 420 km2 to the agricultural deltaic land. About 48 km2 of backshore flats, marshes, salt pans and Manzala lagoon have been converted to productive fish farms. The main urban centers have expanded; nearly 12.1 km2 have been added to their areas, and new urban centers (Damietta harbor and the New Damietta city) with total area reach of ~35.3 km2 have been constructed at the expense of vast areas of Manzala lagoon, coastal dunes, and backshore flats. As a consequence of human activities, the size of Manzala lagoon has been reduced to more than 65%. Shoreline changes have been determined from beach profile survey (1990–2000), and comparison of 1955 aerial photographs and ETM satellite image of 2002 reveal alongshore patterns of erosion versus accretion. The short-term rate of shoreline retreat (1990–2000) has increased in the downdrift side of Damietta harbor (≃14 m/year), whereas areas of accretion exist within the embayment of Gamasa and in the shadow of Ras El Bar detached breakwaters system, with a maximum shoreline advance of ~15 m/year. A sandy spit, 12 km long, has developed southeast of Damietta promontory. These erosion/accretion patterns denote the natural processes of wave-induced longshore currents and sediment transport, in addition, the impact of man-made coastal protection structures.  相似文献   

14.
We measured the amount of arsenic, chromium, copper, lead, nickel, vanadium, and zinc accumulated over a five-year period from 1997 to 2002 in surface sediments of seven salt marshes along the New Brunswick coast of the Bay of Fundy, Canada. Study sites extended from outer to inner Bay, spanning a gradient in tidal range (6–12 m) and mean sediment deposition rate (0.27–1.76 cm yr−1). In each study site, metal concentrations were measured in low and high marsh areas. Concentrations of chromium, nickel, and zinc appear to be within their natural range, while arsenic, lead, and vanadium are enriched in some sites. Calculated sediment metal loadings rates showed variability among marsh sites that closely followed sediment deposition patterns, suggesting sediment deposition rate is the driving factor of short-term metal accumulation in Fundy marshes. The value of salt marshes as a sink for metals may be enhanced by high sedimentation rates.  相似文献   

15.
This study investigates the influence ofPhragmites australis (common reed) invasion on the habitat of the resident marsh fish,Fundulus heteroclitus (mummichog) in the Hackensack Meadowlands, New Jersey. These abundant fish play an important role in the transfer of energy from the marsh surface to adjacent subtidal waters and thus estuarine food webs. The objectives of this 2-yr study (1999 and 2000) were to compare the distribution and abundance of the eggs, larvae, juveniles, and adults of mummichog and their invertebrate prey inhabitingSpartina alterniflora-dominated marshes withPhragmites-dominated marshes, and to experimentally investigate the influence of marsh surface microtoprography on larval fish abundance withinPhragmites-dominated marshes. In 2000, we verified that egg deposition does occur inPhragmites-dominated marshes. In both years, the abundance of larvae and small juveniles (4–20 mm TL) inS. alterniflora was significantly greater than inPhragmites-dominated marshes, while larger juveniles and adults (>20 mm TL) were similarly abundant in both habitat types. The overall abundance of larvae and small juveniles was significantly greater in experimentalPhragmites plots in which microtopography was manipulated to resemble that ofSpartina marshes than inPhragmites control plots. Major groups of invertebrate taxa differed between marsh types with potential prey for larval fish being significantly more abundant inS. alterniflora marshes.Phragmites-dominated marshes may not provide the most suitable habitat for the early life-history stages of the mummichog. The low abundance of larvae and small juveniles inPhragmites marshes is likely due to inadequate larval habitat and perhaps decreased prey availability for these early life history stages.  相似文献   

16.
Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3?±?0.24 mm year?1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2?±?0.52 mm year?1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment availability, salinity, and elevation capital. Together, these two systems provide critical insight into the relationships between marsh elevation, high marsh plant community, and changing hydroperiods. Our results highlight that not all marshes in Southern New England may be responding to accelerated rates of RSLR in the same manner.  相似文献   

17.
Twenty-three estimates of soil subsidence rates arising under the influence of local hydrologic changes from flap-gates, weirs, dikes, and culverts in tidal wetlands were compared to 75 examples of subsidence in drained agricultural wetlands. The induced subsidence rates from these hydrologic modifications in tidal wetlands can continue for more than 100 years, and range between 1.67 to 0.10 cm yr−1 within 1 to 155 years after the hydrologic modifications commence. These subsidence rates are lower than in freshwater wetlands drained for agricultural purposes, decline with age, and are significant in comparison to the rates of global sea level rise or the average soil accretion rates. The elevation change resulting from local hydrologic manipulations is significant with respect to the narrow range of flood tolerances of salt marsh plants, especially in microtidal environments.  相似文献   

18.
The objective of this study was to determine if the placement of dredged material on sediment-starved back barrier marshes in southeastern North Carolina could offset submergence without negatively affecting function. Clean sediment was placed in thickness from 0 to 10 cm, on deteriorated and non-deteriorated marsh plots. Original stem densities were greater, in non-deteriorated plots (256 stems m−2) compared to deteriorated sites (149 stems m−2). By the second growing season (after sediment additions), stem densities in the deteriorated plots (308 stems m−2) approached levels in the non-deteriorated plots (336 stems m−2). Sediment additions to, both nos-deteriorated and deteriorated plots resulted in a higher redox potential with plots receiving the most sediment exhibiting the highest Eh values. In deteriorated plots, placement of dredged material had the greatest effect on plant density, but also affected soil oxidation-reduction potential and sediment deposition (or mobility). Following sediment placement, substrate texture and composition incrementally returned to prefill conditions due to a combination of bioturbation and sedimentation. Where infaunal differences occurred, they were generally less abundant in deteriorated plots, but responses to sediment addition were variable. Sediment addition had little effect on the non-deteriorated plots, suggesting that the disposal of certain types of dredged material in marshes may be useful to mitigate the effects of marsh degradation without adversely affecting non-deteriorating marsh.  相似文献   

19.
Xiamen Bay (XMB) has received substantial loadings of pollutants from industrial and municipal wastewater discharged since the 1980s. To assess ecological risks and the current spatial changes of metal contaminants in bottom surface sediments, 12 samples were collected. Samples were subjected to a total digestion technique and analyzed by ICP–OES for Cu, Pb, Zn, Cr, and Cd, and by AFS for Hg and As. Among these metals, Zn had the highest values (68–268 mg kg−1), followed by Pb (27–71 mg kg−1), and lower concentrations were found for Cd (42–1,913 μg kg−1) and Hg (0–442 μg kg−1). In comparison with the average crustal abundance values, the results indicated that nearly half of the sediment samples of XMB and its adjacent areas were contaminated by Cd, Pb, Zn, and As. Furthermore, based on the modified BCR sequential extraction procedure, the chemical speciation of heavy metals (Cd, Cr, Cu, Pb, Zn, Hg, and As) in selected sediment samples were evaluated in this study. Data from BCR sequential extractions indicated that Cd posed a medium ecological risk, whereas, Cr posed low risk since its exchangeable and carbonate fractions were below 4%, and the mobility of heavy metals in XMB decreased in the order Cd > Pb > Cu > Zn > Hg > As > Cr. By applying mean effects range median quotients (mERMQ), the results showed that Yuandang Lagoon with mERMQ value >0.5 would be expected to have the greatest potential toxic risk in amphipod within XMB and its adjacent areas.  相似文献   

20.
A 115-year-old railroad levee bisecting a tidal freshwater marsh perpendicular to the Patuxent River (Maryland) channel has created a northern, upstream marsh and a southern, downstream marsh. The main purpose of this study was to determine how this levee may affect the ability of the marsh system to gain elevation and to determine the levee’s impact on the marsh’s long-term sustainability to local relative sea level rise (RSLR). Previously unpublished data from 1989 to 1992 showed that suspended solids and short-term sediment deposition were greater in the south marsh compared to the north marsh; wetland surface elevation change data (1999 to 2009) showed significantly higher elevation gain in the south marsh compared to the north (6?±?2 vs. 0?±?2 mm year?1, respectively). However, marsh surface accretion (2007 to 2009) showed no significant differences between north and south marshes (23?±?8 and 26?±?7 mm year?1, respectively), and showed that shallow subsidence was an important process in both marshes. A strong seasonal effect was evident for both accretion and elevation change, with significant gains during the growing season and elevation loss during the non-growing season. Sediment transport, deposition and accretion decreased along the intertidal gradient, although no clear patterns in elevation change were recorded. Given the range in local RSLR rates in the Chesapeake Bay (2.9 to 5.8 mm year?1), only the south marsh is keeping pace with sea level at the present time. Although one would expect the north marsh to benefit from high accretion of abundant riverine sediments, these results suggest that long-term elevation gain is a more nuanced process involving more than riverine sediments. Overall, other factors such as infrequent episodic coastal events may be important in allowing the south marsh to keep pace with sea level rise. Finally, caution should be exercised when using data sets spanning only a couple of years to estimate wetland sustainability as they may not be representative of long-term cumulative effects. Two years of data do not seem to be enough to establish long-term elevation change rates at Jug Bay, but instead a decadal time frame is more appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号