首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method for estimating properties of the ocean bottom such as bathymetry and geoacoustic parameters such as sound speed, density and attenuation, using matched-field inversion is considered. The inversion can be formulated as an optimization problem by assuming a discrete model of unknown parameters and a bounded search space for each parameter. The optimization then involves finding the set of parameter values which minimizes the mismatch between the measured acoustic field and modeled replica fields. Since the number of possible models can be extremely large, the method of simulated annealing, which provides an efficient optimization that avoids becoming trapped in suboptimal solutions, has been used. The matching fields are computed using a normal mode model. In inversions for range-dependent parameters, the adiabatic approximation is employed. This allows mode values to be precomputed for a grid of parameter values and stored in look-up tables for fast reference, which greatly improves computational efficiency. Synthetic inversion examples are presented for realistic range-independent and range-dependent environments  相似文献   

2.
Based on the Wentzel-Kramer-Brillouin modal condition, the phase shift of the bottom reflection coefficient can be extracted. The required input data for this inversion is the modal wavenumber. In this paper, the amount of phase shift of the bottom-reflection coefficient is estimated from the 2001 Asian Sea International Acoustic Experiment data in the East China Sea, in the frequency range of 100-200 Hz. Modal wavenumbers are estimated from using the cross-spectrum density matrix (CSDM) of reverberation data and a mode-shooting method. The error associated with the estimated phase shift is also discussed.  相似文献   

3.
Acoustic source localization using matched-field processing is presented for multitone signals from the Shallow Water Evaluation cell Experiment 3 (SWellEX-3). The experiment was carried out in July 1994 west of Point Loma, CA, in 200 m of water of complex bathymetry. The multitone signal (ten tones between 50 and 200 Hz) was transmitted from an acoustic source towed at various depths over tracks which produced complex propagation paths to a vertical line array receiver. Broad-band and narrow-hand processing, localization, and tracking results are compared with each other and with independent estimates of source position. With narrow-band processing, mismatch between the data and the predicted signal replica of ~1 dB reduced the mainlobe to levels equal to or below the sidelobes. Incoherently averaging the processing output over the multiple tones reduced range/depth sidelobe levels, allowing accurate source localization and tracking  相似文献   

4.
Geoacoustic inversion results based on data obtained during the Asian Seas International Acoustics Experiment (ASIAEX) 2001 East China Sea experiment are reported. The inversion process uses a genetic-algorithm-based matched-field-processing approach to optimize the search procedure for the unknown parameters. Inversion results include both geometric and geoacoustic variables. To gauge the quality of the inversion, two different analyses are employed. First, the inversion results based upon discrete source-receiver ranges are confirmed by continuous source localization over an interval of time. Second, separate inversions at many different ranges are carried out and the uncertainties of the parameter estimation are analyzed. The analysis shows that both methods yield consistent results, ensuring the reliability of inversion in this study.  相似文献   

5.
This work presents the results of geoacoustic inversions carried out using data from the Asian Seas International Acoustics Experiment East China Sea. Broadband data from small explosive sources were used for the inversions. Compressional wave speeds in the sediment and basement layers were estimated using a nonlinear, long-range, tomographic inversion technique based on group speed dispersion. This tomographic technique is a hybrid approach that combines a genetic algorithm for global parameter search with a Levenberg-Marquardt method for fine-scale parameter tuning. The results were compared with data from gravity and piston cores and a geophysical survey conducted at the experimental location using a watergun and towed hydrophone array.  相似文献   

6.
In this paper, we use matched-field inversion methods to estimate the geoacoustic parameters for three synthetic test cases from the Geoacoustic Inversion Techniques Workshop held in May 2001 in Gulfport, MS. The objective of this work is to use a sparse acoustic data set to obtain estimates of the parameters as well as an indication of their uncertainties. The unknown parameters include the geoacoustic properties of the sea bed (i.e., number of layers, layer thickness, density, compressional speed, and attenuation) and the bathymetry for simplified range-dependent acoustic environments. The acoustic data used to solve the problems are restricted to five frequencies for a single vertical line array of receivers located at one range from the source. Matched-field inversion using simplex simulated annealing optimization is initially used to find a maximum-likelihood (ML) estimate. However, the ML estimate provides no information on the uncertainties or covariance associated with the model parameters. To estimate uncertainties, a Bayesian formulation of matched-field inversion is used to generate posterior probability density distributions for the parameters. The mean, covariance, and marginal distributions are determined using a Gibbs importance sampler based on the cascaded Metropolis algorithm. In most cases, excellent results were obtained for relatively sensitive parameters such as wave speed, layer thickness, and water depth. The variance of the estimates increase for relatively insensitive parameters such as density and wave attenuation, especially when noise is added to the data.  相似文献   

7.
Matched-fieId inversion (MFI) undertakes to estimate the geometric and geoacoustic parameters in an ocean acoustic scenario by matching acoustic field data recorded at hydrophone array with numerical calculations of the field. The model which provides the best fit to the data is the estimate of the actual experimental scenario. MFI provides a comparatively inexpensive method for estimating ocean bottom parameters over an extensive area. The basic components of the inversion process are a sound propagation model and matching (minimization) algorithm. Since a typical MFI problem requires a large number of computationally intensive sound propagation calculations, both of these components have to be efficient. In this study, a hybrid inversion algorithm which uses a parabolic equation propagation model and combines the downhill simplex algorithm with genetic algorithms is introduced. The algorithm is demonstrated on synthetic range-dependent shallow-water data generated using the parabolic equation propagation model. The performance for estimating the model parameters is compared for realistic signal-to-noise ratios in the synthetic data  相似文献   

8.
The inversion of broad-band low-frequency acoustic signals received on sparse arrays can lead to robust and efficient estimations of sea-bed properties. This paper describes a shallow-water geoacoustic inversion scheme based on the use of a model-based matched-impulse response on a single hydrophone. Results from the INTIMATE'96 experiment on the Portuguese shelf break are reviewed. In order to minimize the effects of strong time variability due to internal tides, only the time-stable waterborne bottom-surface reflected arrivals are exploited. A quasi-linear inversion algorithm is first applied to refine the geometry of the experiment. Then, inversion of bottom parameters is performed with an objective function that only makes use of the bottom-surface reflected arrivals' amplitudes. The experimental results show that broad-band transmissions (300-800 Hz) received on a single hydrophone, combined with the use of a simple eigenray code, are sufficient to correctly resolve geometrical parameters and bottom features. The analysis of the reflection coefficients both on simulated and real data helps to understand the validity of the inverted parameters and to derive the basis of an equivalent medium concept for geoacoustic inversion based on a "through-the-sensor" approach.  相似文献   

9.
Accurate knowledge of array shape is essential for carrying out full wavefield (matched-field) processing. Direct approaches to array element localization (AEL) include both nonacoustic (tilt-heading sensors) and acoustic (high-frequency, transponder-based navigation) methods. The low-frequency signature emitted from a distant source also can be used in an inversion approach to determine array shape. The focus of this paper is on a comparison of the array shape results from these three different methods using data from a 120-m aperture vertical array deployed during SWellEx-3 (Shallow Water evaluation cell Experiment 3). Located 2 m above the shallowest array element was a self-recording package equipped with depth, tilt, and direction-of-tilt sensors, thereby permitting AEL to be performed non-acoustically. Direct AEL also was performed acoustically by making use of transponder pings (in the vicinity of 12 kHz) received by high-frequency hydrophones spaced every 7.5 m along the vertical array. In addition to these direct approaches, AEL was carried out using an inversion technique where matched-field processing was performed on a multitone (50-200 Hz), acoustic source at various ranges and azimuths from the array. As shown, the time-evolving array shape estimates generated by all three AEL methods provide a consistent picture of array motion throughout the 6-h period analyzed  相似文献   

10.
A case study of internal solitary wave propagation during ASIAEX 2001   总被引:1,自引:0,他引:1  
During the recent Asian Seas International Acoustics Experiment (ASIAEX), extensive current meter moorings were deployed around the continental shelf-break area in the northeastern South China Sea. Thirteen RADARSAT SAR images were collected during the field test to integrate with the in situ measurements from the moorings, ship-board sensors, and conductivity/temperatire/depth (CTD) casts. Besides providing a synoptic view of the entire region, satellite imagery is very useful for tracking the internal waves, locating surface fronts, and identifying mesoscale features. During ASIAEX in May 2001, many large internal waves were observed at the test area and were the major oceanic features studied for acoustic volume interaction. Based on the internal wave distribution maps compiled from satellite data, the wave crests can be as long as 200 km with an amplitude of 100 m. Environmental parameters have been calculated based on extensive CTD casts data near the ASIAEX area. Nonlinear internal wave models have been applied to integrate and assimilate both synthetic aperture radar (SAR) and mooring data. Using SAR data in deep water as an initial condition, numerical simulations produced the wave evolution on the continental shelf and compared reasonably well with the mooring measurements at the downstream station. The shoaling, turning, and dissipation of large internal waves at the shelf break have been studied and are very important issues for acoustic propagation.  相似文献   

11.
浅海内波及声场起伏数值研究   总被引:2,自引:0,他引:2  
为探讨声学方法监测(反演)海洋内波的可行性,分析ASIAEX2001亚洲海海洋声学实验定点温度链实验数据,结果表明:实验期间存在M2内潮波、周期10~30min非线性内波现象,并观测到双温跃层同相传播“双非线性内波”。分别对垂直和平行于内波传播方向传播声场进行了数值计算分析。垂直于内波传播方向的声传播计算结果表明:简正波波数时间演化函数的频谱与内波引起的声速剖面变化频谱基本一致;简正波系数(模值)时间演化函数的频谱与内波引起的声源位置处的声速演化函数的频谱基本一致;高阶简正波波数差随时间的变化要比低阶简正波波数差小约1个量级。平行于内波传播方向的声传播计算结果表明:内潮波主要导致相邻简正波间耦合;非线性内波包能够导致跨号甚至垮多号简正波间耦合。讨论了2种海洋内波声学监测方法。  相似文献   

12.
The wide-band source (WBS) signals measured in the Asian Seas International Acoustics Experiment (ASIAEX) in the East China Sea (ECS) were used to invert for geoacoustic parameters. Sound speed and density were inverted using the matched-field processing method combined with the vertical reflection coefficients and sea-bed attenuation coefficients were inverted from the vertical correlation data. For a half infinite liquid sea-bottom model, the inverted equivalent bottom sound speed is 1610/spl plusmn/12 m/s and the bottom density is 1.86 g/cm/sup 3/. The inverted attenuation coefficients are well described by a nonlinear relationship of the form /spl alpha//sub b/=0.28f/sup 1.58/ dB/m (f is in units of kilohertz) in the frequency range of 100-600 Hz.  相似文献   

13.
14.
It is extremely difficult to determine shallow ocean bottom properties (such as sediment layer thicknesses, densities, and sound speeds). However, when acoustic propagation is affected by such environmental parameters, it becomes possible to use acoustic energy as a probe to estimate them. Matched-field processing (MFP) which relies on both field amplitude and phase can be used as a basis for the inversion of experimental data to estimate bottom properties. Recent inversion efforts applied to a data set collected in October 1993 in the Mediterranean Sea north of Elba produce major improvements in MFP power, i.e., in matching the measured field by means of a model using environmental parameters as inputs, even using the high-resolution minimum variance (MV) processor that is notoriously sensitive and usually results in very low values. The inversion method applied to this data set estimates water depth, sediment thickness, density, and a linear sound-speed profile for the first layer, density and a linear sound-speed profile for a second layer, constant sound speed for the underlying half space, array depth, and source range and depth. When the inversion technique allows for the array deformations in range as additional parameters (to be estimated within fractions of a wavelength, e.g., 0.1 m), the MFP MV peak value for the Med data at 100 Hz can increase from 0.48 (using improved estimates of environmental parameters and assuming a vertical line array) to 0.68 (using improved estimates of environmental parameters PLUS improved phone coordinates). The ideal maximum value would be 1.00 (which is achieved for the less sensitive Linear processor). However, many questions remain concerning the reliability of these inversion results and of inversion methods in general  相似文献   

15.
This paper applies a Bayesian formulation to range-dependent geoacoustic inverse problems. Two inversion methods, a hybrid optimization algorithm and a Bayesian sampling algorithm, are applied to some of the 2001 Inversion Techniques Workshop benchmark data. The hybrid inversion combines the local (gradient-based) method of downhill simplex with the global search method of simulated annealing in an adaptive algorithm. The Bayesian inversion algorithm uses a Gibbs sampler to estimate properties of the posterior probability density, such as mean and maximum a posteriori parameter estimates, marginal probability distributions, highest-probability density intervals, and the model covariance matrix. The methods are applied to noise-free and noisy benchmark data from shallow ocean environments with range-dependent geophysical and geometric properties. An under-parameterized approach is applied to determine the optimal model parameterization consistent with the resolving power of the acoustic data. The Bayesian inversion method provides a complete solution including quantitative uncertainty estimates and correlations, while the hybrid inversion method provides parameter estimates in a fraction of the computation time.  相似文献   

16.
A simple direct inversion scheme for computing the velocity profile of an inhomogeneous slab from reflected data using the order-of-scattering method of solving the Riccati equation for a lossless medium is presented. Extension of this method to the estimation of the constant attention in a low-loss dispersive medium is also indicated.  相似文献   

17.
An inversion technique (IT) is developed and preliminarily tested using data from the 2001 IT Workshop. This technique was developed using TL versus range data collected by the harsh environments program (HEP) and provided through the workshop. However, the IT developed here applies to all sonar systems, active and passive. The sonar-independent portion of the IT consists of a simulated annealing algorithm to be developed by Neumann et al. constrained by an expert system called the Hamilton-Bachman Smart Rules (HBSR), which was developed by the authors. This expert system constrains the geoacoustic model being inverted to realistic Hamilton-Bachman-type values, curve shapes, etc. The sonar-specific module of the IT is chosen based on the sonar frequency and models available to run at those frequencies. Two measured data cases from the workshop are presented and, due to the HBSR, good solutions were acquired in less than 50 iterations.  相似文献   

18.
中分辨率成像光谱仪(CMODIS)是我国“神舟3号”飞船上对地观测主载荷,是我国第一台上天的具有测量海面叶绿素a浓度能力的成像光谱仪.利用宽视场海洋水色扫描仪(SeaWiFS)反演叶绿素a浓度作为参考值建立CMODIS资料处理模型,得到三个基于蓝绿波段比值法的叶绿素a浓度反演算法,平均相对误差分别为26.6%,24%和33.5%,均方根误差分别为1.16,1.15和1.23 mg/m3.在叶绿素a浓度反演误差允许范围小于35%的条件下,比值算法的适用范围为悬浮泥沙浓度小于5 g/m3的海区.悬浮泥沙的强散射作用导致比值算法在高悬浮泥沙浓度条件下产生高估叶绿素a浓度反演值的现象;在中低悬浮泥沙浓度的海区,悬浮泥沙和浮游植物对离水辐亮度的综合作用使比值算法存在低估叶绿素a浓度的趋势.  相似文献   

19.
In the Hudson Canyon experiment, a sound source moved at a constant depth in 73 m of water while transmitting four tonals. The signal was received on a vertical array of hydrophones that spanned the water column. The data set from this experiment has become a standard test case for studying source tracking using matched field processing. As part of that process it was important to first determine a suitable environment model and demonstrate the feasibility of matched-field processing. In this paper, we provide the background on the original data processing that was done to accomplish this. Several interesting results emerged from that study. Frequency averaging was demonstrated to be extremely beneficial when used with the Bartlett processor. However, the popular Minimum Variance processor performed poorly. Finally we discuss a very simple approach to combining the energy coherently that provided significantly improved results.  相似文献   

20.
Channel temporal variability, resulting from fluctuations in oceanographic parameters, is an important issue for reliable communications in shallow-water-long-range acoustic propagation. As part of an acoustic model validation exercise, audio-band acoustic data and oceanographic data were collected from shallow waters off the West Coast of Scotland. These data have been analyzed for temporal effects. The average impulse response for this channel has been compared with simulations using a fast broad-band normal-mode propagation model. In this paper, we also introduce a novel technique for estimating and removing the bistatic reverberation contribution from the data. As propagation models do not necessarily account for reverberation, it has to be extracted from the signals when comparing measured and modeled transmission loss  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号