首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The climate of the 1930s was used as an analog of the climate that might occur in Missouri, Iowa, Nebraska and Kansas (the MINK region) as a consequence of global warming. The analog climate was imposed on the agriculture of the region under technological and economic conditions prevailing in 1984/87 and again under a scenario of conditions that might prevail in 2030. The EPIC model of Williamset al. (1984), modified to allow consideration of the yield enhancing effects of CO2 enrichment, was used to evaluate the impacts of the analog climate on the productivity and water use of some 50 representative farm enterprises. Before farm level adjustments and adaptations to the changed climate, and absent CO2 enrichment (from 350 to 450 ppm), production of corn, sorghum and soybeans was depressed by the analog climate in about the same percent under both current and 2030 conditions. Production of dryland wheat was unaffected. Irrigated wheat production actually increased. Farm level adjustments using low-cost currently available technologies, combined with CO2 enrichment, eliminated about 80% of the negative impact of the analog climate on 1984/87 baseline crop production. The same farm level adjustments, plus new technologies developed in response to the analog climate, when combined with CO2 enrichment, converted the negative impact on 2030 crop production to a small increase. The analog climate would have little direct effect on animal production in MINK. The effect, if any, would be by way of the impact on production of feed-grains and soybeans. Since this impact would be small after on-farm adjustments and CO2 enrichment, animal production in MINK would be little affected by the analog climate.  相似文献   

2.
The problem of CO2 control in the atmosphere is tackled by proposing a kind of fuel cycle for fossil fuels where CO2 is partially or totally collected at certain transformation points and properly disposed of.CO2 is disposed of by injection into suitable sinking thermohaline currents that carry and spread it into the deep ocean that has a very large equilibrium capacity.The Mediterranean undercurrent entering the Atlantic at Gibraltar has been identified as one such current; it would have sufficient capacity to deal with all CO2 produced in Europe even in the year 2100.  相似文献   

3.
Turbulent fluctuations in CO2 concentrations over a paddy field are measured by a fastresponse device with an open sensing path. This IR device coupled with a sonic anemometer constitutes an eddy correlation instrument to measure CO2 fluxes. Three experiments were conducted in the surface layer over paddy 90 cm high. The stability (z – d)/L ranged from -0.14 to 0.20, where L denotes the Monin-Obukhov length.CO2 power spectra show the range of applicability of the -2/3 power law to be between f = 0.2 and f = 2, where f is the frequency normalized by wind speed and height. The cospectral estimate between CO2 and vertical component of wind speed ranging from f = 0.005 to f = 2 shows a peak at about f = 0.15 under near-neutral stratification.Hourly means of CO2 flux measured by the eddy correlation method increase with intensity of net radiation. The maximum value of downward flux of CO2 rises to 0.6 mg cm-2 hr-1 over the paddy field at the stage of ear emergence.Some turbulence statistics relating to the CO2 transport are evaluated: the correlation coefficient between CO2 and vertical velocity is about -0.3, and that between CO2 and humidity attains -0.7 ~ -0.8 under unstable stratification; nondimensional gradients c for CO2 and m for wind speed are 0.89 and 0.99, respectively.  相似文献   

4.
Summary During the Hartheim experiment (HartX) 1992, conducted in the Upper Rhine Valley, Germany, we estimated water vapor flux from the understory by several methods as reported in Wedler et al. (this issue). We also examined the photosynthetic gas exchange of the dominant understory speciesBrachypodium pinnatum, Carex alba, andCarex flacca at the leaf level with an CO2/H2O porometer. A mechanisticallybased leaf gas exchange model was parameterized for these understory species and validated via the measured diurnal courses of carbon dioxide exchange. Leaf CO2 gas exchange was scaled-up to patch- and then to stand-level utilizing the leaf gas exchange model as a component of the canopy light interception/energy balance model GAS-FLUX, and by further considering variation in vegetation patch-type distribution, patch-specific spatial structure, patch-type leaf area index, and microclimate beneath the tree canopy.At patch-level,C. alba exhibited the lowest net CO2 uptake of ca. 75 mmol m–2 d–1 due to a low leaf-level photosynthetic capacity, whereas net CO2 fixation ofB. pinnatum- andC. flacca-patches was approx. 178 and 184 mmol m–2 d–1, respectively. Highest CO2 uptake was estimated for mixed patches whereB. pinnatum grew together with the sedge speciesC. alba orC. flacca. Scaling-up of leaf gas exchange to stand level resulted in an estimated average rate of total CO2 fixation by the graminoid understory patches of approximately 93 mmol m–2 d–1 during the HartX period. The conservative gas exchange behavior ofC. alba at Hartheim and its apparent success in space capture seems to affect overall functioning of this pine forest ecosystem by limiting understory CO2 uptake. The CO2 uptake by the understory is approximately 20% of stand total CO2 uptake. CO2 uptake fluxes mirror the relative differences in water loss from the understory and crown layer during the HartX period. Comparative measurements indicate that understory vegetation in spruce and pine forests is not greatly different from that of other low-statured natural ecosystems such as tundra or marshes under high light conditions, although CO2 capture by the understory at Hartheim is at the low extreme of the estimates, apparently due to the success ofC. alba. With 6 Figures  相似文献   

5.
The commonly reported temperature coefficient of P. the equilibrium partial pressure of CO2, is (P/T) A,C ,which is about 15 ppm/°C, or 5% of the atmospheric partial pressure of CO2. This coefficient, however, applies only to deep water, not to surface water which can exchange CO2 with the atmosphere. The coefficient (P/T) A,C ,, where designates constancy of the sum of atmospheric and surface-ocean CO2, is the appropriate value for air-sea exchange. Numerical values are mass-dependent because the depth of the exchanging ocean layer must be specified. For a 100-m surface layer, the value is ca. 1.5 ppm/°C, or 0.5% of ambient CO2. Editor's Note:In view of the interdisciplinary importance of the carbon dioxide-climate problem, this note on seawater chemistry should be of interest to specialists beyond the discipline of ocean chemistry.  相似文献   

6.
 The Younger Dryas (YD, dated between 12.7–11.6 ky BP in the GRIP ice core, Central Greenland) is a distinct cold period in the North Atlantic region during the last deglaciation. A popular, but controversial hypothesis to explain the cooling is a reduction of the Atlantic thermohaline circulation (THC) and associated northward heat flux as triggered by glacial meltwater. Recently, a CH4-based synchronization of GRIP δ18O and Byrd CO2 records (West Antarctica) indicated that the concentration of atmospheric CO2 (COatm 2) rose steadily during the YD, suggesting a minor influence of the THC on COatm 2 at that time. Here we show that the COatm 2 change in a zonally averaged, circulation-biogeochemistry ocean model when THC is collapsed by freshwater flux anomaly is consistent with the Byrd record. Cooling in the North Atlantic has a small effect on COatm 2 in this model, because it is spatially limited and compensated by far-field changes such as a warming in the Southern Ocean. The modelled Southern Ocean warming is in agreement with the anti-phase evolution of isotopic temperature records from GRIP (Northern Hemisphere) and from Byrd and Vostok (East Antarctica) during the YD. δ13C depletion and PO4 enrichment are predicted at depth in the North Atlantic, but not in the Southern Ocean. This could explain a part of the controversy about the intensity of the THC during the YD. Potential weaknesses in our interpretation of the Byrd CO2 record in terms of THC changes are discussed. Received: 27 May 1998 / Accepted: 5 November 1998  相似文献   

7.
By using NCEP/NCAR daily reanalysis data and daily precipitation data of 740 stations in China, relationships between the position variation of the West Pacific subtropical high (WPSH) and the diabatic heating during persistent and intense rains in the Yangtze-Huaihe Rivers basin are studied. The results show that the position variation of WPSH is closely associated with the diabatic heating. There are strong apparent heating sources and moisture sinks in both the basin (to the north of WPSH) and the north of Bay of Bengal (to the west of WPSH) during persistent and intense rain events. In the basin, Q 1z begins to increase 3 days ahead of intense rainfall, maximizes 2 days later and then reduces gradually, but it changes little after precipitation ends, thus preventing the WPSH from moving northward. In the north of Bay of Bengal, 2 days ahead of strong rainfall over the basin, Q 1z starts to increase and peaks 1 day after the rain occurs, leading to the westward extension of WPSH. Afterwards, Q 1z begins declining and the WPSH makes its eastward retreat accordingly. Based on the complete vertical vorticity equation, in mid-troposphere, the vertical variation of heating in the basin is favorable to the increase of cyclonic vorticity north of WPSH, which counteracts the northward movement of WPSH and favors the persistence of rainbands over the basin. The vertical variation of heating in the north of Bay of Bengal is in favor of the increase of anti-cyclonic vorticity to the west of WPSH, which induces the westward extension of WPSH.  相似文献   

8.
Recent works with energy balance climate models and oceanic general circulation models have assessed the potential role of the world ocean for climatic changes on a decadal to secular time scale. This scientific challenge is illustrated by estimating the response of the global temperature to changes in trace gas concentration from the pre-industrial epoch to the middle of the next century. A simple energetic formulation is given to estimate the effect on global equilibrium temperature of a fixed instantaneous radiative forcing and of a time-dependent radiative forcing. An atmospheric energy balance model couple to a box-advection-diffusion ocean model is then used to estimate the past and future global climalic transient response to trace-gas concentration changes. The time-dependent radiative perturbation is estimated from a revised approximate radiative parameterization, and the recent reference set of trace gas scenarios proposed by Wuebbles et al. (1984) are adopted as standard scenarios. Similar computations for the past and future have recently been undertaken by Wigley (1985), but using a purely diffusive ocean and slightly different trace gas scenarios. The skill of the socalled standard experiment is finally assessed by examining the model sensitivity of different parameters such as the equilibrium surface air temperature change for a doubled CO2 concentration [T ae (2×CO2)], the heat exchange with the deeper ocean and the trace gas scenarios. For T ae (2×CO2) between 1 K and 5 K, the following main results are obtained: (i) for a pre-industrial CO2, concentration of 270 ppmv, the surface air warming between 1850 and 1980 ranges between 0.4 and 1.4 K (if a pre-industrial CO2 concentration of 290 ppmv is chosen, the range is between 0.3 and 1 K); (ii) by comparison with the instantaneous equilibrium computations, the deeper ocean inertia induces a delay which amounts to between 6 years [for lower T ae (2×CO2)] and 23 years [for higher Tae(2×CO2)] in 1980; (iii) for the standard future CO2 and other trace gas scenarios of Wuebbles et al., the surface air warming between 1980 and 2050 is calculated to range between 0.9 and 3.4 K, with a delay amounting to between 7 years and 32 years in 2050 when compared to equilibrium computations.  相似文献   

9.
To systematically explain relations between light hydrocarbons, CO, and CO2 concentrations/emissions of biomassburning, we measured concentrations/emissions of carbon gases – CO,CO2, light hydrocarbons (CH4, C2H6,C2H4, C2H2, C3H8, C3H6,n-C4H10, i-C4H10, n-C5H12,i-C5H12), and THC (total hydrocarbon) – in the burning of dead plant material, mainly Imperata grass, byclosed-chamber experiments and by time-series analyses of gas concentrations in combustion plumes in relatively efficient and inefficient combustion situations. Concentrations of hydrocarbons measured were well correlated to [CO] although [C2H2] was exceptionally well correlated to[CO2]. The phase diagrams (relation between [CO]/ [CO2] and [hydrocarbon]/ [CO2]) obtained by the time-seriesexperiments well illustrated the variation in the overall emission rates of the closed-chamber experiments. The higher rates of decrease in hydrocarbon concentration with increasing carbon number in the efficient case compared with the inefficient case probably reflected the rate of oxidation and the amount of radicals. The overall concentrations (or emissions) of C2H4 and C3H6 were higher thanthose of C2H6 and C3H8, suggesting a linkage to mechanisms in whichthe predominant path of hydrocarbon oxidation is through the degradation of alkyl radicals, which can be immediately converted into or formed from alkenes. For C3 and C4 species, normal-chain species hadhigher emissions than iso-chain species under lower combustion efficiency. This may be attributable to the presence of tertiary C–H bonds in iso-species,which show more reactivity in the abstraction of H than secondary C–H bonds unless the carbon number is large.  相似文献   

10.
Carbonyl sulfide emissions from biomass burning have been studied during field experiments conducted both in an African savanna area (Ivory Coast) and rice fields, central highland pine forest and savanna areas in Viet-Nam. During these experiments CO2, CO and C2H2 or CH4 have also been also monitored. COS values range from 0.6 ppbv outside the fires to 73 ppbv in the plumes. Significant correlations have been observed between concentrations of COS and CO (R 2=0.92,n=25) and COS and C2H2 (R 2=0.79,n=26) indicating a COS production during the smoldering combustion. COS/CO2 emission factors (COS/CO2) during field experiments ranged from 1.2 to 61×10–6 (11.4×10–6 mean value). COS emission by biomass burning was estimated to be up to 0.05 Tg S/yr in tropics and up to 0.07 Tg S/yr on a global basis, contributing thus about 10% to the global COS flux. Based on the S/C ratio measured in the dry plant biomass and the COS/CO2 emission factor, COS can account for only about 7% of the sulfur emitted in the atmosphere by biomass burning.  相似文献   

11.
To project potential habitat changes of 57 fish species under global warming, their suitable thermal habitat at 764 stream gaging stations in the contiguous United States was studied. Global warming was specified by air temperature increases projected by the Canadian Centre of Climate Modelling General Circulation Model for a doubling of atmospheric CO2. The aquatic thermal regime at each gaging station was related to air temperature using a nonlinear stream temperature/air temperature relationship.Suitable fish thermal habitat was assumed to be constrained by both maximum temperature and minimum temperature tolerances. For cold water fishes with a 0 °C lower temperature constraint, the number of stations with suitable thermal habitat under a 2×CO2 climate scenario is projected to decrease by 36%, and for cool water fishes by 15%. These changes are associated with a northward shift of the range. For warm water fishes with a 2 °C lower temperature constraint, the potential number of stations with suitable thermal habitat is projected to increase by 31%.  相似文献   

12.
Since April 1986, measurements of the CO2 concentration in the surface air have been conducted at the Meteorological Research Institure (MRI, 36°04 N, 140°07 E, 25 m above sea level) in Tsukuba, located 50 km northeast of Tokyo, Japan. The CO2 data measured over times between 11:00 Japan Standard Time (JST) and 16:00 JST (C N ) were considered to be representative of the air (within a few ppmv) in the planetary boundary layer. To evaluate the representative CO2 level on a spatial scale larger than that of the C N record, the CO2 data with hour-to-hour variation less than 1 ppmv were selected (C P ). Comparison of these data with those of Ryori (39°02 N, 141°50 E), a continental station operated by the Japan Meteorological Agency, indicates that the C P record provides a representative CO2 level in the air on spatial scales of at least a few hundred kilometers.The C N record allows an investigation of the internanual changes in photosynthesis/respiration against changes in climatological parameters. Within a small temperature anomaly (ca.±1 °C) respiration is sensitive to the temperature change, while photosynthesis is less sensitive. When the temperature anomaly is large, however, photosynthesis and respiration tend to be competitive.  相似文献   

13.
The flux of CH4 and CO2 from termite nests into the atmosphere has been measured in a broad-leafed-type savannah in South Africa. Measurements were carried out on nests of species of six genera, i.e., Hodotermes, Macrotermes, Odontotermes, Trinervitermes, Cubitermes, and Amitermes. The flux rates of CH4 relative to the flux rate of CO2 in terms of carbon obtained for the individual species showed ratios of 2.9×10-3, 7.0×10-4, 6.7×10-5, 8.7×10-3, 2.0×10-3 and 4.2×10-3, respectively. Using data published on the assimulation efficiencies of termites, the flux of carbon as CH4 accounts for 6.0×10-5 to 2.6×10-3 of the carbon ingested which results in a global CH4 emission by termites of 2 to 5×1012 g/yr. Methane is decomposed in the soil with average decomposition rates of 52 g/m2/h. The annual CH4 consumption in the tropics and subtropics is estimated to be 21×1012 g which exceeds the CH4 emission rate by termites.  相似文献   

14.
Tropical forests resemble, besides their enormous genetic diversity, the single largest biomass carbon pool in the world. Only a small annual increase of this pool could trap the current surplus of atmospheric CO2. The fact that this is not happening already today (after the world has seen a 27% increase in atmospheric CO2 in only 150 years) sets the boundaries of the likely trends to be expected in the future. In contrast to the possibly small overall responses of the tropical forest carbon pool, individual plant responses to CO2 enrichment will be significant. Since species and their genotypes will not respond in identical ways, selective processes will be induced which will lead to new community structures and alterations of numerous plant-plant, plant-animal and plant-microbe interactions. Examples are provided for such subtile CO2 effects, measured both in the greenhouse and in the field. From what is known currently it is concluded that in closed humid tropical forests leaf area index is unlikely to increase, mineral nutrient and water demand may (at least temporarily) become reduced, and leaf tissue quality plus associated consumer behavior will be altered. The big unknown is the behavior of tropical soils and their microflora and fauna. There is a realistic possibility that carbon turnover will be increased in tropical forests in a CO2-enriched world, which would have substantial implications for nutrient cycling.  相似文献   

15.
Although the role of rising atmospheric carbon dioxide concentration [CO2] on plant growth and fecundity is widely acknowledged as important within the scientific community; less research is available regarding the impact of [CO2] on secondary plant compounds, even though such compounds can play a significant role in human health. At present, Artemisia annua, an annual plant species native to China, is widely recognized as the primary source of artemesinin used in artemesinin combination therapies or ACTs. ACTs, in turn, are used globally for the treatment of simple Plasmodium falciparum malaria, the predominant form of malaria in Africa. In this study, artemesinin concentration was quantified for multiple A. annua populations in China using a free-air CO2 enrichment (FACE) system as a function of [CO2]-induced changes both in situ and as a function of the foliar ratio of carbon to nitrogen (C:N). The high correlation between artemesinin concentration and C:N allowed an historical examination of A. annua leaves collected at 236 locations throughout China from 1905 through 2009. Both the historical and experimental data indicate that increases in artemesinin foliar concentration are likely to continue in parallel with the ongoing increase in atmospheric [CO2]. The basis for the [CO2]-induced increase in artemesinin is unclear, but could be related to the carbon: nutrient hypothesis of Bryant et al. (1983). Overall, these data provide the first evidence that historic and projected increases in atmospheric [CO2] may be associated with global changes in artemesinin chemistry, potentially allowing a greater quantity of drug available for the same area of cultivation.  相似文献   

16.
An experimental study has been carried out in the Mainz vertical wind tunnel to determine the rate at which NH3 in the presence of CO2 is absorbed by freely suspended water drops. The experimental uptake rates were found to be in good agreement with the rates predicted by the Kronig-Brink convective diffusion model and, for gas concentrations in the ppbv range also by the model in which it is assumed that the absorbed gas is well mixed inside the drop (henceforth called well mixed model). The same conclusion was shown to apply also to the desorption of NH3 from a drop previously exposed to NH3. The latter result is in contrast to the desorption of SO2 which must be described by a model which accounts for the diffusion of the species inside the drop. Comparison of our experimental results with theory show further that the uptake of NH3 in presence of CO2 is significantly overestimated if the slow reaction CO2(aq)+H2OHCO 3 +H+ is neglected in the theoretical computation.  相似文献   

17.
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., c w = – c w. Corrections for the mean convective flux are particularly significant for CO2 because cw and c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.  相似文献   

18.
In this paper we quantify the CH4, CO2 and NO x emissions during routine operations at a major oil and gas production facility, Prudhoe Bay, Alaska, using the concentrations of combustion by products measured at the NOAA-CMDL observatory at Barrow, Alaska and fuel consumption data from Prudhoe Bay. During the 1989 and 1990 measurement campaigns, 10 periods (called events) were unambiguously identified where surface winds carry the Prudhoe Bay emissions to Barrow (approximately 300 km). The events ranged in duration from 8–48 h and bring ambient air masses containing substantially elevated concentrations of CH4, CO2 and NO y to Barrow. Using the slope of the observed CH4 vs CO2 concentrations during the events and the CO2 emissions based on reported fuel consumption data, we calculate annual CH4 emissions of (24+/–8)×103 metric tons from the facility. In a similar manner, the annual NO x emissions are calculated to be (12+/–4)×103 metric tons, which is in agreement with an independently determined value. The calculated CH4 emissions represent the amount released during routine operations including leakage. However this quantity would not include CH4 released during non-routine operations, such as from venting or gas flaring.  相似文献   

19.
Mechanisms of shrubland expansion: land use,climate or CO2?   总被引:11,自引:0,他引:11  
Encroachment of trees and shrubs into grasslands and the thicketization of savannas has occurred worldwide over the past century. These changes in vegetation structure are potentially relevant to climatic change as they may be indicative of historical shifts in climate and as they may influence biophysical aspects of land surface-atmosphere interactions and alter carbon and nitrogen cycles. Traditional explanations offered to account for the historic displacement of grasses by woody plants in many arid and semi-arid ecosystems have centered around changes in climatic, livestock grazing and fire regimes. More recently, it has been suggested that the increase in atmospheric CO2 since the industrial revolution has been the driving force. In this paper we evaluate the CO2 enrichment hypotheses and argue that historic, positive correlations between woody plant expansion and atmospheric CO2 are not cause and effect.Please direct all correspondence to the senior author.  相似文献   

20.
本文基于2007年和2008年生长季内蒙古羊草和大针茅草原湍流观测资料,分析了两种典型草原下垫面生长季的不同土壤水分条件下水汽和二氧化碳通量交换特征及其控制因子。主要结果如下:(1)在植被生长峰值期,日尺度上,干旱条件下土壤湿度是潜热通量的主要控制因子,而土壤水分条件较好时潜热通量主要受净辐射控制。(2)与大针茅草原相比,羊草草原叶面积指数较大,水分条件较好时,其潜热通量平均值更大,CO2吸收能力更强,吸收CO2更多;但在土壤水分胁迫出现时,羊草草原叶面的气孔闭合度急剧增加,大针茅草原的潜热通量、和CO2吸收反而更大,表现出更为耐旱的植被特性。(3)地表导度可以用来解释土壤水分条件对羊草和大针茅草原碳水通量的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号