首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The geochemical study of the Earth's mantle provides important constraints on our understanding of the formation and evolution of Earth, its internal structure, and the mantle dynamics. The bulk Earth composition is inferred by comparing terrestrial mantle rocks with chondrites, which leads to the chondritic Earth model. That is, Earth has the same relative proportions of refractory elements as that in chondrites, but it is depleted in volatiles. Ocean island basalts(OIB) may be produced by mantle plumes with possible deep origins; consequently, they provide unique opportunity to study the deep Earth. Isotopic variations within OIB can be described using a limited number of mantle endmembers, such as EM1, EM2 and HIMU, and they have been used to decipher important mantle processes. Introduction of crustal material into the deep mantle via subduction and delamination is important in generating mantle heterogeneity; however, there is active debate on how they were sampled by mantle melting, i.e.,the role of olivine-poor lithologies in the OIB petrogenesis. The origin and location of high 3He/4He mantle remain controversial,ranging from unprocessed(or less processed) primitive material in the lower mantle to highly processed materials with shallow origins, including ancient melting residues, mafic cumulates under arcs, and recycled hydrous minerals. Possible core-mantle interaction was hypothesized to introduce distinctive geochemical signatures such as radiogenic 186 Os and Fe and Ni enrichment in the OIB. Small but important variations in some short-lived nuclides, including 142 Nd, 182 W and several Xe isotopes, have been reported in ancient and modern terrestrial rocks, implying that the Earth's mantle must have been differentiated within the first 100 Myr of its formation, and the mantle is not efficiently homogenized by mantle convection.  相似文献   

3.
4.
Mantle plumes?     
Norm Sleep suggests that it is premature to toss the concept of mantle plumes into the dustbin. The hypothesis yields testable predictions about the geological phenomena of hotspots.  相似文献   

5.
SKS and PKS splitting parameters were determined in the broader Greek region using data from 45 stations of the Hellenic Unified Seismological Network and the Kandilli Observatory and Earthquake Research Institute, utilizing teleseismic events that occurred between 2010 and 2017. Data were processed for shear-wave splitting with the Minimum Energy Method that was considered the optimal. The results generally confirm the existence of anisotropic zonation in the Hellenic subduction system, with alternating trench-normal and trench-parallel directions. The zonation is attributed to the upper and lower olivine fabric layers that can, potentially, be present in the subduction zone. At the edges of this zone, two possible toroidal flow cases have been identified, implying the existence of tears that allow the inflow of asthenospheric material in the mantle wedge. The high number of null measurements in the KZN and XOR stations indicates a possible anisotropic transition zone between the fore-arc and back-arc areas. SKS and PKS splitting results are jointly interpreted, given that they yield similar values in most cases.  相似文献   

6.
《国际地震动态》2007,(3):46-47
科学家们已经直接测量了从地核液体金属到地幔底部区域的热流量,该过程有助于了解驱动浅部板块的运动和产生地球磁场的地球发电机。最近发表于《Science》杂志上的研究指出,新的温度测量是通过关联地震观测与最近发现的矿物转换获得的,该矿物转换发生于核-幔边界附近的超高压和超高温度条件。论文第一作者加利福尼亚大学地球与行星科学系Thorne Lay教授认为,这是首次拥有“温度计”,它能告诉我们地球深处的温度。如果我们的解释是正确的,那么它给我们提供了两种不同深度处正确的温度,因此我们不仅得到了绝对温度,还得到了温度随深度变化的…  相似文献   

7.
—Recently a high-resolution tomographic model, the P1200, based on P-wave travel times was developed, which allowed for detailed imaging of the top 1200 km of the mantle. This model was used in diverse ways to study mantle viscosity structure and geodynamical processes. In the spatial domain there are lateral variations in the transition zone, suggesting interaction between the lower-mantle plumes and the region from 600 km to 1000 km. Some examples shown here include the continental region underneath Manchuria, Ukraine and South Africa, where horizontal structures lie above or below the 660 km discontinuity. The blockage of upwelling is observed under central Africa and the interaction between the upwelling and the transition zone under the slow Icelandic region appears to be complex. An expansion of the aspherical seismic velocities has been taken out to spherical harmonics of degree 60. For degrees exceeding around 10, the spectra at various depths decay with a power-law like dependence on the degree, with the logarithmic slopes in the asymptotic portion of the spectra containing values between 2 and 2.6. These spectral results may suggest the time-dependent nature of mantle convection. Details of the viscosity structure in the top 1200 km of the mantle have been inferred both from global and regional geoid data and from the high-resolution tomographic model. We have considered only the intermediate degrees (l = 12–25) in the nonlinear inversion with a genetic algorithm approach. Several families of acceptable viscosity profiles are found for both oceanic and global data. The families of solutions for the two data sets have different characteristics. Most of the solutions asociated with the global geoid data show the presence of asthenosphere below the lithosphere. In other families a low viscosity zone between 400 and 600 km depth is found to lie atop a viscosity jump. Other families evidence a viscosity decrease across the 660 km discontinuity. Solutions from oceanic geoid show basically two low viscosity zones one lying right below the lithosphere; the other right under 660-km depth. All of these results bespeak clearly the plausible existence of strong vertical viscosity stratification in the top 1000 km of the mantle. The presence of the second asthenosphere may have important dynamical ramifications on issues pertaining to layered mantle convection. Numerical modelling of mantle convection with two phase transitions and a realistic temperature- and pressure-dependent viscosity demonstrates that a low viscosity region under the endothermic phase transition can indeed be generated self-consistently in time-dependent situations involving a partially layered configuration in an axisymmetric spherical-shell model.  相似文献   

8.
—An attempt is made to explore the geodynamical significance of seismic anisotropy in the deep mantle on the basis of mineral physics. The mineral physics observations used include the effects of deformation mechanisms on lattice and shape preferred orientation, the effects of pressure on elastic anisotropy and the nature of lattice preferred orientation in deep mantle minerals in dislocation creep regime. Many of these issues are still poorly constrained, but a review of recent results shows that it is possible to interpret deep mantle seismic anisotropy in a unified fashion, based on the solid state processes without invoking partial melting. The key notions are (i) the likely regional variation in the magnitude of anisotropy as deformation mechanisms change from dislocation to diffusion creep (or superplasticity), associated with a change in the stress level and/or grain-size in the convecting mantle with a high Rayleigh number, and (ii) the change in elastic anisotropy with pressure in major mantle minerals, particularly in (Mg, Fe)O. The results provide the following constraints on the style of mantle convection (i) the SH > SV anisotropy in the bottom transition zone and the SV > SH anisotropy in the top lower mantle can be attributed to anisotropy structures (lattice preferred orientation and/or laminated structures) caused by the horizontal flow in this depth range, suggesting the presence of a mid-mantle boundary layer due to (partially) layered convection, (ii) the observed no significant seismic anisotropy in the deep mantle near subduction zones implies that deformation associated with subducting slabs is due mostly to diffusion creep (or superplasticity) and therefore slabs are weak in the deep mantle and hence easily deformed when encountered with resistance forces, and (iii) the SH > SV anisotropy in the cold thick portions of the D" layer is likely to be due to horizontally aligned shape preferred orientation in perovskite plus magnesiowüstite aggregates formed by strong horizontal shear motion in the recent past.  相似文献   

9.
—A brief outline is given on experimental studies carried out in the Minnesota Mineral and Rock Physics Laboratory of microstructural evolution and rheology of mantle mineral aggregates or their analogues, using a simple shear deformation geometry. A simple shear deformation geometry allows us to unambiguously identify controlling factors of microstructural evolution and to obtain large strains at high pressures and temperatures, and thus provides a unique opportunity to investigate the "structural geology of the mantle." We have developed a simple shear deformation technique for use at high pressures and temperatures (pressure up to 16 GPa and temperature up to 2000 K) in both gas-medium and solid-medium apparati. This technique has been applied to the following mineral systems (i) olivine aggregates, (ii) olivine basaltic melt, (iii) CaTiO3 perovskite aggregates. The results have provided important data with which to understand the dynamics of the earth’s mantle, including the geometry of mantle convection, mechanisms of melt distribution and migration beneath mid-ocean ridges, and the mechanisms of shear localization. Limitations of laboratory studies and future directions are also discussed.  相似文献   

10.
Two integral transformations between the stress function, differentiation of which gives the meridian and prime vertical components of the sub-crustal stress due to mantle convection, and the satellite-to-satellite tracking (SST) data are presented in this article. In the first one, the SST data are the disturbing potential differences between twin-satellites and in the second one the line-of-sight (LOS) gravity disturbances. It is shown that the corresponding integral kernels are well-behaving and therefore suitable for inversion and recovery of the stress function from the SST data. Recovery of the stress function and the stress components is also tested in numerical experiments using simulated SST data. Numerical studies over the Himalayas show that inverting the disturbing potential differences leads to a smoother stress function than from inverting LOS gravity disturbances. Application of the presented integral formulae allows for recovery of the stress from the satellite mission GRACE and its planned successor.  相似文献   

11.
Inferences on the rheology of the mantle based on theoretical and experimental rate equations for steady state creep are discussed and compared with results from geophysical models. The radial increase of viscosity by one to three orders of magnitude across the mantle, required by inversion of postglacial rebound and geodynamic data, is confirmed by microphysical models based on the estimation of continuous and discontinuous changes of creep parameters with depth. The upper mantle (viscosity 1020–1021 Pa s) is likely to show non-Newtonian rheology (power-law creep) for average grain sizes larger than 0.1 mm as an order of magnitude. Given the variability of both grain size and stress conditions, local regions of linear rheology can be present. The rheology of transition zone and lower mantle (viscosity 1022–1024 Pa s) cannot be definitely resolved at present. Estimation of creep parameters leads to possible nonlinear or mixed rheology, if grain sizes are not lower than 0.1 mm and flow conditions can be approximated by a constant strain rate of about 10−15 s−1. This conclusion can be modified by different flow conditions (e.g. a decrease in strain rate or constant viscous dissipation). Furthermore, experiments on fine-grained garnetites and perovskite analogues have shown that diffusion creep is predominant at laboratory conditions. However, the pressure dependence of creep in these phases is unknown, and therefore direct extrapolation to lower mantle conditions is necessarily speculative. Lateral variations of viscosity, largest in the upper and lowermost mantle (up to 2–4 orders of magnitude) are predicted by models based on lateral temperature anomalies derived from seismic tomographic models.  相似文献   

12.
—Systematic variations of the seismic radial anisotropy ξ to depths of 200–250 km in North America and Eurasia and their surroundings are related to the age of continental provinces, and typical depth dependences of ξ R are determined. The relative radial anisotropy ξ R in the mantle lithosphere of Phanerozoic orogenic belts is characterized by ν SH > ν SV , with its maximum depth of about 70 km, on the average, while beneath old shields and platforms, it exhibits a maximum deviation from ACY400 model (Montagner and Anderson, 1989) at depths of about 100 km with ν SV ν SH signature. An interpretation of the observed seismic anisotropy by the preferred orientation of olivine crystals results in a model of the mantle lithosphere characterized by anisotropic structures plunging steeply beneath old shields and platforms, compared to less inclined anisotropies beneath Phanerozoic regions. This observation supports the idea derived from petrological and geochemical observations that a mode of continental lithosphere generation may have changed throughout earth's history.  相似文献   

13.
Oldoinyo Lengai is the world's only active carbonatite volcano and considerable debate still surrounds the genesis of its magmas. Gases were collected from two fumaroles discharging close to the then active vent in October 2003. Measured fumarole temperatures were ≤ 195°C, despite the nearby, vigorous eruptive activity. Gases were sampled and analysed for noble gas isotopes. Freshly erupted natrocarbonatite lavas, a 1917 nephelinite and a sub-recent wollastonite bearing rock were also collected and analysed for noble gas isotopes using vacuum crushing techniques. In all the lava samples the neon, argon, krypton and xenon isotope ratio data are indistinguishable from air implying atmospheric contamination of the hygroscopic rocks. In the fumaroles, measured 3He/4He ratios are between 4 and 7 R/Ra. This range is similar to published values for silicate xenoliths of the East African Rift implying a local lithospheric mantle source for the volatile component of the Lengai magmas. It is still unclear if the natrocarbonatites themselves come from this region, or if fractionation and/or liquid immiscibility generate the carbonate magmas from a silicate melt within the crust itself.  相似文献   

14.
Mantle plumes control magnetic reversal frequency   总被引:2,自引:0,他引:2  
Magnetic reversal frequency correlates inversely with mantle plume activity for the past 150 Ma, as measured by the volume production rate of oceanic plateaus, seamount chains, and continental flood basalts. This inverse correlation is especially striking during the long Cretaceous magnetic normal “superchron”, when mantle plume activity was at a maximum. We suggest that mantle plumes control magnetic reversal frequency by the following sequence of events. Mantle plumes rise from theD″ seismic layer just above the core/mantle boundary, thinningD″ to fuel the plumes. This increases core cooling by allowing heat to be conducted more rapidly across the core/mantle boundary. Outer core convective activity then increases to restore the abnormal heat loss, causing a decrease in magnetic reversal frequency in accord with model predictions for bothα2 andαω dynamos. When core convective activity increases above a critical level, a magnetic superchron results. The pulse of plume activity that caused the Cretaceous superchron resulted in a minimum increase in core heat loss of about 1200 GW over the present-day level, which corresponds to an increase in Joule heat production of about 120 GW within the core.  相似文献   

15.
We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580–600 km) earthquakes (4.8 < M w < 5.5) in the Jilin-Heilongjiang, China region that borders with Russia and North Korea. These earthquakes are 200–300 km from the NKTS, within 200 km of the Global Seismic Network seismic station in Mudanjiang, China (MDJ) and the International Monitoring System primary arrays at Ussuriysk, Russia (USRK) and Wonju, Republic of Korea (KSRS). With the deep earthquakes, we split the t*(total) ray path into two segments: a t*(u), that represents the attenuation of the up-going ray from the deep hypocenters to the local-regional receivers, and t*(d), that represents the attenuation along the down-going ray to teleseismic receivers. The sum of t*(u) and t*(d) should be equal to t*(total), because they both share coincident ray paths. We estimated the upper-mantle attenuation t*(u) of 0.1 s at stations MDJ, USRK, and KSRS from individual and stacks of normalized P-wave spectra. We then estimated the average lower-mantle attenuation t*(d) of 0.4 s using stacked teleseismic P-wave spectra. We finally estimated a network average t*(total) of 0.5 s from the stacked teleseismic P-wave spectra from the 2009 nuclear test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5–2 Hz range.  相似文献   

16.
Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p /V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.  相似文献   

17.
In the first of four pieces arising from Gill Foulger's challenge to the mantle plume hypothesis (last issue), Carol Stein and Seth Stein join the debate with some data and comment on heat-flow around Iceland.  相似文献   

18.
The detailed structure of the Earths interior is a major field of geophysics study and the existence and the properties of mantle discontinuities are its important content. Since the lateral heterogeneity was discovered with the seismic tomography method,…  相似文献   

19.
至少过去的 2年以来 ,内华达北部的肖肖尼山脉刘易斯山一直在向 Sulfur Springs山脉的老矿区米纳勒尔山丘移动。设置在每个点的全球定位系统 ( GPS)接收器显示出这两座山峰正在以 2 mm/ a的速度相互靠近 ,移向坐落在这两地之间的克雷森特山谷断层。利用 GPS研究北部盆地和山脉的地质学家们曾经认为 ,他们的数据大概会显示出克雷森特山谷断层周围在缓慢扩张 ,正如对任何盆地和山脉断层所预期的那样。然而 ,与此相反 ,他们却发现了快速压缩现象。他们说 ,这种现代活动可能是 85年前袭击内华达北部的普莱森特瓦利 7级地震的数十年来的震后…  相似文献   

20.
Laboratory Electrical Conductivity Measurement of Mantle Minerals   总被引:4,自引:1,他引:3  
Electrical conductivity structures of the Earth’s mantle estimated from the magnetotelluric and geomagnetic deep sounding methods generally show increase of conductivity from 10−4–10−2 to 100 S/m with increasing depth to the top of the lower mantle. Although conductivity does not vary significantly in the lower mantle, the possible existence of a highly conductive layer has been proposed at the base of the lower mantle from geophysical modeling. The electrical properties of mantle rocks are controlled by thermodynamic parameters such as pressure, temperature and chemistry of the main constituent minerals. Laboratory electrical conductivity measurements of mantle minerals have been conducted under high pressure and high temperature conditions using solid medium high-pressure apparatus. To distinguish several charge transport mechanisms in mantle minerals, it is necessary to measure the electrical conductivity in a wider temperature range. Although the correspondence of data has not been yet established between each laboratory, an outline tendency of electrical conductivity of the mantle minerals is almost the same. Most of mineral phases forming the Earth’s mantle exhibit semiconductive behavior. Dominant conduction mechanism is small polaron conduction (electron hole hopping between ferrous and ferric iron), if these minerals contain iron. The phase transition olivine to high-pressure phases enhances the conductivity due to structural changes. As a result, electrical conductivity increases in order of olivine, wadsleyite and ringwoodite along the adiabat geotherm. The phase transition to post-spinel at the 660 km discontinuity further can enhance the conductivity. In the lower mantle, the conductivity once might decrease in the middle of the lower mantle due to the iron spin transition and then abruptly increase at the condition of the D″ layer. The impurities in the mantle minerals strongly control the formation, number and mobility of charge carriers. Hydrogen in nominally anhydrous minerals such as olivine and high-pressure polymorphs can enhance the conductivity by the proton conduction. However, proton conduction has lower activation enthalpy compared with small polaron conduction, a contribution of proton conduction becomes smaller at high temperatures, corresponding to the mantle condition. Rather high iron content in mantle minerals largely enhances the conductivity of the mantle. This review focuses on a compilation of fairly new advances in experimental laboratory work together with their explanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号