共查询到20条相似文献,搜索用时 15 毫秒
1.
I. V. Chernyshev N. S. Bortnikov A. V. Chugaev G. N. Gamyanin A. G. Bakharev 《Geology of Ore Deposits》2011,53(5):353-373
A collection of galena from the Nezhdaninsky gold deposit (62 samples), as well as galena from the Menkeche silver-base-metal deposit and the Sentyabr occurrence and K-feldspar from intrusive rocks of the Tyry-Dyby ore cluster have been studied using the high-precision (±0.02%) MC-ICP-MS method. Particular ore zones are characterized by relatively narrow variations of isotope ratios (no wider than σ6/4 = 0.26%). Vertical zoning of Pb isotopic composition is not detected. Variation in Pb isotope ratios mainly depends on the type of mineral assemblage. Galena of the gold-sulfide assemblage dominating at the Nezhdaninsky deposit is characterized by the following average isotope ratios: 206Pb/204Pb = 18.472, 207Pb/204Pb = 15.586, and 208Pb/204Pb = 38.605. Galena from the regenerated silver-base-metal assemblage is distinguished by less radiogenic lead isotope ratios: 18.420, 15.575, and 38.518, respectively. In lead from the Nezhdaninsky deposit, the component, whose source is identified as Permian host terrigenous rocks, is predominant. The data points of isotopic composition of lode lead make up a linear trend within the range of μ2 = 9.5-9.6. K-feldspar of granitic rocks has less radiogenic and widely varying lead isotopic composition compared to that of galena. The isotopic data on Pb and Sr constrain the contribution of Late Cretaceous granitic rocks as a source of gold mineralization at the Nezhdaninsky deposit. The matter from the Early Cretaceous fluid-generating magma chamber participated in the ore-forming system of the Nezhdaninsky deposit. The existence of such a chamber is confirmed by the occurrence of Early Cretaceous granitoid intrusions on the flanks of the Nezhdaninsky ore field. The greatest contribution of magmatic lead (~30%) is noted in galena from the silver-base-metal mineral assemblage. This component has isotopic marks characteristic of lower crustal lead: the elevated 208Pb/206Pb ratio relative to the mean crustal value and the lower 207Pb/204Pb ratio. Taken together, they determine a high Th/U ~ 4.0 in the source and μ2 = 9.37–9.50. This conclusion is consistent with the contemporary tectonic model describing evolution of the South Verkhoyansk sector of the Verkhoyansk Foldbelt and the Okhotsk Terrane. 相似文献
2.
3.
4.
Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia 总被引:2,自引:0,他引:2
Sebastien Meffre Ross R. Large Jon Woodhead Sarah E. Gilbert Valeriy Maslennikov 《Geochimica et cosmochimica acta》2008,72(9):2377-2391
Sukhoi Log is one of the largest gold deposits in Russia (1100 t Au at 2.45 g/t). Like many other sediment-hosted gold deposits throughout the world, Sukhoi Log preserves textural, structural and geochemical evidence for multiple generations of Au enrichment and pyrite growth.The deposit is located in the Lena gold province of Siberia, on the edge of the Siberian Craton and occurs in the core of a recumbent anticline in a Neoproterozoic black shale and quartz-rich siltstone-sandstone turbidite succession. Temporal constraints on pyrite paragenesis at the deposit have been determined using laser ablation inductively coupled mass spectrometry (LA-ICPMS) measurements of U, Th and Pb isotopes in pyrite, monazite and zircon. LA-ICPMS age determinations on detrital zircons indicate the host rocks were deposited after 600 ± 10 Ma and derived from a mixture of Palaeoproterozoic and Neoproterozoic sources. The U, Th and Pb isotopic systematics indicate the cores of large monazite crystals, which predate obvious tectonic fabric development in the host rocks, began growing at 573 ± 12 Ma. The rims of the same monazite crystals formed at 516 ± 10 Ma, during peak metamorphism and deformation. Small monazite crystals also grew in the sedimentary rocks during the Devonian (374 ± 20 Ma) and the Carboniferous or Early Permian (288 ± 22 Ma), possibly in response to fluid movements triggered by synchronous granite intrusion in the area. Multi-collector and quadrupole LA-ICPMS Pb isotopic determination on pyrite, combined with overprinting criteria, show that the earliest (stratiform) Pb and Au-bearing pyrite formed prior to metamorphism—possibly during sedimentation or early diagenesis (575-600 Ma). Small Au-rich pyrite nodules preserved as cores to folded bedding-parallel pyrite-quartz veins probably grew during late diagenesis or early metamorphism. Large pyrite euhedra, which overgrow the strong axial planar cleavage in the host rocks, have more radiogenic Pb-isotopic compositions and formed either late during or after deformation. Framboidal pyrite that is overgrown by both the late diagenetic-early metamorphic and syn- to post-metamorphic pyrite has the most radiogenic Pb-isotopic composition suggesting exchange with radiogenic Pb in the matrix may have continued until late in the history of the deposit.The dating and Pb isotopes support a multistage origin for the gold deposit with Au first introduced during or prior to growth of the earliest stratiform pyrite and progressively re-concentrated (with or without addition of further gold) during later metamorphic events. 相似文献
5.
6.
《Russian Geology and Geophysics》2015,56(6):903-918
Fluid inclusions in quartz, sulfides from quartz veins, and quartz, garnet, plagioclase, and orthoclase from granulites of the Bogunai gold deposit located in the granulites of the Angara-Kan block of the Yenisei Ridge were studied by thermobarometry, gas chromatography, chromato-mass-spectrometry, Raman spectroscopy, and mass spectrometry with inductively coupled plasma. The formation temperatures (850-950 °C) and pressures (8.5-9.0 kbar) of minerals of the granulite metamorphic facies are much higher than the crystallization temperatures (220-420 °C) and pressures (0.1-1.6 kbar) of gold-quartz veins of the Bogunai deposit. These veins formed with the participation of H2O-CO2-hydrocarbon fluids with a salt (predominantly MgCl2) concentration of 2-19 wt.% NaCl equiv. The gas phase of fluid inclusions from quartz, pyrite, chalcopyrite, galena, and sphalerite contains not only H2O, CO2, CH4, and N2 but also the first found compounds of sulfur (CS2, O2S, COS, C2H6S2) and nitrogen (C3H7N, C3H7NO, C4H8N2O) and numerous hydrocarbons of different classes (paraffins, arenes, naphthenes, alcohols, aldehydes, ketones, carbonic acids, and furans). The age of the Krasnoyarsk mineralized zone, one of the sites of the Bogunai deposit, is 466 ± 3.2-461.6 ± 3.1 Ma, which is almost 1400 Ma younger than the age of granulite metamorphism and 255 Ma younger than the age of diaphthoresis but is close to the age of the Lower Kan granitoid pluton (455.7 ± 3.4 Ma). The sulfur isotope ratios (534S) of sulfides (pyrite, chalcopyrite, sphalerite, and galena) are close to the mantle values, 0.8 to 3.5%c, and are in the range of the granitoid values, which indicates the crustal source of the fluid sulfur. Gold of the Bogunai deposit accumulated with the participation of H2O-CO2-hydrocarbon fluids generated both in deep-fault zones and in granitoid intrusions. 相似文献
7.
Fluid origin and structural enhancement during mineralization of the Jinshan orogenic gold deposit, South China 总被引:3,自引:0,他引:3
The Jinshan orogenic gold deposit is a world-class deposit hosted by a ductile shear zone caused by a transpressional terrane collision during Neoproterozoic time. Ore bodies at the deposit include laminated quartz veins and disseminated pyrite-bearing mylonite. Most quartz veins in the shear zone, with and without gold mineralization, were boudinaged during progressive shear deformation with three generations of boudinage structures produced at different stages of progressive deformation. Observations of ore-controlling structures at various scales indicate syn-deformational mineralization. Fluid inclusions from pyrite intergrown with auriferous quartz have 3He/4He ratios of 0.15–0.24 Ra and 40Ar/36Ar ratios 575–3,060. δ18Ofluid values calculated from quartz are 5.5–8.4‰, and δD values of fluid inclusions contained in quartz range between −61‰ and −75‰. The δ13C values of ankerite range from −5.0‰ to −4.2‰, and ankerite δ18O values from 4.4‰ to 8.0‰. The noble gas and stable isotope data suggest a predominant crustal source of ore fluids with less than 5% mantle component. Data also show that in situ fluids were generated locally by pervasive pressure solution, and that widespread dissolution seams acted as pathways of fluid flow, migration, and precipitation. The in situ fluids and fluids derived from deeper levels of the crust were focused by deformation and deformation structures at various scales through solution-dissolution creep, crack-seal slip, and cyclic fault-valve mechanisms during progressively localized deformation and gold mineralization. 相似文献
8.
9.
10.
I. V. Chernyshev A. G. Bakharev N. S. Bortnikov Yu. V. Goltsman A. B. Kotov G. N. Gamyanin A. V. Chugaev E. B. Sal’nikova E. D. Bairova 《Geology of Ore Deposits》2012,54(6):411-433
The intrusive rocks associated with the large Nezhdaninka gold deposit (Au > 470 t) hosted in the Permian carbonaceous terrigenous sequence have been dated on zircon and rock-forming minerals with precision U-Pb (ID-TIMS) and Rb-Sr methods. The lamprophyre of the dike complex that occurs in the ore field and spatially is related to gold mineralization has concordant U-Pb zircon age (121 ± 1 Ma) and the same isochron Rb-Sr age (121.0 ± 2.8 Ma). The concordant U-Pb zircon age of granodiorite that dominates in the Kurum pluton is 94 ± 1 Ma, whereas the Rb-Sr isochron age of various intrusive rocks from this pluton is 1–4 Ma younger. This difference is caused by long-term cooling of the Kurum pluton and later closure of Rb-Sr isotopic system of biotite (300–350°C) and other rock-forming minerals as compared with U-Pb isotopic system of zircon (~ 900°C). The Rb-Sr age of quartz diorite from the Gel’dy group of stocks (92.6 ± 0.8 Ma) coincides within uncertainty limits with the age of the Kurum pluton. Thus, the rocks pertaining to two epochs of magmatic activity, which developed in the South Verkhoyansk Foldbelt and divided by a time span of 25–28 Ma, are documented in the Nezhdaninka ore field. Taking into account that the age of gold mineralization is no less than 120 Ma, the data obtained allow us to specify the previously proposed formation model of the Nezhdaninka deposit. These data give grounds to rule out the Late Cretaceous Kurum pluton and the Gel’dy group of stocks from constituents of the ore-magmatic system, and to suggest that an Early Cretaceous deep-seated magma source existed beneath the deposit. Along with host terrigenous rocks, this magma source participated in the supply of matter to the hydrothermal system. The Nd, Sr, and Pb isotopic systematics of igneous rocks and ore mineralization in the Nezhdaninka ore field show that the Early and Late Cretaceous magma sources were formed in the Precambrian crust dated at ~1.8 Ga. 相似文献
11.
黑龙江省黑河市争光金矿流体包裹体研究及矿床成因 总被引:3,自引:1,他引:3
黑龙江省黑河市争光金矿床位于大兴安岭东北缘的多宝山矿集区,矿体呈脉状产于闪长岩体与中奥陶统多宝山组凝灰岩的接触带,受断裂构造控制.流体成矿作用可分为4个阶段:石英-黄铁矿阶段、石英-多金属硫化物阶段、方解石-石英-硫化物阶段、碳酸盐阶段.其中阶段2和3具有复杂的金属硫化物组合并含金,即黄铁矿-闪锌矿-方铅矿-黄铜矿±自然金.石英及方解石中流体包裹体类型单一,主要为气液两相水溶液包裹体,大小集中于3 ~ 15μm,气液相比集中于5%~10%.包裹体均一温度介于119 ~ 305℃,盐度集中于0.3% ~ 10.4% NaCleqv,密度介于0.760.99g/cm3.从阶段2至阶段4,流体均一温度从150~ 220℃,经140~190℃,降为130~150℃.综合矿床地质特征和成矿流体研究,认为争光金矿床属低硫型浅成低温热液矿床. 相似文献
12.
The Gagarka gold deposit was formed in two stages. The gold-telluride ore of the main early stage was formed ~260 Ma ago synchronously with Permian collision, which was accompanied by retrograde metamorphism with mobilization of Au and Te from geochemically similar massive sulfide lodes in the rift zone. The Au-bearing argillic metasomatic rocks of the late stage presumably Mesozoic in age are distinguished by specific geochemistry and locally superposed on the ore related to the early stage. The upper part of the metasomatic column consists of quartz-kaolinite rock, which is confused in many cases with products of Mesozoic-Cenozoic weathering and because of this is not perceived as a guide for hidden Au-bearing argillic alteration, whose resource potential remains underestimated in the Urals. 相似文献
13.
V. B. Naumov V. S. Kamenetsky R. Thomas N. N. Kononkova B. N. Ryzhenko 《Geochemistry International》2008,46(6):554-564
Melt inclusions were studied in chrome diopside from the Inagli deposit of gemstones in the Inagli massif of alkaline ultrabasic rocks of potassic affinity in the northwestern Aldan shield, Yakutia, Russia. The chrome diopside is highly transparent and has an intense green color. Its Cr2O3 content varies from 0.13 to 0.75 wt %. Primary and primary-secondary polyphase inclusions in chrome diopside are dominated by crystal phases (80–90 vol %) and contain aqueous solution and a gas phase. Using electron microprobe analysis and Raman spectroscopy, the following crystalline phases were identified. Silicate minerals are represented by potassium feldspar, pectolite [NaCa2Si3O8(OH)], and phlogopite. The most abundant minerals in the majority of inclusions are sulfates: glaserite (aphthitalite) [K3Na(SO4)2], glauberite [Na2Ca(SO4)2], aluminum sulfate, anhydrite (CaSO4), gypsum (CaSO4 × 2H2O), barite (BaSO4), bloedite [Na2Mg(SO4)2 × 4H2O], thenardite (NaSO4), polyhalite [K2Ca2Mg(SO4)4 × 2H2O], arcanite (K2SO4), and celestite (SrSO4). In addition, apatite was detected in some inclusions. Chlorides are probably present among small crystalline phases, because some analyses of aggregates of silicate and sulfate minerals showed up to 0.19–10.3 wt % Cl. Hydrogen was identified in the gas phase of polyphase inclusions by Raman spectroscopy. The composition of melt from which the chrome diopside crystallized was calculated on the basis of the investigation of silicate melt inclusions. This melt contains 53.5 wt % SiO2, considerable amounts of CaO (16.3 wt %), K2O (7.9 wt %), Na2O (3.5 wt %), and SO3 (1.4 wt %) and moderate amounts of Al2O3 (7.5 wt %), MgO (5.8 wt %), FeO (1.1 wt %), and H2O (0.75 wt %). The content of Cr2O3 in the melt was 0.13 wt %. Many inclusions were homogenized at 770–850°C, when all of the crystals and the gas phase were dissolved. The material of inclusions heated up to the homogenization temperature became heterogeneous even during very fast quenching (two seconds) producing numerous small crystals. This fact implies that most of the inclusions contained a salt (rather than silicate) melt of sulfate-dominated composition. Such inclusions were formed from salt globules (with a density of about 2.5 g/cm3) occurring as an emulsion in the denser (2.6 g/cm3) silicate melt from which the chrome diopside crystallized. 相似文献
14.
Doklady Earth Sciences - On the basis of combined analysis of data on a geological survey on a scale of 1 : 200 000 (1959–1960) and exploration works (1980–1990), it was found... 相似文献
15.
B. B. Damdinov S. M. Zhmodik P. A. Roshchektaev L. B. Damdinova 《Geology of Ore Deposits》2016,58(2):134-148
The Konevinsky gold deposit in southeast Eastern Sayan is distinguished from most known deposits in this region (Zun-Kholba, etc.) by the geological setting and composition of mineralization. To elucidate the cause of the peculiar mineralization, we have studied the composition, formation conditions, and origin of this deposit, which is related to the Ordovician granitoid pluton 445–441 Ma in age cut by intermediate and basic dikes spatially associated with metavolcanic rocks of the Devonian–Carboniferous Ilei Sequence. Four mineral assemblages are recognized: (1) quartz–pyrite–molybdenite, (2) quartz–gold–pyrite, (3) gold–polysulfide, and (4) telluride. Certain indications show that the ore was formed as a result of the superposition of two distinct mineral assemblages differing in age. The first stage dated at ~440 Ma is related to intrusions generating Cu–Mo–Au porphyry mineralization and gold–polysulfide veins. The second stage is controlled by dikes pertaining to the Devonian–Carboniferous volcanic–plutonic association. The second stage is characterized by gain of Hg and Te and formation of gold–mercury–telluride paragenesis. 相似文献
16.
Niuxinshan is a typical example of the numerous mesothermal gold deposits formed during Mesozoic tectono-magmatic reactivation
of the Archean North China Craton in eastern Hebei province. Gold occurs in quartz-sulfide lodes in Archean amphibolites and
also in greisen zones in the Mesozoic Niuxinshan granite stock. Four mineralization stages can be recognized from early to
late: (1) quartz-K-feldspar, (2) quartz-pyrite, (3) quartz-polysulfide, and (4) quartz-carbonate. Gold mineralization mainly
occurs in stages 2 and 3. Fluid inclusions in quartz and fluorite from greisen zones in the Niuxinshan granite, and inclusions
in vein quartz and sphalerite from stages 1 to 3 in the amphibolites, have been studied by microthermometry. Three compositional
types of inclusions are recognized: type 1 (Tp1) are H2O-CO2-bearing inclusions and include primary (Tp1-P) and secondary (Tp1-S) inclusions. These are found in quartz and fluorite from
the greisen zones as well as in vein quartz and sphalerite from stages 1 to 3. The Tp1-P inclusions are considered to represent
the gold-bearing hydrothermal fluids. Type 2 (Tp2-S) are secondary H2O-CO2 + solid phase inclusions in fluorite from the greisen zones. Type 3 (Tp3-S) are secondary aqueous inclusions with a solid
phase which coexist with the Tp2-S in fluorite from the greisen zones. The Tp1-P inclusions show variable VCO2 (commonly 0.3 to 0.6) and XCO2 values (mainly 0.1 to 0.4). The salinities of inclusions cluster around 3 to 11 wt.% NaCl equivalent and their homogenization
temperatures to the liquid phase (Th(L)) fall dominantly in the range of 260 to 360 °C. The compositional variations of inclusions in stage 1 probably result
from exsolution of magmatic fluids at various stages; immiscibility or boiling of the fluids can be ruled out. The compositional
variations of inclusions in the greisen zones and in vein stages 2 and 3 are attributed to cooling, mixing (dilution), and
necking-down of the fluids. The Tp1-S and Tp2-S inclusions show salinities of 3 to 6 wt.% NaCl equivalent and XCO2 values of 0.04 to 0.17. Th(L) clusters at 240 to 260 °C. The Tp3-S inclusions have salinities of 3 to 6 wt.% NaCl equivalent and Th(L) of 170 to 240 °C. Isochoric reconstructions, combined with oxygen and sulfur isotope geothermometry of mineral pairs,
give trapping P-T conditions for the gold-bearing fluids. The greisen zones formed at 310 to 460 °C and 1.3 to 3.7 kbar; stage 1 veins at 300
to 430 °C and 1.2 to 3.7 kbar; stage 2 veins at 290 to 380 °C and 1 to 3 kbar; stage 3 veins at 250 to 350 °C and 1 to 3 kbar.
H2O-CO2 fluids with low to moderate salinities and moderate to high densities (0.66 to 1.01 g/cm3) dominated at early mineralization stages, and evolved towards H2O-richer and CO2- and less saline fluids through time. The retrograde P-T evolution probably resulted from regional uplift and cooling of gold-bearing hydrothermal fluids. The gold bisulfide complex
was dominant in the fluids during mineralization and gold deposition was mainly induced by decreases of temperature and pressure,
as well as destabilization of the bisulfide complex during sulfidization of wall rocks.
Received: 16 March 1998 / Accepted: 11 January 1999 相似文献
17.
一个与火山碎屑岩和热液喷发有关的金矿床 总被引:7,自引:4,他引:7
泥堡金矿位于黔西南峨眉山玄武岩外缘的凝灰岩分布区,属微细浸染型矿床。文章通过对泥堡矿床的地层、岩石、构造、矿体、矿石等实地调查和综合解析,探讨其主要控矿因素和成矿作用,为今后寻找类似矿床提供参考和借鉴。研究结果表明,泥堡矿床最主要的金矿体产于茅口组与峨眉山玄武岩组之间的沉积间断面附近,是一个集矿源层、流体通道和容矿部位于一体的极具特色的成矿组合。在该区,P2-3β1-1底部富含有机质的凝灰岩,P2-3β1-1与大厂石英岩之间的热液喷发角砾岩,都是最主要的赋矿部位和容矿岩石。各种同位素和流体包裹体测试结果显示,黄铁矿中的硫与玄武岩中的硫可能都来自幔源;富含Si O2和K的低盐度、中低温成矿流体是地表水沿断裂深循环形成的;成矿时代属晚侏罗世(142Ma),是黔西南地区最早形成的金矿床之一。 相似文献
18.
V. V. Aristov S. G. Kryaghev O. B. Ryzhov A. A. Volfson V. Yu. Prokofiev N. V. Sidorova A. A. Sidorov 《Doklady Earth Sciences》2017,476(1):986-991
The peculiarities of fluid inclusions; the O and C isotope composition of host rocks, vein minerals, and inclusions; and the S and Pb isotope composition of sulfides allowed us to distinguish two groups of fluids with a similar temperature, salinity, and source of the aqueous part produced upon metagenesis and mobilized during collisional events. Quartz-A precipitates from the CO2–H2O hydrocarbonate–Na fluid with a salinity of 7–10 wt % eq. NaCl at a depth of ~6 km (290–340°C, 1550 bar). Regeneration of quartz (quartz-C), precipitation of quartz-B, and quartz-AB with carbonate and chlorite occurred at a depth from 3.5 to 1.5 km (250–380°C, 1250–900–350 bar) from CO2–CH4–N hydrous sulfate–hydrocarbonate Na–Mg fluids with Cl–, Ca, and K and a salinity of 5–10 wt % eq. NaCl, and a wide variety of impurities. The localization of veins in sinistral shear dislocations and strong heterogeneity in the P–T conditions allow us to explain the formation of fluid-2 by the postcollisional events. 相似文献
19.
小秦岭文峪金矿床流体包裹体研究及矿床成因 总被引:3,自引:2,他引:3
文峪金矿位于小秦岭矿田南部,其产出受脆-韧性剪切带控制,赋矿围岩为太华群变质杂岩.根据脉体穿切关系和矿物交代关系,可以将文峪金矿流体成矿过程分为早、中、晚三个阶段,其热液石英中发育CO2-H2O型、纯CO2型和H2O溶液型三种类型流体包裹体.平阶段石英中原生包裹体主要是CO2-H2O型和纯CO2型,其成分为CO2+H2O±N2±CH4,均一温度集中在290~330℃,盐度为1.02%~9.59% NaCleqv;中阶段为主成矿阶段,该阶段石英中包含了所有3种类型的包裹体,其中以CO2-H2O型包裹体为主,获得CO2-H2O和水溶液包裹体均一温度集中在250~290℃,盐度为0.02%~12.81%NaCleqv;晚阶段石英仅发育水溶液型包裹体,具有较低的均一温度(114~239℃)和盐度(4.18%~8.95% NaCleqv).根据CO2-H2O型包裹体计算早、中阶段压力分别为130 ~ 178MPa和85 ~ 150MPa,对应的成矿深度分别为4.7~6.5km和3.1~5.5km.总体而言,文峪金矿的初始流体具有中高温、富CO2、低盐度的变质流体特征,晚成矿阶段流体演化为低温、低盐度水溶液流体,流体的不混溶导致了主成矿期矿质的大量沉淀,文峪金矿为中浅成的造山型矿床. 相似文献
20.
笔者利用显微测温、成分及氢氧同位素测试对大西沟金矿流体包裹体参数以及成矿流体性质进行了较为深入的探讨,结果显示,大西沟金矿与矿化关系密切的石英中,包裹体可以分为气体包裹体、气液包裹体、液体包裹体3种类型,其中气液包裹体、液体包裹体最为常见.包裹体均一温度主要集中在175℃~275℃,盐度为2%~7%,流体密度为0.804~0.959g/cm3,成矿深度为1.01~2.24 km.流体包裹体气相成分主要为H2O和CO2;包裹体液相成分中阳离子以Na+为主,Ca2+、K+次之,阴离子以SO42-、Cl-为主,仅含微量的F-.石英中δO水值是2.1%~5.8‰,δD值为-87‰~-103.67‰.反映成矿流体来源于岩浆水与大气降水.通过气体逸度的计算,大西沟金矿成矿流体中金主要以[Au(HS)2]-络合物的形式迁移,混合作用和热液蚀变作用是导致金沉淀与富集的主要因素. 相似文献