首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
galev (GALaxy EVolution) evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr from the onset of star formation shortly after the big bang until today.
For galaxies, galev includes a simultaneous treatment of the chemical evolution of the gas and the spectral evolution of the stellar content, allowing for what we call a chemically consistent treatment: we use input physics (stellar evolutionary tracks, stellar yields and model atmospheres) for a large range of metallicities and consistently account for the increasing initial abundances of successive stellar generations.
Here we present the latest version of the galev evolutionary synthesis models that are now interactively available at http://www.galev.org . We review the currently used input physics, and also give details on how this physics is implemented in practice. We explain how to use the interactive web interface to generate models for user-defined parameters and also give a range of applications that can be studied using galev , ranging from star clusters, undisturbed galaxies of various types E–Sd to starburst and dwarf galaxies, both in the local and the high-redshift Universe.  相似文献   

7.
We present a possible star formation and chemical evolutionary history for two early-type galaxies NGC 1407 and NGC 1400. They are the two brightest galaxies of the NGC 1407 (or Eridanus-A) group, one of the 60 groups studied as part of the Group Evolution Multi-wavelength Study.
Our analysis is based on new high signal-to-noise ratio spatially resolved integrated spectra obtained at the ESO 3.6-m telescope, out to ∼0.6 (NGC 1407) and ∼1.3 (NGC 1400) effective radii. Using Lick/IDS indices, we estimate luminosity-weighted ages, metallicities and α-element abundance ratios. Colour radial distributions from HST /ACS and Subaru Suprime-Cam multiband wide-field imaging are compared to colours predicted from spectroscopically determined ages and metallicities using single stellar population (SSP) models. The galaxies formed over half of their mass in a single short-lived burst of star formation  (≥100 M yr−1)  at redshift z ≥ 5. This likely involved an outside–in mechanism with supernova-driven galactic winds, as suggested by the flatness of the α-element radial profiles and the strong negative metallicity gradients. Our results support the predictions of the revised version of the monolithic collapse model for galaxy formation and evolution. We speculate that, since formation, the galaxies have evolved quiescently and that we are witnessing the first infall of NGC 1400 in the group.  相似文献   

8.
9.
The effects of late gas accretion episodes and subsequent merger-induced starbursts on the photochemical evolution of elliptical galaxies are studied and compared to the picture of galaxy formation occurring at high redshift with a unique and intense starburst modulated by a very short infall, as suggested by Pipino and Matteucci in Paper I. By means of the comparison with the colour–magnitude relations (CMRs) and the  [〈Mg/Fe〉 V ]–σ  relation observed in ellipticals, we conclude that either bursts involving a gas mass comparable to the mass already transformed into stars during the first episode of star formation (SF) and occurring at any redshift, or bursts occurring at low redshift (i.e. z ≤ 0.2) and with a large range of accreted mass, are ruled out. These models fail in matching the above relations even if the initial infalling hypothesis is relaxed, and the galaxies form either by means of more complicated SF histories or by means of the classical monolithic model. On the other hand, galaxies accreting a small amount of gas at high redshift (i.e. z ≥ 3) produce a spread in the model results, with respect to the best model of Paper I, which is consistent with the observational scatter of the CMRs, although there is only marginal agreement with the  [〈Mg/Fe〉 V ]–σ  relation. Therefore, only small perturbations to the standard scenario seem to be allowed. We stress that the strongest constraints to galaxy-formation mechanisms are represented by the chemical abundances, whereas the colours can be reproduced under several different hypotheses.  相似文献   

10.
11.
12.
13.
We analyse a high-resolution, fully cosmological, hydrodynamical disc galaxy simulation, to study the source of the double-exponential light profiles seen in many stellar discs, and the effects of stellar radial migration upon the spatiotemporal evolution of both the disc age and metallicity distributions. We find a 'break' in the pure exponential stellar surface brightness profile, and trace its origin to a sharp decrease in the star formation per unit surface area, itself produced by a decrease in the gas volume density due to a warping of the gas disc. Star formation in the disc continues well beyond the break. We find that the break is more pronounced in bluer wavebands. By contrast, we find little or no break in the mass density profile. This is, in part, due to the net radial migration of stars towards the external parts of the disc. Beyond the break radius, we find that ∼60 per cent of the resident stars migrated from the inner disc, while ∼25 per cent formed in situ . Our simulated galaxy also has a minimum in the age profile at the break radius but, in disagreement with some previous studies, migration is not the main mechanism producing this shape. In our simulation, the disc metallicity gradient flattens with time, consistent with an 'inside-out' formation scenario. We do not find any difference in the intensity or the position of the break with inclination, suggesting that perhaps the differences found in empirical studies are driven by dust extinction.  相似文献   

14.
We study the chemical and spectrophotometric evolution of galactic discs with detailed models calibrated on the Milky Way and using simple scaling relations, based on currently popular semi-analytic models of galaxy formation. We compare our results with a large body of observational data on present-day galactic discs, including disc sizes and central surface brightness, Tully–Fisher relations in various wavelength bands, colour–colour and colour–magnitude relations, gas fractions versus magnitudes and colours and abundances versus local and integrated properties, as well as spectra for different galactic rotational velocities. Despite the extremely simple nature of our models, we find satisfactory agreement with all those observables, provided that the time-scale for star formation in low-mass discs is longer than for more massive ones. This assumption is apparently in contradiction with the standard picture of hierarchical cosmology. We find, however, that it is extremely successful in reproducing major features of present-day discs, like the change in the slope of the Tully–Fisher relation with wavelength, the fact that more massive galaxies are on average 'redder' than low-mass ones (a generic problem of standard hierarchical models) and the metallicity–luminosity relation for spirals. It is concluded that, on a purely empirical basis, this new picture is at least as successful as the standard one. Observations at high redshifts could help to distinguish between the two possibilities.  相似文献   

15.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

16.
17.
We describe an smooth particle hydrodynamics (SPH) model for chemical enrichment and radiative cooling in cosmological simulations of structure formation. This model includes: (i) the delayed gas restitution from stars by means of a probabilistic approach designed to reduce the statistical noise and, hence, to allow for the study of the inner chemical structure of objects with moderately high numbers of particles; (ii) the full dependence of metal production on the detailed chemical composition of stellar particles by using, for the first time in SPH codes, the   Q ij   matrix formalism that relates each nucleosynthetic product to its sources and (iii) the full dependence of radiative cooling on the detailed chemical composition of gas particles, achieved through a fast algorithm using a new metallicity parameter ζ( T ) that gives the weight of each element on the total cooling function. The resolution effects and the results obtained from this SPH chemical model have been tested by comparing its predictions in different problems with known theoretical solutions. We also present some preliminary results on the chemical properties of elliptical galaxies found in self-consistent cosmological simulations. Such simulations show that the above ζ-cooling method is important to prevent an overestimation of the metallicity-dependent cooling rate, whereas the   Q ij   formalism is important to prevent a significant underestimation of the [α/Fe] ratio in simulated galaxy-like objects.  相似文献   

18.
Understanding the origin and evolution of dwarf early-type galaxies remains an important open issue in modern astrophysics. Internal kinematics of a galaxy contains signatures of violent phenomena which may have occurred, e.g. mergers or tidal interactions, while stellar population keeps a fossil record of the star formation history; therefore studying connection between them becomes crucial for understanding galaxy evolution. Here, in the first paper of the series, we present the data on spatially resolved stellar populations and internal kinematics for a large sample of dwarf elliptical (dE) and lenticular (dS0) galaxies in the Virgo cluster. We obtained radial velocities, velocity dispersions, stellar ages and metallicities out to 1–2 half-light radii by reanalysing already published long-slit and integral-field spectroscopic data sets using the nbursts full spectral fitting technique. Surprisingly, bright representatives of the dE/dS0 class (   MB =−18.0  to −16.0 mag) look very similar to intermediate-mass and giant lenticulars and ellipticals: (1) their nuclear regions often harbour young metal-rich stellar populations always associated with the drops in the velocity dispersion profiles; (2) metallicity gradients in the main discs/spheroids vary significantly from nearly flat profiles to −0.9 dex   r −1e  , i.e. somewhat three times steeper than for typical bulges; (3) kinematically decoupled cores were discovered in four galaxies, including two with very little, if any, large-scale rotation. These results suggest similarities in the evolutionary paths of dwarf and giant early-type galaxies and call for reconsidering the role of major mergers in the dE/dS0 evolution.  相似文献   

19.
We compare deep Magellan spectroscopy of 26 groups at  0.3 ≤ z ≤ 0.55  , selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O  ii ]λ3727 emission (≥5 Å) increases strongly with redshift, from ∼29 per cent in 2dFGRS to ∼58 per cent in CNOC2, for all galaxies brighter than  ∼ M *+ 1.75  . This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from ∼53 to ∼75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation ( P trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers  ( P trunc≳ 0.3 Gyr−1)  . However, without assuming significant density evolution, P trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts   z ≳ 0.45  .  相似文献   

20.
The evolution of galaxies in groups may have important implications for the evolution of the star formation history of the Universe, since many processes which operate in groups may suppress star formation and the fraction of galaxies in bound groups grows rapidly between   z = 1  and the present day. In this paper, we present an investigation of the properties of galaxies in galaxy groups at intermediate redshift  ( z ∼ 0.4)  . The groups were selected from the Canadian Network for Observational Cosmology Redshift Survey (CNOC2) redshift survey as described by Carlberg et al., with further spectroscopic follow-up undertaken at the Magellan telescope in order to improve the completeness and depth of the sample. We present the data for the individual groups, and find no clear trend in the fraction of passive galaxies with group velocity dispersion and group concentration. We stack the galaxy groups in order to compare the properties of group galaxies with those of field galaxies at the same redshift. The groups contain a larger fraction of passive galaxies than the field, this trend being particularly clear for galaxies brighter than   M B J < −20  in the higher velocity dispersion groups. In addition, we see evidence for an excess of bright passive galaxies in the groups relative to the field. In contrast, the luminosity functions of the star-forming galaxies in the groups and the field are consistent. These trends are qualitatively consistent with the differences between group and field galaxies seen in the local Universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号