首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. In addition to a component (A) of recent origin, two NRM components are distinguished in the Cambro-Ordovician redbeds of the Armorican Massif. In most sites other than those from northern Brittany the oldest (C) is probably Silurian or early Devonian, and is mainly carried by specularite with high blocking temperatures. This component was variably overprinted by a Devonian or early Carboniferous component (B3) which was probably acquired as a viscous PTRM on uplift after burial, and is carried by hematite pigment with intermediate to high blocking temperatures. In the red succession of Plourivo-Bréhec (northern Brittany) declination scatter of two intermediate to high blocking temperature components (B1 and B2) is consistent with clockwise rotation of the bulk of Europe during the late Carboniferous, implied independently by published European Carboniferous palaeomagnetic data.
Stable NRM in the Erquy Spilite Series yields a palaeomagnetic pole at 344° E, 35° N ( dp = 21°, dm = 22°), and was probably acquired during remagnetization following Late Precambrian or early Cambrian folding. This is consistent with a middle to late Cambrian age of remagnetization estimated by comparison with other poles of known age.
A palaeomagnetic pole position at 332° E, 34° S ( dp = 4°, dm = 7°) determined for the Hercynian Trégastel-Ploumanac'h complex is consistent with other middle to late Carboniferous poles from elsewhere in Europe.  相似文献   

2.
Palaeomagnetic investigation of Lower Ordovician limestone in the vicinity of St. Petersburg yields a pole position at latitude 34.7°N, longitude 59.1°E ( dp / dm =5.7°/6.4°). A probable primary remanence origin is supported by the presence of a field reversal. The limestone carries one other remanent magnetization component associated with a Mesozoic remagnetization event.
An apparent polar wander path is compiled for Baltica including the new result, ranging in age from Vendian to Cretaceous. Ages of the published Lower to mid-Palaeozoic palaeomagnetic pole positions are adjusted in accordance with the timescale of Tucker & McKerrow (1995). The new Arenig result is the oldest of a series of Ordovician and Silurian palaeomagnetic pole positions from limestones in the Baltic region. There are no data to constrain apparent polar wander for the Tremadoc, Cambrian and latest Vendian. If the Fen Complex results, previously taken to be Vendian in age ( c . 565 Ma), are reinterpreted as Permian remagnetizations, an Early Ordovician–Cambrian–Vendian cusp in the polar wander path for Baltica is eliminated. The apparent polar wander curve might then traverse directly from poles for Vendian dykes on the Kola peninsula ( c . 580 Ma) towards our new Arenig pole ( c . 480 Ma). The consequence of this change in terms of the motion of Baltica in Cambrian times is to reduce significantly a rotational component of movement.
The new Arenig pole extends knowledge of Ordovician apparent polar wander an increment back in time and confirms the palaeolatitude and orientation of Baltica in some published palaeogeographies. Exclusion of the Fen Complex result places Baltica in mid- to high southerly latitudes at the dawn of the Palaeozoic, consistent with faunal and sedimentological evidence but at variance with some earlier palaeomagnetic reconstructions.  相似文献   

3.
New palaeomagnetic data from the Lower and Middle Cambrian sedimentary rocks of northern Siberia are presented. During stepwise thermal demagnetization the stable characteristic remanence (ChRM) directions have been isolated for three Cambrian formations. Both polarities have been observed, and mean ChRM directions (for normal polarity) are: Kessyusa Formation (Lower Cambrian) D = 145°, I = -40°, N = 12, α95= 12.8°; pole position: φ= 38°S, A = 165°E; Erkeket Formation (Lower Cambrian, stratigraphically highly) D = 152°, I = - 47°, N = 23, α95= 6.8°; pole position: φ= 45°S, A = 159°E; Yunkyulyabit-Yuryakh Formation (Middle Cambrian) D = 166°, I = - 33°, N = 38, α95= 4.6°; pole position: φ= 36°S, L = 140°E. These poles are in good agreement with the apparent polar wander path based on the bulk of existing Cambrian palaeomagnetic data from the Siberian platform. In Cambrian times, the Siberian platform probably occupied southerly latitudes stretching from about 35° to 0°, and was oriented 'reversely' with respect to its present position. Siberia moved northwards during the Cambrian by about 10° of latitude. This movement was accompanied by anticlockwise rotation of about 30°. The magnetostratigraphic results show the predominance of reversed polarity in the Early Cambrian and an approximately equal occurrence of both polarities in the part of the Middle Cambrian studied. These results are in good agreement with the palaeomagnetic polarity timescale for the Cambrian of the Siberian platform constructed previously by Khramov et al. (1987).  相似文献   

4.
Summary. Samples from the Nexø Sandstone of the Lower Cambrian- Precambrian boundary in South Bornholm reveal a stable NRM with a direction after magnetic cleaning of D = 226°, I = - 30° (α95= 11.5°). This NRM appears to originate in the detrital hematite grains rather than in the red cement of the sandstone. The stable NRM is likely to be of primary origin and reflects a Lower Cambrian pole at 104° W, 38° N (dp = 7°, dm = 11°). Apparent discrepancies between the Bornholm pole and the few other published Early Cambrian/Late Precambrian poles from the Baltic Shield are consistent with the suggestion of large polar movements in those times.  相似文献   

5.
A palaeomagnetic pole position, derived from a precisely dated primary remanence, with minimal uncertainties due to secular variation and structural correction, has been obtained for China's largest dyke swarm, which trends for about 1000 km in a NNW direction across the North China craton. Positive palaeomagnetic contact tests on two dykes signify that the remanent magnetization is primary and formed during initial cooling of the intrusions. The age of one of these dykes, based on U–Pb dating of primary zircon, is 1769.1 ± 2.5 Ma. The mean palaeomagnetic direction for 19 dykes, after structural correction, is D  = 36°, I  = − 5°, k  = 63, α 95 = 4°, yielding a palaeomagnetic pole at Plat=36°N, Plong=247°E, dp  = 2°, dm  = 4° and a palaeolatitude of 2.6°S. Comparison of this pole position with others of similar age from the Canadian Shield allows a continental reconstruction that is compatible with a more or less unchanged configuration of Laurentia, Siberia and the North China craton since about 1800 Ma  相似文献   

6.
Summary Nine basic dykes were sampled near Angmagssalik, east Greenland. Specimens have been treated by alternating field demagnetization in 11 steps up to 3000 (peak) oersted (300 ml). The 'cleaned' direction at all sites is recognized after treatment at 150 oersted. All specimens are reversely magnetized. The mean of the site mean directions has declination = 182°.0, inclination =−66°.9, it = 45, α95= 7°.7. This direction yields a palaeomagnetic pole (reversed) at 73°.4N, 139°.5E ( dp = 10°.7, dm = 12°.9) which is near, but significantly different from, that derived from lower Tertiary rocks in Greenland, namely 63°.2N, 184°.6E ( A 95= 4°.5). K-Ar ages of the nine dykes, based upon whole-rock and mineral separates, range from mid-Tertiary to Cambrian. It is impossible to reconcile these ages with the palaeomagnetic results. The palaeomagnetic evidence, supported by geological inference, suggests that all nine dykes are members of the east Greenland lower Tertiary dyke swarm, designated THOL1, of probable age c. 52 Ma.
The difference between the poles given above can be explained by supposing that the sampling area has tipped about a horizontal axis directed along 013°/193°, the angle of rotation being 13° (± 11°) anti-clockwise, when the axis is viewed along 013°. This local effect could have been due to block faulting when the north-east Atlantic started to open, or may be attributed to upwarping of the coast due to the weight of the ice-cap inland.  相似文献   

7.
40Ar/39Ar whole-rock and alkali feldspar ages demonstrate that dioritic to monzonitic dykes from Bøverbru and Lunner belong to the youngest recorded magmatic activity in the Oslo Rift region, southeast Norway. These dykes represent the terminal phase of rift and magmatic activity in the Oslo Graben, at the dawn of the Triassic (246–238 Ma).
  The Bøverbru and Lunner dyke ages are statistically concordant. However, the palaeomagnetic signature of the Bøverbru dyke is complex, and directions from the margins and the interior of the dyke differ in polarity. Therefore, the new Early Triassic palaeomagnetic pole for Baltica (Eurasia) is exclusively based on the less complex Lunner dykes and contacts (palaeomagnetic pole: latitude=52.9°N, longitude=164.4°E, dp / dm =4.5 ° /7.3°). The early Triassic palaeomagnetic pole [mean age: 243±5 Ma (2 σ )] is slightly different from the Upper Carboniferous–Permian (294–274 Ma) and Kiaman-aged poles from the Oslo Rift.  相似文献   

8.
From a nunatak in central North Greenland (81.5°N, 44.7°W) nine sites of Middle Proterozoic basic dykes, cutting Archaean basement, were palaeomagnetically investigated. After AF and thermal cleaning the nine dyke sites and three adjacently baked gneiss sites give a stable characteristic remanent mean direction of D = 265°, I = 21.5° ( N = 12, α 95= 5.6°), the direction being confirmed by a detailed and positive baked contact test.
The polarity of the dykes in the nunatak area is opposite to that of the Zig-Zag Dal Basalts and the Midsommersø Dolerites in eastern North Greenland some 200–300 km away, the volcanics of which are assumed to be of similar age (about 1.25 Ga). The remanent directions of the two sets of data are antiparallel within the 95 per cent significance level of confidence.
When rotating Greenland 18° clockwise back to North America by the 'Bullard fit', the pole of the central North Greenland dolerites (NDL) falls at (14.3°N, 144.3°W). The reversed pole (14.3°S, 35.7°E) fits well on to the loop between 1.2 and 1.4 Ma on the apparent polar wander swath of Berger & York for cratonic North America.
The palaeomagnetic results from the Middle Proterozoic basic dykes from central North Greenland thus strengthen previous palaeomagnetic results from the Midsommersø Dolerites and Zig-Zag Dal Basalts from the Peary Land Region in eastern North Greenland, suggesting that Greenland was part of the North American craton at least for the period between c . 1.3 and 1 Ma (and probably up to the end of Cretaceous time). The major geographical meridian of Greenland was orientated approximately E–W, and the palaeo-latitude of Greenland was about 10°–15°.  相似文献   

9.
Summary. After thermal and alternating field (AF) cleaning, the characteristic high blocking temperature A component of natural remanent magnetization (NRM) of the Tudor gabbro of southern Ontario has a mean direction D = 326°, I =–46° ( k = 132, α95= 4.8°, N = 8 sites). The corresponding palaeopole, 133°E, 12°N ( dp = 4°, dm = 6°), confirms the palaeopole 137°E, 17°N (α95= 8.4°) reported earlier by Palmer & Carmichael, based on AF cleaning only. The A NRM has unblocking temperatures > 515–525°C which exceed the estimated 500°C peak temperature reached locally during ∼ 1050 Ma Grenvillian regional metamorphism. The A NRM therefore predates metamorphism and is probably a primary thermoremanence (TRM). The age of the Tudor NRM has previously been taken to be about 675 Ma, but recent 40Ar/39Ar dating by Baksi has shown that this is the time of post-metamorphic cooling to 200–250°C. Hornblendes record initial cooling of the intrusion to 590±20°C at 1110 Ma and this is the best estimate of the age of the A remanence. Successful Thellier-type palaeointensity determinations on 11 Tudor samples confirm that the A NRM is a TRM and indicate a palaeofield at this time of 18–27 μT, about 50–70 per cent of the present field intensity at 27° magnetic latitude. The anomalous Tudor A palaeopole, which lies well to the west of both 1000–800 Ma Grenvillian palaeopoles and 1100–1050 Ma poles from Interior Laurentia, is interpreted as recording divergence between Grenvillia and Interior Laurentia just before the Grenvillian orogeny, rather than a post-metamorphic extension of the apparent polar wander path as previously assumed.  相似文献   

10.
Summary. Study of the palaeomagnetism of two complexes from the Newer Granite Suite in Scotland, at Ratagan (NW Highlands) and Comrie (central Highlands), reveals the variable nature of the natural remanence encountered in granodioritic intrusions and the surrounding metamorphic country rock. Forty-eight specimens from Ratagan, dated at 415 ± 5 Ma, gave a mean direction: D = 8°, I =−32°, and a palaeomagnetic south pole: 15°S, 346°E (δ p = 5°, δ m = 9°). Twenty-eight specimens from Comrie, dated at 408±5 Ma, gave a mean direction: D = 75°, I =−30°, and a palaeomagnetic south pole: 6°S, 287°E (δ p = 4°, δ m = 7°). These results have been compared with the established apparent polar wander path (APWP) for Britain. The Ratagan pole improves the reliability of the APWP but doubt remains as to whether the primary magnetization from Comrie represents a true late Silurian direction or whether it has been affected by post-cooling rotation, possibly associated with the nearby Highland Boundary Fault.  相似文献   

11.
We present new palaeomagnetic and isotopic data from the southern Victoria Land region of the Transantarctic Mountains in East Antarctica that constrain the palaeogeographic position of this region during the Late Cambrian and Early Ordovician. A new pole has been determined from a dioritic intrusion at Killer Ridge (40Ar/39Ar biotite age of 499 ± 3 Ma) and hornblende diorite dykes at Mt. Loke (21°E, 7°S, A 95 = 8°, N = 6 VGPs). The new Killer Ridge/Mt. Loke pole is indistinguishable from Gondwana Late Cambrian and Early Ordovician poles. Previously reported palaeomagnetic poles from southern Victoria Land have new isotopic age constraints that place them in the Late Cambrian rather than the Early Ordovician. Based upon the new palaeomagnetic and isotopic data, new Gondwana Late Cambrian and Early Ordovician mean poles have been calculated.  相似文献   

12.
Apparent polar wander in the mean-lithosphere (= no-net-rotation = no-net-torque uniform drag) reference frame is compared with apparent polar wander in the hotspot reference frame over the past 100 Myr. Palaeo-magnetic poles and plate rotations previously used to determine an apparent polar wander path for the hotspot reference frame are here used to determine an apparent polar wander path in the mean-lithosphere reference frame. We find that the two paths are similar, especially for Late Cretaceous time, when a 10°–20° shift of the pole occurred. To first-order the hotspots and lithosphere (as a whole) moved in unison relative to the palaeomagnetic axis during Late Cretaceous time. A non-dipole field explanation for the apparent shift can probably be excluded. However, either motion of the time-averaged geomagnetic axis relative to the spin axis or polar wandering could have caused this shift, the latter being the more likely explanation.  相似文献   

13.
Detailed geological observations and palaeomagnetic analyses were carried out in the Largentière Stephano–Autunian basin and on the Stephanian deposits of the Alès coalfield, both located at the southeastern margin of the French Massif Central. Because of unfavourable rock types, the Alès Stephanian deposits did not yield any results. The palaeomagnetic pole (164.9°E, 45.4°N, K = 89, A 95 = 4.1°) deduced from a study of the Autunian sediments of the Largentière Basin agrees very well with the reference pole for stable Europe. The Lodève–Largentière area, that is the southeastern border of the Massif Central, has been stable since Early Permian time with respect to stable Europe, whereas the western part (the Saint-Affrique Rodez Basin and, probably, the Brive Basin) has been rotated counterclockwise.  相似文献   

14.
Calcite and sedimentary fills in fractures cutting the Upper Devonian carbonates in the Holy Cross Mountains (HCM) were dated palaeomagnetically by comparison with the apparent polar wander path (APWP). Haematite-bearing calcite possessed well-defined components of natural remanent magnetization (NRM), which were preserved under thermal demagnetization to temperatures of approximately 500 °C, when specimens disintegrated. Although not completely demagnetized, some specimens revealed a stable NRM component before destruction, thus making a component analysis possible. Five components were determined using density point distribution and cluster analysis. One has a mean that is similar to the present-day local geomagnetic vector. The remaining four components yielded palaeomagnetic poles located at: A (70.3°S, 5.5°E), B (71.3°S, 31.2°E), C (48.7°S, 351.0°E, virtual geomagnetic pole), and D (11.6°S, 312.3°E). Antipodal polarities found in the fracture fills, together with dissimilarities in magnetization found in calcite and hosting carbonates, indicate the lack of simultaneous remagnetization, and different times of remanence acquisition for the rocks under comparison. Taking both palaeomagnetically inferred palaeolatitudes and regional tectonics into consideration, a Mesozoic (Cretaceous?) age is estimated for palaeopoles A and B, a Permian age for pole C, and a Carboniferous age for pole D. These age determinations are in line with the calcite ages estimated from isotopic studies. A comparative palaeomagnetic study performed on a well-dated Upper Devonian neptunian dyke of limestone and a Lower Triassic clastic vein yielded virtual geomagnetic poles (VGPs) close to the APWP for Baltica. Generally, the remanence from fracture fills may be useful for dating related tectonics, karst phenomena and mineralization processes.  相似文献   

15.
The possibility of inertial interchange true polar wander (IITPW) events, in which the rotation pole moves 90° with respect to the solid Earth in a matter of ∼10  Myr, has been discussed in the geophysical literature for more than three decades. Recent evidence for an IITPW event in Early Cambrian time has renewed interest in the issue; however, the veracity of supporting palaeomagnetic evidence remains a matter of significant debate. We propose that sea-level variations driven by polar wander provide an important independent test for the occurrence of IITPW events. Our numerical simulations of the response of a viscoelastic planet to an IITPW-induced forcing predict sea-level changes of up to 200  m, depending on the details of the earth model, the location of the site relative to the rotation path and the elapsed time for the reorientation of the pole. A preliminary comparison of our predictions to Early–Middle Cambrian sea-level records for Australia, Laurentia and Baltica shows qualitative agreement. This comparison suggests that a definitive test for the Cambrian IITPW hypothesis is possible given a sufficiently accurate, and globally distributed, database of sea-level histories.  相似文献   

16.
Summary. Piper suggested that the Lewisian has rotated 30° anticlockwise since magnetization, whereas the opposite appears more likely. The main magnetization in the Lewisian recognized by Piper and Beckmann was imposed upon cooling after the Laxfordian metamorphism at about 1750 (± 50) Ma. The palaeomagnetic pole corresponding to this magnetization is at 37.6° N, 273.2° E ( dp = 3.7°, dm = 5.2°).
In Greenland, palaeomagnetic poles similar to each other, with a mean pole at 21.6° N, 280.1° E ( K = 52, A 95= 9.4°), have been determined from five widely separated regions in central West Greenland and from Angmags-salik in East Greenland. The magnetization observed in all these regions was established upon cooling after the Nagssugtoqidian metamorphism, again at about 1750 (± 50) Ma.
The Laxfordian and Nagssugtoqidian metamorphisms were equivalent. It is therefore assumed that the two palaeomagnetic poles quoted above were originally identical. Their present difference can be explained by clockwise rotation of north-west Scotland about a local rotation pole since the Lewisian became magnetized, in addition to opening of the Atlantic assuming conventional reconstructions:
(1) assuming the reconstruction of Bullard, Everett & Smith, the local rotation proposed is 39.5° (± 18.1°) about a pole of rotation at 60.3° N, 354.5° E, or
(2) assuming the reconstruction of Le Pichon, Sibuet & Francheteau, the local rotation is 28.0° (±17.7°) about a pole of rotation at 54.1° N, 354.6° E.
These proposals of local clockwise rotation of north-west Scotland accord with that of Storetvedt based on palaeomagnetic results from Devonian rocks on the north-west side of the Great Glen Fault.  相似文献   

17.
Summary. We present palaeomagnetic results from the Durgapipal and Rudraprayag formations, which are basic volcanic formations in the Lesser Himalayas of Uttar Pradesh State. NRM measurements and AF demagnetization stability tests were made on specimens cored from oriented block samples collected at representative sites. Mean stable remanent magnetic directions were used for calculating the Virtual Geomagnetic Pole (VGP) positions; where necessary tectonic corrections were applied.
The virtual geomagnetic north poles were found to be located at:
  • (a). 

    Durgapipal (Permian): λ p = 10° S, Lp = 42° W;

  • (b). 

    Rudraprayag (Silurian-Devonian): λ p = 30° S, Lp = 12° W.


A new, continuous Phanerozoic apparent polar wandering curve for the Indian subcontinent has been plotted from the available palaeomagnetic data and the VGP positions reported in this paper. As a result, the gap in the Indian palaeomagnetic data from the Lower Carboniferous to the Cambrian has been partially filled. The locations of the pole positions for the two formations on the Phanerozoic polar wandering curve for the Indian subcontinent, have been found to coincide with the stratigraphic ages assigned to them on the basis of rather limited geological and palaeontological evidence.
The Cambrian and Permian poles for the Salt Range in the NW Himalayas and the Permian pole for the Kumaon Himalayas are grouped along with the pole positions of contemporaneous formations of the Peninsular Shield. The palaeomagnetic data thus suggests that the two formations are autochthonous in nature.  相似文献   

18.
A palaeomagnetic investigation has been carried out of rocks from the eastern part of the Voronezh Massif, which constitutes, together with the Ukrainian Shield, the Sarmatian segment in the southern part of the East European Craton. The samples were collected in a quarry close to the town of Pavlovsk (50.4°N, 40.1°E), where a syenitic-granitic body intrudes Archaean units. U–Pb (zircon) dating has yielded an age of 2080  Ma for the intrusion.
  Two characteristic magnetic components, A and B, were isolated by thermal and alternating-field demagnetization. Component A was obtained from granites and quartz syenites (11 samples) and has a mean direction of D = 229°, I = 28°, and a pole position at 12°N, 172°E. This pole is close to a contemporary mean pole (9°N, 187°E) for the Ukrainian Shield, which implies that the Voronezh Massif and the Shield constituted a single entity at 2.06  Ga. These poles differ from contemporaneous poles of the Fennoscandian Shield, indicating that the relative positions of the two shields were different from their present configuration about 2100  Myr ago.
  A component B, isolated only in quartz monzonites (five samples), has a mean direction D = 144°, I = 49°, and a pole position at 4°N, 251°E, which is close to late Sveconorwegian (approximately 900  Ma) poles for Baltica. This suggests that the East European Craton was consolidated some time between 2080 and 900  Ma. Comparison with other palaeomagnetic data permit us to narrow this time span to 1770–1340  Ma.  相似文献   

19.
Palaeomagnetic data for the Cretaceous Pirgua Subgroup from 14 different time units of basalts and red beds exposed in the north-western part of Argentina (25° 45' S 65° 50' W) are given.
After cleaning all the units show normally polarized magnetic remanence and yield a palaeomagnetic pole at 222° E 85° S ( d Φ= 7°, d χ= 10°).
The palaeomagnetic poles for the Pirgua Subgroup (Early to Late Cretaceous, 114–77 Myr), for the Vulcanitas Cerro Rumipalla Formation (Early Cretaceous,<118 Myr, Valencio & Vilas) and for the Poços de Caldas Alkaline Complex (Late Cretaceous, 75 Myr, Opdyke & McDonald) form a 'time-group' reflecting a quasi-static interval (mean pole position, 220° E 85° S, α95= 6°) and define a westward polar wander in Early Cretaceous time for South America.
Comparison of the positions of the Cretaceous palaeomagnetic poles for South America with those for Africa suggests that the separation of South America and Africa occurred in late Early Cretaceous time, after the effusion of the Serra Geral basalts.
The K-Ar ages of basalts of the Pirgua Subgroup (114 ± 5; 98 ± 1 and 77 ± 1 Myr) fix points of reference for three periods of normal polarity within the Cretaceous palaeomagnetic polarity column.  相似文献   

20.
New palaeomagnetic results for the 935 Ma Göteborg-Slussen mafic dykes in southern Sweden provide a well-dated high-quality palaeomagnetic pole for Early Neoproterozoic Baltica. New U-Pb geochronological data for several palaeomagnetically studied mafic intrusions yield three additional well-dated palaeopoles and one virtual geomagnetic pole. This set of dated poles suggests minimal drift of Baltica in moderate latitudes between ∼965 and 915 Ma. They also support the hypothesis of a post-900 Ma regional remagnetization event in SW Sweden and SW Norway. The positions of three distinct clusters of ∼1100 to 850 Ma palaeopoles suggest a clockwise time progression of the Baltica apparent polar wander path (the Sveconorwegian Loop) during this time interval. New well-dated palaeomagnetic poles for ∼970 to 900 Ma from Laurentia are required to verify the palaeogeographic reconstructions of Baltica and Laurentia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号