首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conclusion that the different ridge belt-bounded planitia and parquet terrains studied here define Venusian crustal plate-like units is evidently valid in the context of compressional ridge belt tectonics. The long ridge belts of Kamari and Tellus Dorsa, the ridge belts in the transition zone between Ishtar Terra and planitiae and Ausra Dorsa support the idea of NW-SE, (N-S) or E-W compression components, respectively. The planitia plates have been pushed from the south or south-east against the Ishtar Terra/Fortuna Tessera highland, which has opposed the movement, giving the impression of a relative southeast-directed force. The volcanic/diapiric transition zone between these colliding crustal units or plates evidently indicates mobilization of the subsurface unit overthrust by the parquet terrain.  相似文献   

2.
The lengthy Meshkenet Tessera highland located between Ishtar Terra and coronae of the Nightingale group provides evidence of large-scale crustal movements. Its complex tectonic structures have various deformation geometries, thus indicating different tectonic sequences. The main parallel faults, first explained as rotational bookshelf faults, are more likely due to relative dextral direct shear movements of rectangular blocks. These faults have been active, possibly due to endogenic stresses, as indicated by mid-size ridge ranges which connect them to some of the large coronae. There are some compressional ridge belts around Meshkenet Tessera, while deformation within the tessera blocks has mostly been extensional.  相似文献   

3.
Based on full-resolution Magellan radar images, the detailed structural analysis of central Ishtar Terra (Venus) provides new insight to the understanding of the Venusian tectonics. Ishtar Terra, centered on 65° N latitude and 0° E longitude includes a high plateau. Lakshmi Planum, surrounded by highlands, the most important being Maxwell Montes to the East. Structural analysis has been performed with classical remote-sensing methods. Folds and faults identified on radar images were reported on structural map. Their type and distribution allowed to define the style of the crustal deformation and the context in which these structures formed. This analysis shows that Lakshmi Planum formed under a crustal stretching associated with a volcanic activity. This area then became a relatively steady platform, throughout the formation of Maxwell Montes mountain belt. Maxwell Montes is characterized by a series of NNW-SSE trending thrust faults dipping to the East, formed during a WSW-ESE horizontal shortening. In its NW quarter, the mountain belt shows a disturbed deformation controlled by pre-existing grabens and old vertical crustal fault zone. The deformation of this area is characterized by a shortening of cover above a flat detachment zone, with a progressive accommodation to the southwest. All these tectonic structures show evidence of horizontal and vertical crustal movements on Venus, with subsidence, mountain belt raise, West regional overthrusting of this mountain belt, and regional shear zone.  相似文献   

4.
While low level shield volcanoes have formed on Venus, major volcanic structure formation in Ishtar Terra has been restricted to caldera formation. It is possible that the combination of compression tectonics and crustal thickening inhibits the amount of magma which reaches the surface in Ishtar Terra. In certain situations, coronae on Venus may form as undeveloped volcanic structures due to restricted magma rise in thick crustal areas.  相似文献   

5.
The main major ridge belts of Ganiki Planitia on Venus (Lama, Ahsonnutli and Pandrosos Dorsa) are part of the fan-shaped ridge belt complex along the 200 parallel of longitude. These ridge belts with evidence of crustal shortening support the idea of a large-scale E-W compression. The ridge belt patterns indicate a N-S shear component. These forces are explained by a triangular planitia area which compressed by surrounding terrains. The crustal shortening and ridge belt formation indicates compressional plate movement stresses in the uppermost lithosphere.Three sizes of ridge belt structure are to be found within Ganiki Planitia. (1) The ridge belt spacing of 200–400 km can be used to estimate the depth of the major uppermost homogeneous layer of Venus. There are numerous volcanic coronae, paterae and montes located along the main ridge belts or at their junctions. (2) Mid-size ridge groups or subbelts are to be found within the major ridge belts. These are formed by more local responses to tectonic stresses in the stratified uppermost crust. A wavelength of 40–70 km can be seen as a result of bending of the crustal strata and may relate to its thickness. (3) Small individual ridges are connected with most local stresses, defining places where the surface layers broke along the crests of large ridge belts or mid-scale subbelts. Radial and concentric mare ridge-like structures around coronae indicate that corona formation was effective at a sufficiently close vicinity to fault the surface.  相似文献   

6.
Ignacio Romeo  Ramón Capote 《Icarus》2005,175(2):320-334
The tectonic system of the southern margin of Central Ovda Regio, a crustal plateau which straddles Venus equator, has been interpreted as a dextral strike-slip array, on the basis of evidence clearly identifiable, as are Riedel fracture patterns of different scales, en échelon folds and brittle strike-slip faults. This transcurrent regime developed two main shear belts (Inner and Outer, on respectively thicker and thinner crust), whose minimum dextral displacement has been estimated in 30-50 km. Since the up or downwelling models for plateau formation cannot easily explain tectonic shears of this magnitude along their margins, an alternative hypothesis has been built, which stands on the proposed collisional belt which could form Ovda northern border (King et al., 1998, Lunar Planet. Sci. Conf. 29, Abstract 1209; Tuckwell and Ghail, 2002, Lunar Planet. Sci. Conf. 33, Abstract 1566). Within this framework, the shear would represent a transcollisional transcurrent zone, similar to the strike-slip zones produced in the foreland of the Himalayas-Tibet collision front. Eastern Ovda would be an independent area of thickened crust, pushed to the SSE by the northern collision, with the deformation concentrated at its margins, and experiencing a shear strain on its southern margin. None of the data, however, either supports nor helps to discard theoretical subduction events as a cause of the collision. On the contrary, image relationships could be interpreted as evidence that the main shear deformation took place during the last global resurfacing event on the planet.  相似文献   

7.
The two small planitiae south of Fortuna Tessera define distinct crustal units not very unlike to small crustal plates or subplates. The mobile transformation zone between Fortuna Tessera and Allat Planitia is caused by colliding crustal plates and evidently indicates the mobilization of the planitia unit foiled by the parquet terrain. Ridges parallel to this zone and in dextral ridge groups on planitia support the idea of the main N(W)-S(E) compression. Allat Planitia has been pushed approximately from the south and southeast against Fortuna Tessera which, in contrary, has spreaded to the southeast. Within the smaller planitia there are two conjugate ridge sets and a third ridge set parallel to the parquet border. The crossing ridge sets favour the existence of a compressional NW-SE force, as do the N-S directed ridges of the middle planitia area.At least three tectonic phases within Allat Planitia can be found. The main compression was in N(W)-S(E) direction. Prominent right-handed en echelon ridge groups and long parallel ridges of the northern planitia area indicate this comrpessional environment as well as the transformation zone against Fortuna Tessera. Short dome-like ridges indicate the tension gash opening during a NW-SE compression phase. An E-W (or NWW-SEE) compression resulted in the formation of the long linear wrinkle ridge-like N-S structures on Allat Planitia. The NW-SE compression, which has caused the formation of the dextral, E-W oriented major fault, was then the youngest of the main tectonic phases involved within the area studied.  相似文献   

8.
Recent high resolution, high incidence angle Arecibo radar images of southern Ishtar Terra and flanking plains of Guinevere and Sedna on Venus reveal details of topographic features resolved by Pioneer Venus. The high incidence angles of Arecibo images favor the detection of surface roughness-related features, and complement recently obtained low incidence angle Venera 15/16 images in which changes in surface topographic slope are well portrayed. Four provinces have been defined on the basis of radar characteristics in Arecibo images and topography. Volcanism and tectonism are the dominant processes in the mapped area, which has an average age of about 0.5–1.0 billion years (Ivanov et al., 1986). These processes vary in relative significance in the mapped provinces and it is likely that geologic activity has occurred simultaneously in all four provinces. On the basis of stratigraphic evidence, however, a general sequence is proposed which represents the major activity in each area. The low predominantly volcanic plains of Guinevere and Sedna Planitiae are the relatively oldest terrain. A major region of complex tectonic deformation, the Southern Ishtar Transition Zone, postdates much of the low plains and delineates the steep-sloped flanks of Ishtar Terra. Lakshmi Planum is characterized by a distinctive volcanic style (large low edifices, calderas, flanking plains) and at least in part postdates the Southern Ishtar Transition Zone. Relatively recent plains-style volcanism occurs locally in Sedna Planitia and embays the Southern Ishtar Transition Zone. Compressional deformation appears to dominate the mountains of the Ishtar plateau, but the nature of the tectonic deformation in the Southern Ishtar Transition Zone is very complex and likely represents a combination of extension, compression and strikeslip deformation. Arecibo data reveal additional coronae in the lowlands, suggesting that corona formation is an even more widespread process than indicated by the Venera data.  相似文献   

9.
The complex morphology and topography of Eastern Ishtar Terra have been interpreted as due to tectonic deformation. Models proposed to account for this deformation include: crustal flow through asthenospheric flow and thermal-gravitational sliding; rifting, gravity spreading, and fold belt formation; and horizontal convergence and crustal thickening. In this study we map the detailed structural and topographic fabric of this region in order to explore and test these hypotheses. Eastern Ishtar can be divided into four major provinces: Maxwell Montes/Western Fortuna Tessera, a high plateau and mountain belt dominated by long NNW trending ridges; Central Fortuna Tessera, a low region of orthogonally oriented short WNW trending ridges and long, NNE trending troughs; Eastern Fortuna Tessera, a broad, E-W trending topographic rise characterized by ENE trending troughs and a complex pattern of intersecting ridges; and Northern Fortuna Tessera, a region of steep, NE-facing topographic scarps and ridges that trend WNW. On the basis of structural and topographic relationships, the features within these provinces are found to be inconsistent with a formation through either downslope crustal flow or rifting. We find that the mapped features are most consistent with a formation through convergence, collison, and underthrusting of thickened crustal terranes. These terranes are suggested to have been created through processes of seafloor-type spreading and crustal collision. Based on relationships between the different terranes, several accretional events are proposed in which Eastern Ishtar is produced by the collision of crustal terranes beginning at Lakshmi Planum and extending to the east. This sequence is initiated with the formation of Maxwell Montes and Western Fortuna Tessera during east-west crustal convergence, underthrusting, and stacking. The next step involves the northeast to southwest convergence of a preexisting thick block of tessera in Central Fortuna, which produces shear deformation within Western Fortuna. This northeast to southwest convergence also produces Northern Fortuna Tessera through crustal imbrication, a process recognized along the entire northern boundary of Ishtar Terra. Finally, Laima Tessera converges with Fortuna from the southeast and collides with Eastern Fortuna Tessera producing shear within Eastern Fortuna and the linear convergence zones along the edges of Laima. High resolution images returned by the Magellan spacecraft will enable us to examine the features involved in the proposed production and suturing of crustal terranes.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci., Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

10.
On Venus, present evidence indicates a crust of predominantly basaltic composition and a relatively young average age for the surface (several hundreds of millions of years). Estimates of crustal thickness from several approaches suggest an average crustal thickness of 10–20 km for much of the lowlands and rolling plains and a total volume of crust of about 1 × 1010 km3, approximately comparable to the present crustal volume of the Earth (1.02 × 1010 km3). The Earth's oceanic crust is thought to have been recycled at least 10–20 times over Earth history. The near-coincidence in present crustal volumes for the Earth and Venus suggests that either: (1) the presently observed crust of Venus represents the total volume that has accumulated over the history of the planet and that crustal production rates are thus very low, or (2) that crustal production rates are higher and that there is a large volume of missing crust unaccounted for on Venus which may have been lost by processes of crustal recycling.Known processes of crustal formation and thickening (impact-related magma ocean, vertical differentiation, and crustal spreading) are reviewed and are used as a guide to assess regional geologic evidence for the importance of these processes on Venus. Geologic evidence for variations in crustal thickness on Venus (range and frequency distribution of topography, regional slopes, etc.) are outlined. The hypothesis that the topography of Venus could result solely from crustal thickness variations is assessed and tested as an end-member hypothesis. A map of crustal thickness distribution is compiled on the basis of a simple model of Airy isostasy and global Venus topography. An assessment is then made of the significance of crustal thickness variations in explaining the topography of Venus. It is found that the distinctive unimodal hypsometric curve could be explained by: (1) a crust of relatively uniform thickness (most likely 10–20 km thick) comprising over 75% of the surface, (2) local plateaus (tessera) of thickened crust (about 20–30 km) forming less than 15% of the surface, (3) regions of apparent crustal thicknesses of 30–50 km (Beta, Ovda, Thetis, Atla Regiones and Western Ishtar Terra) forming less than 10% of the surface and showing some geologic evidence of crustal thickening processes (these areas can be explained on the basis of geologic observations and gravity data as combinations of thermal effects and crustal thickening), and (4) areas in which Airy isostasy predicts crustal thicknesses in excess of 50 km (the linear orogenic belts of Western Ishtar Terra, less than 1% of the surface).It is concluded that Venus hypsometry can be reasonably explained by a global crust of generally similar thickness with variations in topography being related to (1) crustal thickening processes (orogenic belts and plateau formation) and (2) local variations in the thermal structure (spatially varying thermal expansion in response to spatially varying heat flow). The most likely candidates for the formation and evolution of the crust are vertical differentiation and/or lateral crustal spreading processes. The small average crustal thickness (10–20 km) and the relatively small present crustal volume suggest that if vertical crustal growth processes are the dominant mechanism of crustal growth, than vertical growth has not commonly proceeded to the point where recycling by basal melting or density inversion will occur, and that therefore, rates of crustal production must have been much lower in the past than in recent history. Crustal spreading processes provide a mechanism for crustal formation and evolution that is consistent with observed crustal thicknesses. Crustal spreading processes would be characterized by higher (perhaps more Earth-like) crustal production rates than would characterize vertical differentiation processes, and crust created earlier in the history of Venus and not now observed (missing crust) would be accounted for by loss of crust through recycling processes. Lateral crustal spreading processes for the formation and evolution of the crust of Venus are interpreted to be consistent with many of the observations derived from presently available data. Resurfacing through vertical differentiation processes also clearly occurs, and if it is the major contributor to the total volume of the crust, then very low resurfacing rates are required.Although thermal effects on topography are clearly present and important on both Venus and the Earth, the major difference between the hypsometric curves on Earth (bimodal) and Venus (unimodal) is attributed primarily to the contrast in relative average thickness of the crust between the two terrains on Earth (continental/oceanic; 40/5 km = 35 km, 8:1) and Venus (upland plateaus/lowlands; about 30/15 km = 15 km, 2:1) (35 – 20 km = a difference of 20 km). The Venus unimodal distribution is thus attributed primarily to the large percentage of terrain with relatively uniform crustal thickness, with the skewness toward higher elevations due to the relatively small percentage of crust that is thickened by only about a factor of two. The Earth, in contrast, has a larger percentage of highlands (continents), whose crust is thicker by a factor of eight, on the average, leading to the distinctive bimodal hypsometric curve.Data necessary to firmly establish the dominant type of crustal formation and thickening processes operating and to determine the exact proportion of the topography of Venus that is due to thermal effects versus crustal thickness variations include: (1) global imaging data (to determine the age of the surface, the distribution and age of regions of high heat flux, and evidence for the nature and global distribution of processes of crustal formation and crustal loss), and (2) high resolution global gravity and topography data (to model crustal thickness variations and thermal contributions and to test various hypotheses of crustal growth).'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

11.
Formation of mountains on Io: Variable volcanism and thermal stresses   总被引:1,自引:0,他引:1  
Thermal stresses are potentially important drivers of Io's tectonics and mountain building. It has been hypothesized that sustained local or regional shut down of heat-pipe volcanism on Io could lead to deep crustal heating and large compressive stresses [McKinnon, W.B., Schenk, P.M., Dombard, A.J., 2001. Geology 29, 103-106]. Such large stresses would then be relieved by thrust faulting and uplifting of crustal blocks, producing mountains like those observed on Io. Here we analyze the tectonic consequences of the heat-pipe model in detail, considering both the initial thermal stress state of a basalt or peridotite crust created by heat-pipe volcanism, and relative roles of subsidence stresses (due to burial of preexisting layers) and thermal stresses arising from variable volcanism and changes in crustal (∼lithosphere) thickness. We limit the magnitude of the potential subsidence stresses in our study, because the magnitude of subsidence stresses can be quite large, if not dominant. Results indicate that for a fixed crustal thickness, the region of failure and faulting moves closer to the surface as eruption rate decreases and time increases. When the crust melts at its base as volcanism decreases (as might occur under steady state tidal heating), resulting in crustal thinning, the region of failure is brought even closer to the surface. Naturally, when compressive, subsidence stresses are included, the vertical extent of crust in brittle failure thickens to include most of the lithosphere. In contrast, increases in eruption rate cause the extent of the region in compressional failure to decrease and be driven very deep in the crust (in the absence of sufficient subsidence stress). Therefore, regions of declining volcanism are more likely to produce mountains, whereas regions of extensive or increasing volcanism are less likely to do so. This is consistent with the observation of a global anticorrelation between mountains and volcanic centers on Io. Finally, we find that the choice of crustal composition/rheology (dry basalt vs. dry peridotite) has little effect on our results implying that basalt, peridotite and komatiite are all similarly “stiff” in the Io environment.  相似文献   

12.
The article presents a new tectonic scheme of Venus and gives the following interpretation of the planet's main structural units: (1) plains — areas of flood volcanism over stretched crust; (2) dome-like uplifts — areas of uplifting and volcanic activity above the mantle hot-spots; (3) coronae —former dome-like uplifts, partially subsided and diffused by gravity; (4) ridge belts — fold zones; (5) tesserae — fragments of ductile compression and shortening of crust; (6) supercoronae — coronae formed in the course of further evolution and relaxation of Beta-type uplifts. Ishtar Terra is considered to be a fragment of an ancient tessera paleocontinent, on the edge of which the Lakshmi supercorona is superimposed. Aphrodite Terra is considered as a belt of mantle hot-spot structures (dome-like uplifts, coronae, supercoronae, volcanoes, rifts).Three types of planetary belts have been distinguished on Venus: uplifted 'weakened' belts with an abundance of mantle hot-spot structures; a northern fan of ridge belts; and belts of low basalt plains. The center of the planetary system of uplifted weakened belts is situated in Atla Regio.The present tectonic structure of Venus is inferred to have formed during two stages of evolution characterized by different tectonic regimes. Stage I is a regime of soft ductile plates (formation of tessera uplifts and volcanic plains). Stage II is a formation of 'weakened' uplifted planetary belts, various tectonic regimes of mantle hot-spots, and plains-forming volcanism.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

13.
Topographic information, surface structures and construction of the Martian Tharsis bulge are used to estimate the previous stresses across the low-lying peripheral margins of the crustal blocks in terms of simple compensation models. Hot mantle activity, crustal roots, isostasy, and late-stage extensive lithosphere thickening together with volcanic building have been in combined response to the high-elevated Tharsis bulge. The initial phases of the Tharsis building have been dominated by the mantle plume doming, followed by extrusional dome raising. The volcanism has been most important bulge building factor only after thickening of the crust. During the initial mantle-generated doming and igneous activity the thin-lithosphere block tectonics has been very important. There has been a compressional peripheral zone around the bulge giving rise to dorsa formation while the high bulge crests have been in tensional state. The situation may be favorable for comparative studies with other planets. We may have something to learn from this block tectonics on the one-plate planet Mars even in respect to the Earth's plate tectonic paradigm.On leave from Dept. of Astronomy, University of Oulu, Finland.  相似文献   

14.
Maxima of calculated topographical line-of-sight (LOS) gravity attractions caused by Ishtar Terra are shifted to the north with respect to the measured LOS free air gravity maxima south of the highland. This implies a tendency to isostatic compensation of central Ishtar and mass surpluses at the continental border and the southern forelands.The following scenario is compatible with the interpretation of the gravity anomalies and morphological features. Relative motions of the lowland Sedna Planitia against continental Ishtar Terra have caused buckling and flat subduction of the lowland lithospheric material. (Deep subduction can be ruled out by thermal reasons). The free air gravity high is modelled by surplus masses of the buckling and of the high density subducting plate. Evidence for this is given by several compressional features like Ut and Vesta Rupes at the southern continental border and ridges at the SW-flanks of Maxwell Montes. It is further supported by several possible volcanic-tectonic depressions located in the southern part of Ishtar. This local interpretation does not necessarily imply the existence of global plate tectonics on Venus like on Earth, but at least limited horizontal movements of the Venusian lithosphere seem to be likely. This result shows that plate recycling must be considered for heat transfer through the lithosphere beside conduction and hot spot volcanism.Contribution No. 273, Institut für Geophysik der Universität Kiel, F.R.G.  相似文献   

15.
It is evident that lunar mare basins have been subsiding and one reason for such subsidence was the existence of their mascons and their volcanic fills as loads that flexed the lithosphere. The additional effects of drying up and cooling of internal hot volumes may also have been important, leading to still more compressional mare environment. The remaining relicic thermal pulse-induced dilatation within large areas surrounding the mare basins may be responsible for the extensional rille tectonics together with the flexural peripheral bulge due to tensional arching and bending due to differences in internal volume changes. The internal attack against the lunar crust has been quite different above and below the mean surface. Below this level the old crust was more easily attacked by volcanic extrusions, causing thick lava covers and, as a consequence, broken by compressional forces; while above this level the old crust has instead been temporarily and in places attacked by tensional forces in dimensions determined by the internal energy sources and their interaction with the lithospheric roof, thus enabling the internal forces together with flexural bending to dome and fault the upper crustal surface to some extent in respect to mare areas. The rille formation can be characterized by peripheral bulging and bending. The share of asthenosphere-related effects in lunar tectonics must be considered to have been very important. If only lava load and mascons have raised compression within mare areas and tension within the surrounding terra how can be explained those rille graben which do not have any extra mass concentrations nor lavas on their sides and why some major mascon basins have so few tensional rille graben structures around them?  相似文献   

16.
H. Jay Melosh 《Icarus》1977,31(2):221-243
Mercury, the Moon, and many large satellites of the major planets have been tidally despun from an initially faster rotation. These bodies probably possessed equatorial bulges which relaxed as they lost their spin. An analysis of the stresses induced in an elastic shell by the relaxation of an equatorial bulge indicates that differential stresses may reach a few kilobars and that the tectonic pattern developed depends mainly upon the shell thickness. In every model studied the azimuthal stress σ?? is larger (more compressive) than the meridional stress σθθ. For a thin elastic shell (thickness less than one-twentieth of the planet's radius) the zone from the equator to 48° latitude is characterized by strike-slip faulting. Poleward of this, normal faults and graben trending east-west are expected. Thicker elastic shells acquire an equatorial belt of thrust faults with east-west throw and rough north-south trends. These tectonic styles may be modified by a small (0.05-0.1%) radial expansion or contraction. Expansion shifts the polar normal faulting province toward the equator, while contraction shifts the equatorial provinces poleward. These patterns are not substantially altered by plastic yielding of the shell, although the equatorial thrust fault province is suppressed by strike-slip faulting until strike-slip faults occur poleward of 64.8° latitude. We conclude that there are many tectonic patterns consistent with despinning and radial contraction or expansion, but they must all be consistent with σ?? > σθθ. These results also indicate that the polar regions of a despun planet are of particular interest in deciding whether a given lineament system is due to stresses induced by the relaxation of the planet's equatorial bulge.  相似文献   

17.
We present geologic evidence suggesting that after the development of Mars' cryolithosphere, the formation of aquifers in southwestern Chryse Planitia and their subsequent disruption led to extensive regional resurfacing during the Late Hesperian, and perhaps even during the Amazonian. In our model, these aquifers formed preferentially along thrust faults associated with wrinkle ridges, as well as along fault systems peripheral to impact craters. The characteristics of degraded wrinkle ridges and impact craters in southwestern Chryse Planitia indicate a profound role of subsurface volatiles and especially liquid water in the upper crust (the upper one hundred to a few thousands of meters). Like lunar wrinkle ridges, the martian ones are presumed to mark the surface extensions of thrust faults, but in our study area the wrinkle ridges are heavily modified. Wrinkle ridges and nearby plains have locally undergone collapse, and in other areas they are associated with domical intrusions we interpret as mud volcanoes and mud diapirs. In at least one instance, a sinuous valley emanates from a modified wrinkle ridge, further indicating hydrological influences on these thrust-fault-controlled features. A key must be the formation of volatile-rich crust. Primary crustal formation and differentiation incorporated juvenile volatiles into the global crust, but the crustal record here was then strongly modified by the giant Chryse impact. The decipherable rock record here begins with the Chryse impact and continues with the resulting basin's erosion and infilling, which includes outflow channel activity. We propose that in Simud Vallis surface flow dissection into the base of the cryolithosphere-produced zones where water infiltrated and migrated along SW-dipping strata deformed by the Chryse impact, thereby forming an extensive aquifer in southwestern Chryse Planitia. In this region, compressive stresses produced by the rise of Tharsis led to the formation of wrinkle ridges. Zones of high fracture density within the highly strained planes of the thrust faults underlying the wrinkle ridges formed regions of high permeability; thus, groundwater likely flowed and gathered along these tectonic structures to form zones of elevated permeability. Volatile depletion and migration within the upper crustal materials, predominantly along fault systems, led to structurally controlled episodic resurfacing in southwestern Chryse Planitia. The erosional modification of impact craters in this region is linked to these processes. This erosion is scale independent over a range of crater diameters from a few hundred meters to tens of kilometers. According to our model, pressurized water and sediment intruded and locally extruded and caused crustal subsidence and other degradational activity across this region. The modification of craters across this wide range of sizes, according to our model, implies that there was intensive mobilization of liquid water in the upper crust ranging from about one hundred to several thousand meters deep.  相似文献   

18.
Abstract— Europa's icy crust records active resurfacing by tectonic and thermal processes over tens of millions of years, as rapidity demonstrated by a paucity of craters. Tidal working causes rotational torque, surface stress, internal heating, and orbital evolution, which can explain the formation of observed tectonic crack patterns, ridges, crustal displacement, and chaotic terrain by processes involving connections between the surface and the underlying ocean through cracks, melt sites, and occasional impacts. These processes were recent, and thus most likely continue today. The permeability of the crust allows exchange of materials, including oxidants and exogenic organics from the surface and endogenic substances from the ocean, such that a habitable biosphere might extend to within a few centimeters of the surface. Continual changes in environmental conditions in the ice crust, such as deactivation of individual cracks after thousands of years (due to non‐synchronous rotation) and crustal thawing (releasing any trapped organisms), could provide drivers for biological adaptation, as well as opportunity for evolution.  相似文献   

19.
The Upper Rhine Graben (URG), a Cenozoic intra-plate rift situated in the Alpine foreland, is presently characterised by relative slow tectonic deformation and low to medium seismicity. Concurrently, it is a region with a significant amount of ongoing subsidence in two recent depocentres (0.1 to 0.2 mm/a geological, 1 mm/a geodetical rate). In this paper, the recent kinematic behaviour of the URG is simulated using a 3D finite element model, containing three lithospheric layers (upper mantle, lower crust and upper crust) with different rheological properties. First order fault structures (e.g. border faults) are implemented as frictional contact surfaces within the upper crustal layer. The stresses generated by applying lateral displacements over a time period of 10 ka are insufficient to obtain a match between predicted and observed stress magnitudes. Therefore, a technique of “combined pre-stressing” has been developed to avoid unrealistic deformation and unrealistic stress magnitudes within the model. The stress magnitudes and stress directions predicted are calibrated against in-situ stress measurements and stress indicator data. For benchmarking of the modelling results, the vertical surface displacements predicted are compared to surface uplift derived from geological and geomorphological data. Furthermore, predicted fault slip rates are compared to available geological and geodetical data. Parameters derived from the calculated stress tensor, such as fracture potential and the regime stress ratio are also analysed in order to describe the possible kinematic behaviour of the URG. The modelling results suggest that the URG is currently being reactivated as a sinistral strike–slip system with the central segment of the URG forming a restraining bend and the two recent depocentres situated in releasing bend settings. The modelling results suggest that both sinistral shearing and mantle uplift are active mechanisms driving the recent kinematics of the URG and that the recent subsidence within the two depocentres is re-enforced by ongoing mantle uplift additionally.  相似文献   

20.
The pattern of fault reactivation, basin deformation and concentration of seismicity along the main trans-Netherlands fault zone, located NW–SE across the centre of the Netherlands, indicates that this zone is a major zone of weakness. Gravity modelling reveals after back-stripping of the sedimentary succession a distinctive continuous positive anomaly that can be explained by lithospheric sources. This zone of weakness is therefore likely to have a major influence on the tectonic processes currently active in the Netherlands region. We give a review of the tectonic history of the Netherlands and then present the results of a quantitative study of the reactivation of basin boundary faults and the influence on the surrounding basin. Well-data, balanced and back-stripped cross-sections are used to constrain the lithosphere rheology. The lithosphere rheology modelling results show a weak coupling between upper crustal deformation and the subcrustal lithosphere. A finite element modelling approach focussing on the upper crust is carried out in which the basin boundary faults are assigned various dips. The modelling results indicate that, for continuous reactivation of basin boundary faults, the presence of both a pre-existing weakness and a reduced friction angle is required. The latter implies that large displacements accommodated by primary faults cannot be directly attributed to the relative weakness of these faults compared to the secondary faults, which is in close accordance with inferences from trenching. A reduced friction angle has a significant effect on lithospheric strength and appears to be the major controlling factor in the reactivation of basin boundary faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号