首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the relative timing between hard X-ray (HXR) peaks and structures in metric and decimetric radio emissions of solar flares using data from the RHESSI and Phoenix-2 instruments. The radio events under consideration are predominantly classified as type III bursts, decimetric pulsations and patches. The RHESSI data are demodulated using special techniques appropriate for a Phoenix-2 temporal resolution of 0.1 s. The absolute timing accuracy of the two instruments is found to be about 170 ms, and much better on the average. It is found that type III radio groups often coincide with enhanced HXR emission, but only a relatively small fraction (∼20%) of the groups show close correlation on time scales < 1 s. If structures correlate, the HXRs precede the type III emissions in a majority of cases, and by 0.69 ± 0.19 s on the average. Reversed drift type III bursts are also delayed, but high-frequency and harmonic emission is retarded less. The decimetric pulsations and patches (DCIM) have a larger scatter of delays, but do not have a statistically significant sign or an average different from zero. The time delay does not show a center-to-limb variation excluding simple propagation effects. The delay by scattering near the source region is suggested to be the most efficient process on the average for delaying type III radio emission.  相似文献   

2.
Between 1980, January 1 and 1981, December 31 a total of 664 decimetric pulsation events, abbreviated DCIM, were observed with the Zürich spectrometers in the frequency range 100 to 1000 MHz. All of these events were recorded on film, allowing an effective resolution in time of 0.5 s, and 5 MHz in frequency. Some of these events were also recorded digitally with higher time and frequency resolution.The class of DCIM bursts can be divided into two groups depending on their duration and thus reflecting different physical mechanisms. Each of the two groups can be further divided into small and large bandwidth subgroups, reflecting differences in the source parameters. Short decimetric events ( 1s) are most abundant in this frequency range. They may be caused by fast transients in the solar atmosphere. The half-power bandwidth of the shortest DCIM bursts, the millisecond spikes, were found to be 6 to 12 MHz. A single event may consist of more than 1000 individual spikes. The long lasting DCIM bursts (5 s to 300 s) exhibit a gradual and smooth time profile. Such long lasting events indicate the presence of trapped particles in magnetic fields. In some events decimetric gyrosynchrotron radiation was observed below 1000 MHz as a continuation of corresponding microwave events.Some of the decimetric events exhibit very large drift rates (2000 MHz s-1). Such large values request either a drastic reduction of the effective scale height of the active region in the beam model or a different explanation than the conventional beam model.  相似文献   

3.
We present study of relationship of GSXR flares with Hα flares, hard X-ray (HXR) bursts, microwave (MW) bursts at 15.4 GHz, type II/IV radio bursts, coronal mass ejections (CMEs), protons flares (>10 MeV) and ground level enhancement (GLE) events we find that about 85.7%, 93%, 97%, 69%, 60%, 11.1%, 79%, 46%, and 23%% GSXR flares are related/associated with observed Hα flares, HXR bursts, MW bursts at 15.4 GHz, type II radio bursts, type IV radio bursts, GLE events, CMEs, halo CMEs, and proton flares (>10 MeV), respectively. In the paper we have studied the onset time delay of GSXR flares with Hα flares, HXR, and MW bursts which shows the during majority GSXR flares SXR emissions start before the Hα, HXR and MW emissions, respectively while during 15–20% of GSXR flares the SXR emissions start after the onset of Hα, HXT and MW emissions, respectively indicating two types of solar flares. The, onset time interval between SXR emissions and type II radio bursts, type IV radio bursts, GLE events CMEs, halo CMEs, and protons flares are 1–15 min, 1–20 min, 21–30 min, 21–40 min, 21–40 min, and 1–4 hrs, respectively. Following the majority results we are of the view that the present investigations support solar flares models which suggest flare triggering first in the corona and then move to chromospheres/ photosphere to starts emissions in other wavelengths. The result of the present work is largely consistent with “big flare syndrome” proposed by Kahler (1982).  相似文献   

4.
Wang  Shujuan  Yan  Yihua  Zhao  Ruizhen  Fu  Qijun  Tan  Chengming  Xu  Long  Wang  Shijin  Lin  Huaan 《Solar physics》2001,204(1-2):153-164
25 MHz–7.6 GHz global and detailed (fine structure – FS) radio spectra are presented, which were observed in the NOAA 9077 active region for the Bastille Day (14 July 2000) flare at 10:10–11:00 UT. Besides broadband radio bursts, high-resolution dynamic spectra reveal metric type II burst, decimetric type IV burst and various decimetric and microwave FSs, such as type III bursts, type U bursts, reverse-slope (RS)-drifting burst, fiber bursts, patch and drifting pulsation structure (DPS). The peak-flux-density spectrum of the radio bursts over the range 1.0–7.6 GHz globally appears as a U-shaped signature. Analyzing the features of backbone and herringbones of the type II burst, the speeds of shock and relevant energetic electron beams were estimated to be 1100 km s−1 and 58 500 km s−1, respectively. Also the time sequence of the radio emission is analyzed by comparing with the hard X-rays (HXRs) and the soft X-rays (SXRs) in this flare. After the maxima of the X-rays, the radio emission in the range 1.0–7.6 GHz reached maxima first at the higher frequency, then drifted to the lower frequency. This comparison suggested that the flare included three successive processes: firstly the X-rays rose and reached maxima at 10:10–10:23 UT, accompanied by fine structures only in the range 2.6–7.6 GHz; secondly the microwave radio emission reached maxima accompanied by many fine structures over the range 1.0–7.6 GHz at 10:23–10:34 UT; then a decimetric type IV burst and its associated FSs (fibers) in the range 1.0–2.0 GHz appeared after 10:40 UT.  相似文献   

5.
Solar S-bursts observed by the radio telescope UTR-2 in the period 2001 – 2002 are studied. The bursts chosen for a detailed analysis occurred in the periods 23 – 26 May 2001, 13 – 16 and 27 – 39 July 2002 during three solar radio storms. More than 800 S-bursts were registered in these days. Properties of S-bursts are studied in the frequency band 10 – 30 MHz. All bursts were always observed against a background of other solar radio activity such as type III and IIIb bursts, type III-like bursts, drift pairs and spikes. Moreover, S-bursts were observed during days when the active region was situated near the central meridian. Characteristic durations of S-bursts were about 0.35 and 0.4 – 0.6 s for the May and July storms, respectively. For the first time, we found that the instantaneous frequency width of S-bursts increased with frequency linearly. The dependence of drift rates on frequency followed the McConnell dependence derived for higher frequencies. We propose a model of S-bursts based on the assumption that these bursts are generated due to the confluence of Langmuir waves with fast magnetosonic waves, whose phase and group velocities are equal.  相似文献   

6.
ARTEMIS IV Radio Observations of the 14 July 2000 Large Solar Event   总被引:1,自引:0,他引:1  
Caroubalos  C.  Alissandrakis  C.E.  Hillaris  A.  Nindos  A.  Tsitsipis  P.  Moussas  X.  Bougeret  J.-L.  Bouratzis  K.  Dumas  G.  Kanellakis  G.  Kontogeorgos  A.  Maroulis  D.  Patavalis  N.  Perche  C.  Polygiannakis  J.  Preka-Papadema  P. 《Solar physics》2001,204(1-2):165-177
In this report we present a complex metric burst, associated with the 14 July 2000 major solar event, recorded by the ARTEMIS-IV radio spectrograph at Thermopylae. Additional space-borne and Earth-bound observational data are used, in order to identify and analyze the diverse, yet associated, processes during this event. The emission at metric wavelengths consisted of broad-band continua including a moving and a stationary type IV, impulsive bursts and pulsating structures. The principal release of energetic electrons in the corona was 15–20 min after the start of the flare, in a period when the flare emission spread rapidly eastwards and a hard X-ray peak occurred. Backward extrapolation of the CME also puts its origin in the same time interval, however, the uncertainty of the extrapolation does not allow us to associate the CME with any particular radio or X-ray signature. Finally, we present high time and spectral resolution observations of pulsations and fiber bursts, together with a preliminary statistical analysis.  相似文献   

7.
We present multi-wavelength observations of a complicated solar eruption event to associate with an X1.2 flare and a Coronal Mass Ejection (CME) on 2003 October 26. The soft X-ray profile shows a possibility for occurrence of two flares with peaks around 06:20 and 07:00 UT. According to our observations, there are many evidences to show that they are corresponding to two energy releases. The first one produces type II, type III, moving type IV continua, a decimetric burst (DCIM) and strong emissions at Hα, 195 and 1600 Å; While the second energy release only produces a group of RS-III bursts, DCIM and Hα emissions. It appears that the first energy release is associated with a CME, while the second CME is quiet. Such observational difference between two energy releases is found indicating two magnetic reconnection processes occurrence with different plasma situation.  相似文献   

8.
We report on the detailed analysis of i) differences between the properties of type IIs with various starting frequencies (high: ≥100 MHz; low: ≤50 MHz; mid: 50 MHz ≤f≤ 100 MHz) and ii) the properties of CMEs and flares associated with them. For this study, we considered a sample of type II radio bursts observed by Culgoora radio spectrograph from January 1998 to December 2000. The X-ray flares and CMEs associated with these events are identified using GOES and SOHO/LASCO data. The secondary aim is to study the frequency dependence on other properties of type IIs, flares, and CMEs. We found that the type IIs with high starting frequencies have larger drift rate, relative drift rate, and shock speed than the type IIs with low starting frequencies. The flares associated with high frequency type IIs are of impulsive in nature with shorter rise time, duration and delay between the flare start and type II start times than the low frequency type IIs. There is a distinct power – law relationship between the flare parameters and the starting frequencies of type II bursts, whereas the trend in the CME parameters shows low correlation. While the mean speed of CMEs is larger for the mid-frequency group, it is nearly the same for the high and low frequency groups. On the other hand, the percentage of CME association (90%) is larger for low frequency type IIs than for the high frequency type IIs (75%).  相似文献   

9.
Lesovoi  S.V.  Kardapolova  N.N. 《Solar physics》2003,216(1-2):225-238
An analysis of solar radio bursts with temporal fine structure (TFS) at 5730 MHz in relation to the magnetic configuration of the corresponding active regions (AR) is presented. We found that the occurrence of TFS bursts increases with increasing complexity of the AR's magnetic configuration. The degree of polarization of TFS bursts varies over a wide range. Most of these fast bursts with a high degree of polarization were observed in active regions with a simple magnetic configuration β. Most of the unpolarized fast bursts were observed in active regions with the most complicated configuration βγδ. Because bursts that are polarized in different modes have different displacements of position with respect to that of associated microwave bursts, we conclude that there are at least two types of TFS bursts at 5730 MHz. We think that fast bursts that are polarized in the ordinary mode are due to microwave type III bursts.  相似文献   

10.
Radio emissions of electron beams in the solar corona and interplanetary space are tracers of the underlying magnetic configuration and of its evolution. We analyse radio observations from the Culgoora and WIND/WAVES spectrographs, in combination with SOHO/LASCO and SOHO/MDI data, to understand the origin of a type N burst originating from NOAA AR 10540 on January 20, 2004, and its relationship with type II and type III emissions. All bursts are related to the flares and the CME analysed in a previous paper (Goff et al., 2007). A very unusual feature of this event was a decametric type N burst, where a type III-like burst, drifting towards low frequencies (negative drift), changes drift first to positive, then again to negative. At metre wavelengths, i.e., heliocentric distances ≲1.5R , these bursts are ascribed to electron beams bouncing in a closed loop. Neither U nor N bursts are expected at decametric wavelengths because closed quasi-static loops are not thought to extend to distances ≫1.5R . We take the opportunity of the good multi-instrument coverage of this event to analyse the origin of type N bursts in the high corona. Reconnection of the expanding ejecta with the magnetic structure of a previous CME, launched about 8 hours earlier, injects electrons in the same manner as with type III bursts but into open field lines having a local dip and apex. The latter shape was created by magnetic reconnection between the expanding CME and neighbouring (open) streamer field lines. This particular flux tube shape in the high corona, between 5R and 10R , explains the observed type N burst. Since the required magnetic configuration is only a transient phenomenon formed by reconnection, severe timing and topological constraints are present to form the observed decametric N burst. They are therefore expected to be rare features.  相似文献   

11.
To find X-ray bursts from sources within the field of view of the IBIS/INTEGRAL telescope, we have analyzed all the archival data of the telescope available at the time of writing the paper (the observations from January 2003 to April 2009). We have detected 834 hard (15–25 keV) X-ray bursts, 239 of which were simultaneously recorded by the JEM-X/INTEGRAL telescope in the standard X-ray energy range. More than 70% of all bursts (587 events) have been recorded from the well-known X-ray burster GX 354-0. We have found upper limits on the distances to their sources by assuming that the Eddington luminosity limit was reached at the brightness maximum of the brightest bursts.  相似文献   

12.
We present a statistical study of the characteristics of type-II radio bursts observed in the metric (m) and deca-hectometer (DH) wavelength range during 1997–2008. The collected events are divided into two groups: Group I contains the events of m-type-II bursts with starting frequency ≥ 100 MHz, and group II contains the events with starting frequency of m-type-II radio bursts < 100 MHz. We have analyzed both samples considering three different aspects: i) statistical properties of type-II bursts, ii) statistical properties of flares and CMEs associated with type-II bursts, and iii) time delays between type-II bursts, flares, and CMEs. We find significant differences in the properties of m-type-II bursts in duration, bandwidth, drift rate, shock speed and delay between m- and DH-type-II bursts. From the timing analysis we found that the majority of m-type-II bursts in both groups occur during the flare impulsive phase. On the other hand, the DH-type-II bursts in both groups occur during the decaying phase of the associated flares. Almost all m-DH-type-II bursts are found to be associated with CMEs. Our results indicate that there are two kinds of shock in which group I (high frequency) m-type-II bursts seem to be ignited by flares whereas group II (low frequency) m-type-II bursts are CME-driven.  相似文献   

13.
Y. Ma  R. X. Xie  M. Wang 《Solar physics》2006,238(1):105-115
Detailed statistics and analysis of 264 type III bursts observed with the 625–1500 MHz spectrograph during the 23rd solar cycle (from July 2000 to April 2003) are carried out in the present article. The main statistical results are similar to those of microwave type III bursts presented in the literature cited, such as the correlation between type III bursts and flares, polarization, duration, frequency drift rate (normal and reverse slopes), distribution of type III bursts and frequency bandwidth. At the same time, the statistical results also point out that the average values of the frequency drift rates and degrees of polarization increase with the increase in frequency and the average value of duration decreases with the increase in frequency. Other statistical results show that the starting frequencies of the type III bursts are mainly within the range from 650 to 800 MHz, and most type III bursts have an average bandwidth of 289 MHz. The distributions imply that the electron acceleration and the place of energy release are within a limited decimetric range. The characteristics of the narrow bandwidth possibly involve the magnetic configuration at decimetric wavelengths, the location of electron acceleration in the magnetic field nearto the main flare, the relevant runaway or trapped electrons, or the coherent radio emission produced by some secondary shock waves. In addition, the number of type III bursts with positive frequency drift rates is almost equal to that with negative frequency drift rates. This is probably explained by the hypothesis that an equal number of electron beams are accelerated upwards and downwards within the range of 625 to 1500 MHz. The radiation mechanism of type III bursts at decimetric wavelengths probably includes these microwave and metric mechanisms and the most likely cause of the coherent plasma radiation are the emission processes of the electron cyclotron maser.  相似文献   

14.
Out of 120 solar type IV events recorded at the Trieste Astronomical Observatory, we have selected 15 groups of spike bursts. We analyze their properties, concentrating on the characteristics of their polarization. We find that the polarization of the spikes varies over a wide range, but that within a particular group of spikes it remains almost constant. Sometimes groups of spikes with different degrees of polarization occur almost contemporaneously, probably indicating that more than one source is active at nearly the same time.Occasionally spike bursts accompany type III bursts. Then, unlike the case with type IV-associated events, the polarization of the spikes varies greatly.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

15.
We studied the characteristics of the zebra-associated spike-like bursts that were recorded with high time resolution at 1420 MHz in four intervals (from 12:45 to 12:48 UT) during 5 August 2003. Our detailed analysis is based on the selection of more than 500 such spike-like bursts and it is, at least to our knowledge, the first study devoted to such short-lived bursts. Their characteristics are different from those pertinent to “normal” spike bursts, as presented in the paper by Güdel and Benz (Astron. Astrophys. 231, 202, 1990); in particular, their duration (about 7.4 ms at half power) is shorter, so they should be members of the SSS (super short structures) family (Magdalenić et al., Astrophys. J. 642, L77, 2006). The bursts were generally strongly R-polarized; however, during the decaying part of interval I a low R-polarized and L-polarized bursts were also present. This change of polarization shows a trend that resembles the peculiar form of the zebra lines in the spectral dominion (“V” like). A global statistical analysis on the bursts observed in the two polarimetric channels shows that the highest cross-correlation coefficient (about 0.5) was pertinent to interval I. The zebras and the bursts can be interpreted by the same double plasma resonance process as proposed by Bárta and Karlicky (Astron. Astrophys. 379, 1045, 2001) and Karlicky et al. (Astron. Astrophys. 375, 638, 2001); in particular, the spikes are generated by the interruption of this process by assumed turbulence (density or magnetic field variations). This process should be present in the region close to the reconnection site (e.g., in the plasma reconnection outflows) where the density and the magnetic field vary strongly.  相似文献   

16.
We studied the properties of fine structures in 23 type II bursts recorded at the Trieste Astronomical Observatory at frequencies above 200 MHz.The lifetime of a single fine structure is a fraction of a second. The ratio of fine structures intensity vs bulk flux density is different in different type II bursts and it changes during the evolution of a single event; the reported maximum ratio is 3. The polarization of fine structures is nearly the same during the lifetime of an event. There is also no essential difference in polarization between fine structures and bulk emission; this holds also for an example of high-polarization (about 80%) event.At frequencies lower than 200 MHz the analogy between herringbone structure and type III bursts is frequently mentioned in the literature. From the observations we studied, it results, however, that the time profile of single fine-structure elements and their polarization are substantially different from the morphology of type III bursts.The observed fine structures and their characteristics are discussed in the framework of the model by Holman and Pesses (1983).Paper presented at the 4th CESRA Workshop in Ouranopolis (Greece) 1991.  相似文献   

17.
The properties of powerful (flux >10−19 W m−2 Hz−1) type III bursts observed in July – August 2002 by the radio telescope UTR-2 at frequencies 10 – 30 MHz are analyzed. Most bursts have been registered when the active regions associated to these bursts were located near the central meridian or at 40° – 60° to the East or West from it. All powerful type III bursts drift from high to low frequencies with frequency drift rates 1 – 2.5 MHz s−1. It is important to emphasize that according to our observations the drift rate is linearly increasing with frequency. The duration of the bursts changes mainly from 6 s at frequency 30 MHz up to 12 s at 10 MHz. The instantaneous frequency bandwidth does not depend on the day of observations, i.e. on the disk location of the source active region, and is increasing with frequency.  相似文献   

18.
The results of observations of solar decametric drift pair bursts are presented. These observations were carried out during a Type III burst storm on July 11–21, 2002, with the decameter radio telescope UTR-2, equipped with new back-end facilities. High time and frequency resolution of the back-end allowed us to obtain new information about the structure and properties of these bursts. The statistical analysis of more than 700 bursts observed on 13–15 July was performed separately for “forward” and “reverse” drift pair bursts. Such an extensive amount of these kind of bursts has never been processed before. It should be pointed out that “forward” and “reverse” drift pair bursts have a set of similar parameters, such as time delay between the burst elements, duration of an element, and instant bandwidth of an element. Nevertheless some of their parameters are different. So, the absolute average value of frequency drift rate for “forward” bursts is 0.8 MHz s−1, while for “reverse” ones it is 2 MHz s−1. The obtained functional dependencies “drift rate vs. frequency” and “flux density vs. frequency” were found to be different from the current knowledge. We also report about the observation of unusual variants of drift pairs, in particular, of “hook” bursts and bursts with fine time and frequency structure. A possible mechanism of drift pairs generation is proposed, according to which this emission may originate from the interaction of Langmuir waves with the magnetosonic waves having equal phase and group velocities.  相似文献   

19.
The defining property of Soft Gamma Repeaters is the emission of short, bright bursts of X-rays and soft γ-rays. Here we present the continuum and line spectral properties of a large sample of bursts from SGR 1806-20, observed with the Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE). Using 10 trail spectral models (5 single and 5 two component models), we find that the burst continua are best fitted by the single component models: cutoff power-law, optically thin bremsstrahlung, and simple power-law. Time resolved spectroscopy show that there are two absorption lines at ∼5 keV and 20 keV in some bursts. The lines are relatively narrow with 90% upper limit on the line widths of 0.5–1.5 keV for the 5 keV feature and 1–3 keV for the 20 keV feature. Both lines have considerable equivalent width of 330–850 eV for the 5 keV feature and 780–2590 eV for the 20 keV feature. We examined whether theses spectral lines are dependent upon the choice of a particular continuum model and find no such dependence. Besides, we find that the 5 keV feature is pronounced with high confidence in the cumulative joint spectrum of the entire burst sample, both in the individual detectors of the PCA and in the co-added detectors spectrum. We confront the features against possible instrumental effects and find that none can account for the observed line properties. The two features do not seem to be connected to the same physical mechanism because (1) they do not always occur simultaneously, (2) while the 5 keV feature occurs at about the same energy, the 20 keV line centroid varies significantly from burst to burst over the range 18–22 keV, and (3) the centroid of the lines shows anti-correlated red/blue shifts. The transient appearance of the features in the individual bursts and in portions of the same burst, together with the spectral evolution seen in some bursts point to a complex emission mechanism that requires further investigation.   相似文献   

20.
High sensitivity, high time resolution recordings of microwave radio bursts show a number of periodic and quasi-periodic bursts which exhibit intervals of the order of 10–20 s. Some of the bursts are accompanied by simultaneous pulsations of the same interval detected in X-rays, type III-m, and extreme ultraviolet emissions. Mechanisms to explain solar radio pulsations are reviewed to see which can explain or be extended to explain these observations.Supported by a company-financed research program of The Aerospace Corporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号