首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a combined approach of a two-dimensional erosion and hillslope sediment delivery model (WATEM/SEDEM) and detailed geomorphological reconstructions to quantify the different components in a sediment budget for the Geul River catchment (southern Netherlands) since the High Middle Ages. Hillslope erosion and colluvium deposition were calculated using the model, while floodplain storage was estimated using field data. Our results show that more than 80% of the total sediment production in the catchment has been stored as colluvium (mostly generated by hillslope erosion), while almost 13% is stored in the floodplain since the High Middle Ages (this situation resembles a capacity-limited system). Model results for the period prior to the High Middle Ages (with a nearly completely forested catchment) show that far less sediment was generated and that most of the sediments were directly transported to the main river valleys or out of the catchment (a supply-limited system). Geomorphological analysis of a large alluvial fan shows the sensitivity of the study area to changes in the percentage of arable land.Our combined field data-modeling study presents an elegant method to calculate a catchment sediment budget for a longer period and is able to identify and quantify the most important sediment storage elements. Furthermore, it provides a valuable tool to calculate a sediment budget while only limited dated fluvial sediment sequences are available.  相似文献   

2.
Reconstructing ancient topography through erosion modelling   总被引:1,自引:1,他引:1  
One of the main aims of geomorphology is to understand how geomorphic processes change topography over long time scales. Over the last decades several landscape evolution models have been developed in order to study this question. However, evaluation of such models has often been very limited due to the lack of necessary field data. In this study we present a topography based hillslope erosion and deposition model that is based on the WATEM/SEDEM model structure and works on a millennial time scale. Soil erosion, transport and deposition are calculated using slope and unit contributing area. The topography is iteratively rejuvenated by taking into account modelled erosion and deposition rates, thereby simulating topographic development backwards in time. A first attempt has been made to spatially evaluate the model, using detailed estimates for historical soil erosion and sediment deposition volumes, obtained from an augering campaign in a small catchment in the Belgian Loess Belt. The results show that the model can simulate realistic soil redistribution patterns. However, further research is necessary in order to deal with artificial flaws that cause routing problems and significantly influence results. Common problems and issues related to this type of backward modelling are also discussed.  相似文献   

3.
WaTEM/SEDEM模型及其应用研究进展与展望   总被引:2,自引:0,他引:2  
土壤侵蚀产沙模型是开展水土保持研究的重要工具。土壤侵蚀物理模型除能够模拟和预测土壤侵蚀沉积的空间分布外,其可移植性功能较强,因此得到了很多研究者的青睐,但大多数物理模型运行时需要的参数较多,因而限制了模型应用和推广。本文介绍了比利时鲁汶大学研发的分布式土壤侵蚀模型WaTEM/SEDEM(Waterand Tillage Erosion Model and Sediment Delivery Model)模型,分别从WaTEM/SEDEM 模型的产生、结构、国内外应用进行了系统阐述,并在已有的应用研究基础上,总结了该模型的优缺点,展望其应用前景。  相似文献   

4.
The response of erosion and sediment export to past land-use change has been studied in four agricultural areas of Europe. Three of these areas were subject to land abandonment or de-intensification and one to intensification of land-use practices. Erosion and sediment yield were modeled using the WaTEM/SEDEM model, which combines the RUSLE equation with a sediment routing algorithm. Spatial relationships between the RUSLE C-factor (i.e. land-use) and other erosion and sediment export-determining factors (slope, soil erodibility and distance to rivers) were investigated, as these account for non-linearity in the response of erosion and sediment export to land-use change.Erosion and sediment export have decreased enormously in the de-intensified areas, but slightly increased in the intensively cultivated area. The spatial pattern of land-use change in relation to other erosion and sediment export-determining factors appears to have a large impact on the response of soil erosion and sediment export to land-use change. That the drivers of abandonment of arable land and erosion coincide indicates that de-intensification leads to a more favourable landscape pattern with respect to reduction of erosion and sediment export. This mechanism applies not only within the study areas, but also among the European study areas where the process of intensification of some areas and de-intensification of others might result in an overall decrease of erosion and sediment yield through time.  相似文献   

5.
中国河流地貌研究进展——纪念沈玉昌先生100年诞辰   总被引:1,自引:0,他引:1  
2016年是中国现代河流地貌研究的开拓者和奠基人沈玉昌先生100年诞辰,本文对中国河流地貌研究进展进行综述,以资纪念。研究涉及4个方面:① 水系发育与河谷地貌演变,包括大江大河水系历史发育和山区河流地貌;② 侵蚀与产沙过程,包括有物理成因基础的侵蚀产沙模型、侵蚀产沙过程的尺度效应、植被对侵蚀的影响及临界现象、坡面细沟发育过程模拟等;③ 河床过程与河型,包括河道冲淤过程、河床演变、河型成因与演变等;④ 河流地貌系统研究,包括流域系统不同子系统的耦合关系、河流地貌系统中的高含沙水流和多营力地貌过程、河流地貌系统对于自然因素变化和人类活动的响应、河流地貌系统中的泥沙灾害和河流地貌系统的实验研究等。50年前沈玉昌先生与钱宁先生提出在地貌学与河流动力学相结合的基础上发展中国河流学科。文中对此方面的进展进行了综述,并提出了需要深化和解决的问题。  相似文献   

6.
The aim of this study was to evaluate four metrics to define the spatially variable (regionalised) hillslope sediment delivery ratio (HSDR). A catchment model that accounted for gully and streambank erosion and floodplain deposition was used to isolate the effects of hillslope gross erosion and hillslope delivery from other landscape processes. The analysis was carried out at the subcatchment (~ 40 km2) and the cell scale (400 m2) in the Avon-Richardson catchment (3300 km2), south-east Australia. The four landscape metrics selected for the study were based on sediment travel time, sediment transport capacity, flux connectivity, and residence time. Model configurations with spatially-constant or regionalised HSDR were calibrated against sediment yield measured at five gauging stations. The impact of using regionalised HSDR was evaluated in terms of improved model performance against measured sediment yields in a nested monitoring network, the complexity and data requirements of the metric, and the resulting spatial relationship between hillslope erosion and landscape factors in the catchment and along hillslope transects. The introduction of a regionalised HSDR generally improved model predictions of specific sediment yields at the subcatchment scale, increasing model efficiency from 0.48 to > 0.6 in the best cases. However, the introduction of regionalised HSDR metrics at the cell scale did not improve model performance. The flux connectivity was the most promising metric because it showed the largest improvement in predicting specific sediment yields, was easy to implement, was scale-independent and its formulation was consistent with sedimentological connectivity concepts. These properties make the flux connectivity metric preferable for applications to catchments where climatic conditions can be considered homogeneous, i.e. in small-medium sized basins (up to approximately 3000 km2 for Australian conditions, with the Avon-Richardson catchment being at the upper boundary). The residence time metric improved model assessment of sediment yields and enabled accounting for climatic variability on sediment delivery, but at the cost of greater complexity and data requirements; this metric might be more suitable for application in catchments with important climatic gradients, i.e. large basins and at the regional scale. The application of a regionalised HSDR metric did not increase data or computational requirements substantially, and is recommended to improve assessment of hillslope erosion in empirical, semi-lumped erosion modelling applications. However, more research is needed to assess the quality of spatial patterns of erosion depicted by the different landscape metrics.  相似文献   

7.
Fire can alter sediment sources and transport rates in river basins, changing landforms and aquatic habitats and degrading downstream water quality. Variability in the response between environments, between fires, and with time since fire makes predicting the catchment-scale effect of individual fires difficult. This study applies the fallout radionuclides 137Cs and 210Pbxs to trace the sources and transport of fine sediment through a river network following a wildfire of moderate to extreme severity in the 629-km2 eucalypt-forested Nattai River water-supply catchment near Sydney, Australia. The tracer analysis showed that post-fire erosion caused a switch in fine (< 10 µm) sediment sources from 80% subsoil derived from gully and river bank erosion to 86% topsoil derived from hillslope surface erosion. The fine sediment phosphorus content increased 4–10 fold over pre-fire levels. Annual post-fire sediment yields estimated from suspended solids rating curves were 109–250 times higher than they would have been without fire. A large additional amount of sediment remained stored within the river network for at least four years, particularly in lower-gradient reaches. Analysis of a sediment core showed that surface erosion following a previous fire had supplied at least 29% of total catchment sediment yield over the past 36 years. It is concluded that wildfire can alter catchment sediment budgets in two ways. Firstly, a spatially-diffuse pulse of elevated erosion is associated with moderate or intense rainfall events in post-fire years. Secondly, pulses of elevated catchment sediment yield are driven by the timing and river sediment transport capacity of runoff events. Severe post-fire erosion and high interannual hydrologic variability can result in large sediment stores persisting within the river network for many years. Fallout radionuclide tracers are shown to be useful in quantifying fine sediment sources and transport dynamics following wildfire, and the contribution of wildfire to catchment sediment yield.  相似文献   

8.
This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.  相似文献   

9.
沙漠沟谷暴雨洪水侵蚀产沙特征   总被引:1,自引:1,他引:0  
在半干旱区的季节性沙漠沟谷,暴雨引发的洪水过程侵蚀产沙强度大,水土流失严重,对区域及下游河道生态造成严重威胁。以毛布拉孔兑的支沟苏达尔沟为研究对象,以苏达尔沟2011—2015年6次暴雨洪水事件的观测数据为基础,分析洪水流量、泥沙浓度及地表沉积物粒度特征,给出暴雨洪水侵蚀产沙输沙特征。结果表明:观测期间暴雨洪水侵蚀产沙量平均每次约37.69×10~4t,产沙模数为0.57×10~4t·km-2;其中最大的洪水事件130721号暴雨洪水过程侵蚀产沙量高达90.47×10~4t,产沙模数达1.36×10~4t·km-2。流域总侵蚀产沙以0.25~0.063 mm泥沙为主,约占总侵蚀量74%。洪水总侵蚀产沙量随暴雨产流强度增强而增加,同时下游沙漠沙地段产沙贡献比重也随之增加,风沙贡献也相应增大。坡面侵蚀约占暴雨洪水总侵蚀的4.37%,且主要集中在上游砒砂岩坡面。  相似文献   

10.
A stability model of drainage basin mass balance is used to interpret historic and prehistoric patterns of sediment production, storage and output from the Waipaoa River basin, New Zealand and assess the sensitivity of basin sediment yield to land use change in the historic period. Climate and vegetation cover changed during the late Holocene, but the drainage basin mass balance system was stable before the basin was deforested by European colonists in the late 19th and early 20th centuries. In this meso‐scale dispersal system sediment sources and sinks are closely linked, and before that time there was also little variability in the rate of terrigenous mass accumulation on the adjacent continental shelf. However, despite strong first‐order geologic controls on erosion and extensive alluvial storage, sediment delivery to the continental shelf is sensitive and highly responsive to historic hillslope destabilization driven by land use change. Alluvial buffering can mask the effects of variations in sediment production within a basin on sediment yield at the outlet, but this is most likely to occur in basins where alluvial storage is large relative to yield and where the residence time of alluvial sediment is long relative to the time scale of environmental change. At present, neither situation applies to the Waipaoa River basin. Thus, the strength of the contemporary depositional signal may not only be due to the intensity of the erosion processes involved, but also to the fact that land use change in the historic period destabilized the drainage basin mass balance system.  相似文献   

11.
无定河流域产沙量变化的淤地坝效应分析   总被引:2,自引:0,他引:2  
王随继  冉立山 《地理研究》2008,27(4):811-818
无定河流域1971~1989年的年均流量、悬移质含沙量及输沙率比1954~1970年的明显变小,而月均水沙过程曲线也发生了明显变化。上述水沙过程的变化受到1970年以来人类活动的强烈影响,而淤地坝建设是主因。为探讨淤地坝的减沙效应,提出淤地坝有效减沙面积这一概念,并拟合了动态变化的淤地坝有效减沙面积与年份之间的关系,发现该关系曲线与无定河流域各年代产沙量的变化情况相符。自1990年以来无定河流域淤地坝有效减沙面积呈明显递减趋势,导致了自上世纪90年代以来该流域的产沙量出现增大现象。为了抑制该流域的产沙量,势必需要加大淤地坝建设的力度。如果想使该流域的产沙量逐渐减少,则至少要使流域内年淤地坝有效减沙面积逐年增加。  相似文献   

12.
In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 105–107 years. Over shorter times, <105 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 104-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation in response to changes in monsoon intensity and sediment flux. Stratigraphy and 14C ages of fill terrace deposits reveal a major alluviation, coincident with a monsoonal maximum, ca. 50–35 ky BP. Cosmogenic 10Be and 26Al exposure ages define an alluviation and reincision event ca. 9–6 ky BP, also at a time of strong South Asian monsoons. The terrace deposits that line the Lesser Himalayan channel are largely composed of debris flows which originate in the Greater Himalayan rocks up to 40 km away. The terrace sequences contain many cubic kilometers of sediment, but probably represent only 2–8% of the sediments which flushed through the Marsyandi during the accumulation period. At 104-year timescales, maximum bedrock incision rates are 7 mm/year in the Greater Himalaya and 1.5 mm/year in the Lesser Himalayan Mahabarat Range. We propose a model in which river channel erosion is temporally out-of-phase with hillslope erosion. Increased monsoonal precipitation causes an increase in hillslope-derived sediment that overwhelms the transport capacity of the river. The resulting aggradation protects the bedrock channel from erosion, allowing the river gradient to steepen as rock uplift continues. When the alluvium is later removed and the bedrock channel re-exposed, bedrock incision rates probably accelerate beyond the long-term mean as the river gradient adjusts downward toward a more “equilibrium” profile. Efforts to document dynamic equilibrium in active orogens require quantification of rates over time intervals significantly exceeding the scale of these millennial fluctuations in rate.  相似文献   

13.
Quantitative interpretation of past land use using palaeolimnological records of sediment yield requires an appropriate soil erosion model. This paper describes the application of a simplified USLE model, comparing the predicted sediment yield with the lake sediment record at Pinto Lake (Central Coast, California). Our principal finding is that simplified USLE prediction, without correction for sediment transport capacity, accurately predicts fine sediment yield. Because the fine component of the soil is delivered far more efficiently than the coarse component, this and related soil erosion models can more readily be applied to the interpretation of palaeolimnological records than to estimation of total sediment yield, for which reliable estimation of hillslope and fluvial sediment storage are more important. The focus on fine sediment also means that the model output is optimal for assessing past ecological impacts of soil erosion on stream water turbidity and particulate transport of pollutants and nutrients.  相似文献   

14.
A sediment budget is constructed for the South Saugeen River, a sixth-order stream basin in southwestern Ontario. Input from eroding glacial embankments accounts for up to 68% of the fine (<63 μm) sediment outputs from the basin. Sediment derived from eroding alluvial banks in the main river contributes approximately 22% of sediment outputs and is approximately equivalent in magnitude to sediments stored in the floodplain. The remaining 10% is derived from sheet and rill erosion of uplands that have been modified by agriculture. However, specification of an appropriate sediment delivery ratio from individual fields to the low-order tributaries remains problematic. Small reservoirs confined by mill dams constructed around the time of land settlement in 1860 store about 3% of the basin sediment inputs. The results demonstrate the importance of downstream, non-alluvial (glacial) sediment sources and can be linked to the model of increasing specific sediment yields with drainage area found in several other river systems of Canada. The high frequency of tall glacial banks in several entrenched river valleys entering the Great Lakes in southern Ontario indicates that the model of dominantly agricultural sediment inputs needs to be adjusted for this region. [Key words: sediment budget, glacial conditioning, reservoir sedimentation, bank erosion, agricultural erosion, southern Ontario, Canada.]  相似文献   

15.
As in other regions colonised from Europe within the last few centuries, Australia's vegetation and soils have been dramatically changed by clearing, cropping and grazing. In southeastern Australia, particularly on the Southern Tablelands, the impacts of European settlement are clearly manifested by channel incision. By using stratigraphic and documentary evidence, in conjunction with aerial photographs, sediment budgets for the post-settlement period have been constructed to define the fluxes and stores of sediment for each of the major geomorphic components of the 136 km2 catchment of Jerrabomberra Creek near Canberra. Using these budgets, and some plausible assumptions, it has been possible to approximate the history of both the sediment delivery ratio and sediment yield for this catchment. While the quantities estimated in this analysis are approximations, the trends through time are credible. Sediment yield increased rapidly to a peak after European settlement, and has returned to a level between the peak and the pre-European value. The delivery ratio has followed a similar trend. The most general conclusion to emerge is that in this landscape both the total sediment flux and the sediment yield of the catchment have been dominated by channel erosion. This result is contrary to the findings in many parts of the world where sheet and rill erosion dominates the fluxes. The soil conservation implication of these results is clear: to control off-site effects of erosion, the focus must be on the channels.  相似文献   

16.
红水河流域输沙量变化及其影响因素   总被引:2,自引:2,他引:0  
红水河是珠江流域的主要泥沙来源,为了确定1955-2016年红水河流域输沙量变化特征及其影响因素,论文尝试采用有序聚类分析确定了流域输沙量变化的3个时期,并利用泥沙归因诊断分析计算了含沙量、径流系数和降雨因子在不同时期对输沙量变化的贡献程度,在此基础上进一步对影响输沙量变化的主要因素进行了分析。研究表明:1955-2016年间红水河流域输沙量存在1963和1991年2个突变点,在突变点前后输沙量存在明显变化,且这一变化主要受含沙量因子控制,人类活动是造成流域输沙量变化的根本原因。其中在1955-1991年间,红水河输沙量的上升主要由毁林开荒引起的流域水土流失面积增加所导致;而在1964-2016年间,水库修建使红水河流域输沙量减少了83.49%,而同时期植被覆盖度的增长贡献了输沙量减少的12.03%。将Wa TEM/SEDEM模型模拟结果与实测结果进行对比,同样发现1964-2016年输沙量变化的绝大部分(81.03%)由修建水库所贡献,而土地利用变化对输沙量减少的贡献相对较小(18.97%)。  相似文献   

17.
Slope–channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pbex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. Given the seasonal and drought-dependent variability in storage and delivery, the period of monitoring may have an important influence on the overall SDR. On the basis of these findings, this study highlights the potential importance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia.  相似文献   

18.
This paper explores the effects of hillslope mobility on the evolution of a 10-km2 drainage basin located at the northern border of the Swiss Alps. It uses geomorphologic maps and the results of numerical models that are based on the shear stress formulation for fluvial erosion and linear diffusion for hillslope processes. The geomorphic data suggest the presence of landscapes with specific cross-sectional geometries reflecting variations in the relationships between processes in channels and on hillslopes. In the headwaters, the landscape displays parabolic cross-sectional geometries indicating that mass delivered to channels by hillslope processes is efficiently removed. In the trunk stream portion, the landscape is (i) V-shaped if the downslope flux of mass is balanced by erosion in channels (i.e. if mass delivered to channels by hillslope processes is efficiently removed) and (ii) U-shaped if in-channel accumulation of hillslope-derived material occurs. This latter situation indicates a non-balanced mass flux between processes in channels and on hillslopes.Information about the spatial pattern of the postglacial depth of erosion allows comparative estimates to be made about the erosional efficiency for the various landscapes that were mapped in the study area. The data suggest that the erosional potential and sediment discharge are reduced for the situation of a non-balanced mass flux between processes in channels and on hillslopes. These findings are also supported by the numerical model. Indeed, the model results show that high hillslope mobility tends to reduce the hillslope relief and to inhibit dissection and formation of channels. In contrast, stable hillslopes tend to promote fluvial incision, and the hillslope relief increases. The model results also show that very low erosional resistance of bedrock promotes backward erosion and steepening of channel profiles in headwaters. Beyond that, the model reveals that sediment discharge generally increases with decreasing erosional resistance of bedrock, but that this increase decays exponentially with increasing magnitudes of fluvial and hillslope mobilities. Very high hillslope diffusivities even tend to reduce the erosional potential of the whole watershed. It appears that besides rates of base-level lowering, factors limiting sediment discharge might be the nonlinear relationships between processes in channels and on hillslopes.  相似文献   

19.
Rivers draining to the Great Barrier Reef are receiving increased attention with the realisation that European land use changes over the last  150 years may have increased river sediment yields, and that these may have adversely affected the reef environment. Mitigation of the effects associated with such changes is only possible if information on the spatial provenance and dominant types of erosion is known. To date, very few field-based studies have attempted to provide this information. This study uses fallout radionuclide (137Cs and 210Pbex) and geochemical tracing of river bed and floodplain sediments to examine sources over the last  250 years for Theresa Creek, a subcatchment of the Fitzroy River basin, central Queensland, Australia. A Monte Carlo style mixing model is used to predict the relative contribution of both the spatial (geological) sources and erosion types. The results indicate that sheetwash and rill erosion from cultivated basaltic land and channel erosion from non-basaltic parts of the catchment are currently contributing most sediment to the river system. Evidence indicates that the dominant form of channel erosion is gully headcut and sidewall erosion. Sheetwash and rill erosion from uncultivated land (i.e., grazed pasture/woodland) is a comparatively minor contributor of sediment to the river network. Analysis of the spatial provenance of floodplain core sediments, in conjunction with optical dating and 137Cs depth profile data, suggests that a phase of channel erosion was initiated in the late nineteenth century. With the development of land underlain by basalt in the mid-twentieth century the dominant source of erosion shifted to cultivated land, although improvements in land management practices have probably resulted in a decrease in sediment yield from cultivated areas in the later half of the twentieth century. On a basin-wide scale, because of the limited spatial extent of cultivation, channel sources are likely to be the largest contributor of sediment to the Fitzroy River. Accordingly, catchment management measures focused on reducing sediment delivery to the Great Barrier Reef should focus primarily on decreasing erosion from channel sources.  相似文献   

20.
黄土丘陵沟壑区小流域不同地类的侵蚀产沙模型   总被引:4,自引:1,他引:4  
根据黄土丘陵沟壑区的侵蚀产沙规律,通过对晋西王家沟小流域1955—1980年的多年观测资料及多次人工模拟降雨资料分析,建立了不同地类侵蚀产沙关系式,包括坡面侵蚀产沙、黄土沟坡侵蚀产沙、红土沟坡侵蚀产沙、发育沟壁侵蚀产沙、洞穴侵蚀产沙等黄土丘陵沟壑区丰富的侵蚀产沙类型。利用GIS强大的空间分析功能,从DEM数据中提取出小流域水沙汇流网络,将水沙运移引入到侵蚀产沙模型的计算之中;模型对羊道沟22次降雨的计算结果表明:坡耕地是坡面的主要泥沙来源,陡坡地在全流域侵蚀产沙中占有重要地位,水沙汇流作用对下坡的侵蚀产沙具有重要影响。同时,选用了晋西汾河上游的阳湾小流域进行了模型的推广应用,取得了较好的预测效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号