首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
本文利用NCEP/NCAR等再分析资料和CAM3.1数值模式研究了夏季欧亚中高纬遥相关型年际变率与前期春季北极海冰变化的联系及其对我国夏季降水影响的可能机制.结果表明,夏季北大西洋-欧亚中高纬地区500 hPa位势高度场自然正交分解第二模态表现为"-+-+"遥相关波列,其中格陵兰岛-北大西洋和乌拉尔山地区为异常高空槽区所控制,而欧洲和贝加尔湖附近地区则为异常高压脊区,这种波列分布与欧亚中高纬EU型遥相关型十分类似.当遥相关波列为"-+-+"("+-+-")型分布时,前期春季巴伦支海北部和巴芬湾一带海冰偏少(多),同期夏季巴伦支海北部一带海冰亦持续偏少(多),同时在我国东北北部地区、长江和黄河之间地区降水明显偏少(多).深入分析发现,巴伦支海北部和巴芬湾一带海冰偏少后,由于该地区湍流热通量明显偏强,在动力过程影响方面会形成异常Rossby波源,准定常Rossby波活动通量将向东亚地区传播,使得夏季欧亚中高纬"-+-+"遥相关波列出现.另外,海冰异常偏少后,在热动力过程影响方面,4-5月欧亚中高纬乌拉尔山-贝加尔湖以北地区积雪会出现"西少东多"偶极子型异常分布,其通过影响后期土壤湿度及下垫面热通量异常,也有利于夏季欧亚中高纬遥相关波列的维持.伴随着欧亚中高纬"-+-+"遥相关波列的出现,乌山阻塞高压偏弱,东亚槽偏浅,且亚洲副热带急流随之加强,贝加尔湖以北的副极地地区出现西风异常,东亚副热带急流北侧出现东风异常,贝加尔湖以南地区为异常反气旋控制,南下冷空气活动减弱.受到上述环流形势影响,我国东北北部地区、黄河和长江之间地区降水明显偏少.当巴伦支海北部和巴芬湾区域海冰偏多时,结论则反之.最后,基于春季海冰指数和晚春偶极子型积雪指数,我们建立了江淮流域夏季降水的预测模型,回报结果表明其对江淮流域夏季降水的年际变率具有较高的预测技巧.  相似文献   

2.
本文评估了44个CMIP5模式对东亚冬季风环流系统,特别是东亚冬季风指数及其对应的环流和气温特征的模拟能力.结果表明:CMIP5模式对地表气温和500 hPa位势高度场模拟效果最好,对200 hPa纬向风的模拟次之,而对海平面气压和850 hPa经向风的模拟相对较差.与单个模式相比,多模式集合(MME)的模拟能力要更优,其能够很好地再现西伯利亚高压、阿留申低压、东亚低层偏北风、中层东亚大槽、高层东亚西风急流以及地表气温的空间分布.不过,模拟的环流系统偏强,造成东亚地表气温总体偏低.对于东亚冬季风指数,分别选取基于300 hPa纬向风(I_(Jhun))、850 hPa风场(I_(Wang))、500 hPa位势高度(I_(Cui))、以及海平面气压(I_(Guo))定义的四个指数表征东亚冬季风强度.MME能很好地模拟I_(Cui)和I_(Wang)指数的长期变化,还能合理再现四个指数所指示的东亚冬季风环流和气温的变化特征:对应冬季风偏强年份,西伯利亚高压、阿留申低压、东亚沿岸低层北风、东亚大槽和高空西风急流加强,东亚大陆地表气温和极端低温降低,但变化的幅度比观测结果偏弱.  相似文献   

3.
本文以拉格朗日观点分析北极涛动(Arctic Oscillation,AO),也被称为北半球环状模(Northern Hemisphere Annular Mode,NAM)的指数异常事件中北极近地面冷气团的活动路径,直接地表现出了异常事件中冷气团运动的优势路径,从而反映出AO/NAM对地面气温的直接调控作用.在正AO/NAM指数异常事件中,极区近地面冷气团活动轨迹以纬向环流为主,表现为环绕北半球中高纬地区的冷气团活动轨迹特征明显.而在负AO/NAM指数异常事件中,极区冷气团以反气旋式轨迹流出极区后,流入中纬度海洋上的低气压区,这种由极区向中纬度地区流动的经向运动轨迹特点显著.并且在指数下降的中后期出现两种强烈影响欧亚大陆的运动轨迹.正负事件中冷气团运动轨迹很好地解释了传统公认的AO/NAM对北半球不同地区冬季气温的影响.特别是对中国冬季气温的影响上,正AO/NAM指数异常事件中的中低层冷气团活动有利于南支槽加深,进而为南方地区冰冻雨雪天气提供了有利条件;而负事件中的极地近地面冷气团可直接影响东北地区,形成寒潮降温天气.  相似文献   

4.
亚洲-太平洋涛动是北半球夏季亚洲大陆和北太平洋副热带地区对流层中高层扰动温度场上大尺度的东西反相的遥相关现象,其异常变化与亚洲-太平洋地区夏季风气候有着密切的联系.基于欧洲中心的ERA-40再分析资料和国家气候中心BCC_CSM1.1(m)气候系统模式多年的数值模拟结果,本文主要评估了BCC_CSM1.1(m)模式对于夏季亚洲-太平洋涛动的空间分布、指数的时间演变及与其变化所对应的亚洲地区夏季环流异常等方面的模拟能力,结果表明:BCC_CSM1.1(m)模式能够较好地模拟出北半球夏季对流层中高层扰动温度在亚-太地区中纬度存在的西高东低"跷跷板"现象;模式能够模拟出夏季亚洲-太平洋涛动指数的年际变率,但是不能模拟出该指数在20世纪60-70年代明显下降的年代际趋势;模式还能较好地模拟出亚洲-太平洋涛动高低指数年亚洲-太平洋地区夏季环流的异常:指数偏高年份,南亚高压增强,高空西风急流带和热带东风急流均加强,索马里越赤道气流增强,南亚热带季风和东亚副热带季风均增强,东亚季风低压槽加强,西北太平洋副热带高压增强,南亚和东亚北部降水增加,菲律宾地区、中国长江流域-朝鲜半岛-日本一带地区降水减少,反之亦然.  相似文献   

5.
使用中尺度数值模式WRF-ARW,针对2010年6月发生在中国东北地区一例伴随对流层高空西风急流(位于~9 km高度)演变过程出现的平流层重力波活动特征开展了数值模拟. 事件发生期间,对流层区域环流处在一个东北冷涡系统的控制之下. 模拟结果再现了该东北冷涡的发展和维持过程,以及与之相伴的高空急流的特征. 模拟结果揭示出在急流区域上空的平流层中存在显著重力波活动现象. 分析结果显示,重力波活动与急流存在紧密联系,在水平方向上,重力波呈显著的二维结构,出现在急流出口区上部并逆背景流向西传播. 功率谱分析结果表明盛行波动具有~700 km水平尺度、9~12 h时间尺度以及4~5 km垂直波长. 由于急流的存在,造成其与平流层中下部之间存在显著的水平风速垂直切变,与切变相伴的耗散使得上传的重力波动量通量数值随着高度升高而递减. 同时,在18~20 km高度间出现的西风-东风转换带极大地抑制了波动在垂直方向的传播,形成显著动量通量沉积效应. 估算结果表明,在11~20 km高度之间,这种效应的整体作用相当于对该层背景流施加强度为0.86 m·s-1·day-1的动力阻曳.  相似文献   

6.
陈宪  钟中  江静  孙源 《地球物理学报》2019,62(2):489-498
本文利用"模式手术"方法研究了西北太平洋热带气旋(TC)对东亚—西北太平洋区域大尺度环流的影响.结果表明,夏季频繁的西北太平洋TC活动导致东亚夏季风增强,季风槽加深;西太平洋副热带高压东退,位置偏北;东亚副热带高空急流强度增强,北太平洋(东亚大陆)上急流轴偏北(偏南);热带地区(副热带地区)的对流层中低层出现异常上升气流(下沉气流),并且从低纬向高纬呈现异常上升气流和异常下沉气流交替分布特征.在中国东南沿海,TC降水导致夏季降水量明显增加;而在长江中下游和华北地区,TC活动引起的异常下沉气流使夏季降水量显著减少.因此,夏季西北太平洋TC活动对东亚—西北太平洋区域气候有显著影响.  相似文献   

7.

In order to study climatology of yellow sand (Asian sand, Asian dust or Kosa) in East Asia, secular fluctuation in China, Korea and Japan in the recent 30 years was presented. The number of days with sand-dust storm at five stations in China—Hotan, Zhangye, Minqin, Jurh and Beijing, decreases a lot at the former three stations, but changed little at the latter two stations. Suggesting that the recent global warming is more evident in Xinjiang and Gansu, where the frequency of cold air invasions from the higher latitudes is decreasing. But, the eastern parts of Mongolia, inner Mongolia, and North China encounter stronger cyclones in early spring as a result of global warming. These cyclones bring cold air from higher latitudes, causing severe dust storms. Secular variation in the annual days with sand-dust storms in China and Kosa days in Korea and Japan show a parallel change with higher frequency from 1975 to 1985. This may be related to the higher frequency of La Nina years. However, different tendency was shown in the period from 1986 to 1996. Since 1996 or 1997, a sharp increase is clear, which may be caused by the developed cyclones in East Asia as well as human activities, and stronger land degradation under La Nina conditions. Anomalies of the total number of stations with Kosa days were discussed in accordance with some synoptic meteorological conditions such as the differences between Siberian anticyclone and Aleutian cyclone center at 500 hPa level during the previous winter.

  相似文献   

8.
In order to study climatology of yellow sand (Asian sand, Asian dust or Kosa) in East Asia, secular fluctuation in China, Korea and Japan in the recent 30 years was presented. The number of days with sand-dust storm at five stations in China—Hotan, Zhangye, Minqin, Jurh and Beijing, decreases a lot at the former three stations, but changed little at the latter two stations. Suggesting that the recent global warming is more evident in Xinjiang and Gansu, where the frequency of cold air invasions from the higher latitudes is decreasing. But, the eastern parts of Mongolia, inner Mongolia, and North China encounter stronger cyclones in early spring as a result of global warming. These cyclones bring cold air from higher latitudes, causing severe dust storms. Secular variation in the annual days with sand-dust storms in China and Kosa days in Korea and Japan show a parallel change with higher frequency from 1975 to 1985. This may be related to the higher frequency of La Nina years. However, different tendency was shown in the period from 1986 to 1996. Since 1996 or 1997, a sharp increase is clear, which may be caused by the developed cyclones in East Asia as well as human activities, and stronger land degradation under La Nina conditions. Anomalies of the total number of stations with Kosa days were discussed in accordance with some synoptic meteorological conditions such as the differences between Siberian anticyclone and Aleutian cyclone center at 500 hPa level during the previous winter.  相似文献   

9.
陈宪  钟中  卢伟  唐筱之 《地球物理学报》2014,57(8):2455-2464
东亚副热带高空急流强度变化和天气气候密切相关,本文利用WRF模式输出的高时空分辨率模拟资料研究了东亚副热带高空急流区的中尺度扰动特征,并结合动力学理论,揭示了急流区中尺度扰动产生的可能机制.研究表明,急流轴南侧更容易出现水平尺度为几十公里的高频扰动,这些扰动的时空分布具有波动特征.对高空急流区中出现中尺度扰动区域的拉格朗日Rossby数、Richardson数以及绝对涡度的计算发现,高空急流轴南侧中尺度扰动出现的物理机制与非地转平衡流的不稳定发展有关,并且高空急流强度的大尺度整体变化与急流区中尺度扰动变化的累积效应有关.因此,开展高空急流强度变化规律研究不能忽视其内部中尺度动力过程的作用.  相似文献   

10.
副热带急流对中国南部地区对流层中上层臭氧浓度的影响程度及地理范围目前还研究较少,且缺乏综合使用常规气象资料及卫星资料来判识对流层中上层臭氧浓度增高的方法.本文利用NCEP再分析与最终分析资料、日本GMS-5地球静止卫星水汽云图资料,以2001年3月27~29日中国南部的临安、昆明、香港臭氧探测个例为基础,结合1996年3月29日香港与2001年4月13日临安对流层中上层高浓度臭氧分布个例对副热带急流对中国南部对流层中上层臭氧浓度的影响进行了详细分析,提出根据气象要素场判识春季中国南部对流层中上层臭氧浓度增高的充分条件为根据卫星水汽图像上的暗区、高空急流入口区的左侧辐合区、高空锋区、对流层中上层≥1 PVU的向下伸展的舌状高位涡区来综合判断.本文的分析结果表明,本文个例中对流层中上层高浓度臭氧来自平流层;香港对流层中上层低浓度臭氧来自热带海洋地区.不仅臭氧垂直廓线的多个极小与极大值表明臭氧垂直分布的多尺度变化特征,而且对流层中上层PV分布以及卫星水汽图像分析也表明大气中的多尺度运动对臭氧垂直分布特征有显著影响.本文的结果表明与副热带高空急流相联系的平流层空气侵入不仅发生在中国大陆的较高纬度地区,较低纬度的昆明与香港地区也有平流层空气侵入导致对流层中上层臭氧浓度升高.  相似文献   

11.
华南前汛期降水异常与太平洋海表温度异常的关系   总被引:9,自引:0,他引:9       下载免费PDF全文
利用近50年华南地区站点逐日降水观测资料和全球大气、海洋分析资料,分析了华南前汛期降水异常的变化特征及其与太平洋海温异常的联系.结果表明,近50年来华南前汛期降水总体呈现减少趋势.影响华南前汛期降水异常的太平洋海温异常型是一个类似于ENSO的西太平洋暖池模态,即显著海温异常区域位于西太平洋暖池.西太平洋暖池区域(120°E-180°E,20°S-20°N)前期冬季海温异常同华南前汛期降水存在显著的负相关关系,是具有预报意义的海温关键区.该关键区海温异常影响华南前汛期降水的可能物理过程是:当前期冬季暖池异常偏暖时,菲律宾周围地区对流活动加强,导致Walker环流及东亚太平洋中低纬局地Hadley环流增强;该异常通过影响东亚-太平洋遥相关波列,使前汛期期间西太平洋副高加强西伸,脊线位置偏北,同时副热带西风急流减弱北退.随着Hadley环流上升支的增强,东亚副热带地区下沉运动也增强了,华南地区对流活动受到抑制.而且由于副高的增强,经过其北侧向华南地区的西南水汽输送辐合也减弱了,因此前汛期降水偏少.冷海温年的情形则相反,华南前汛期降水偏多.近50年来华南前汛期降水总体呈现趋势性减少正是由于前冬西太平洋暖池趋势性增暖所致.  相似文献   

12.
Kamchatka and the Kuril Islands are home to 36 active volcanoes with yearly explosive eruptions that eject ash to heights of 8 to 15 km above sea level, posing hazards to jet planes. In order to reduce the risk of planes colliding with ash clouds in the north Pacific, the KVERT team affiliated with the Institute of Volcanology and Seismology of the Far East Branch of the Russian Academy of Sciences (IV&S FEB RAS) has conducted daily satellite-based monitoring of Kamchatka volcanoes since 2002. Specialists at the IV&S FEB RAS, Space Research Institute of the Russian Academy of Sciences (SRI RAS), the Computing Center of the Far East Branch of the Russian Academy of Sciences (CC FEB RAS), and the Far East Planeta Center of Space Hydrometeorology Research (FEPC SHR) have developed, introduced into practice, and were continuing to refine the VolSatView information system for Monitoring of Volcanic Activity in Kamchatka and on the Kuril Islands during the 2011–2015 period. This system enables integrated processing of various satellite data, as well as of weather and land-based information for continuous monitoring and investigation of volcanic activity in the Kuril–Kamchatka region. No other information system worldwide offers the abilities that the Vol-SatView has for studies of volcanoes. This paper shows the main abilities of the application of VolSatView for routine monitoring and retrospective analysis of volcanic activity in Kamchatka and on the Kuril Islands.  相似文献   

13.
Extending across three major plateaus,namely the Qinghai-Tibetan Plateau,the Inner Mongolia-Xinjiang Plateau and the Loess Plateau,Northwest China has the complex terrain and spatio-temporal climate variations,and is affected by the interactions among different circulation systems,such as the summer monsoon,the westerlies and the plateau monsoon.The understanding of the climate variability,as well as its characteristics and evolution mechanisms in this area has been limited so far.In this paper,the precipitation characteristics and mechanisms in the eastern and western parts of Northwest China during the flood season are compared and analyzed based on the data from 192 national meteorological observational sites in Northwest China in 1961-2016.The results show that,divided by the northern boundary of the East Asian summer monsoon,there are huge differences in the precipitation variation characteristics between the eastern and western parts.The inter-annual variations,interdecadal variations and total trends in the two parts all show a significant seesaw phenomenon.Moreover,it is found that the seesaw phenomenon of precipitation variation is closely related to the opposite variation between the East Asian summer monsoon index(MI) and the westerly circulation index(WI).In addition,the inverse variations on different time scales are only related to the contributions of precipitation at specific grades.Besides,in the two matching patterns of precipitation in the seesaw phenomenon,the middle and high latitudes are occupied by the "high-low-high" wave trains in the precipitation increases in the east of Northwest China(ENWC) and decreases in the west of Northwest China(WNWC) pattern,meaning precipitation increases in ENWC and decreases in WNWC.Whereas the opposite "low-high-low" wave trains at 500 hPa height are observed in the middle and high latitudes in the WH-EA pattern at 500 hPa height,meaning precipitation increases in WNWC and decreases in ENWC.Thus,the atmosphere circulation situation with two wave train types can support both the precipitation seesaw phenomenon and the opposite variation between MI and WI.Moreover,the seesaw phenomenon is shown to be related to the separate or joint effects of the South Asian High,ENSO and the plateau heating on the common but opposite effect on the summer monsoon and the westerlies,in which the South Asian High probably plays a more critical role.This study could deepen the scientific understanding of precipitation mechanisms and improve the weather forecast technology in Northwest China during the flood season.  相似文献   

14.
In order to study climatology of yellow sand (Asian sand, Asian dust or Kosa) in EastAsia, secular fluctuation in China, Korea and Japan in the recent 30 years was presented. Thenumber of days with sand-dust storm at five stations in China-Hotan, Zhangye, Minqin, Jurhand Beijing, decreases a lot at the former three stations, but changed little at the latter two stations.Suggesting that the recent global warming is more evident in Xinjiang and Gansu, where the fre-quency of cold air invasions from the higher latitudes is decreasing. But, the eastern parts ofMongolia, inner Mongolia, and North China encounter stronger cyclones in early spring as a resultof global warming. These cyclones bring cold air from higher latitudes, causing severe duststorms. Secular variation in the annual days with sand-dust storms in China and Kosa days in Ko-rea and Japan show a parallel change with higher frequency from 1975 to 1985. This may be re-lated to the higher frequency of La Nina years. However, different tendency was shown in theperiod from 1986 to 1996. Since 1996 or 1997, a sharp increase is clear, which may be caused bythe developed cyclones in East Asia as well as human activities, and stronger land degradationunder La Nina conditions. Anomalies of the total number of stations with Kosa days were dis-cussed in accordance with some synoptic meteorological conditions such as the differences be-tween Siberian anticyclone and Aleutian cyclone center at 500 hPa level during the previous winter.  相似文献   

15.
Stream temperature, an important measure of ecosystem health, is expected to be altered by future changes in climate and land use, potentially leading to shifts in habitat distribution for aquatic organisms dependent on particular temperature regimes. To assess the sensitivity of stream temperature to change in a region where such a shift has the potential to occur, we examine the variability of and controls on the direct relationship between air and water temperature across the state of Pennsylvania. We characterized the relationship between air and stream temperature via linear and nonlinear regression for 57 sites across Pennsylvania at daily and weekly timescales. Model fit (r2) improved for 92% (daily) and 65% (weekly) of sites for nonlinear versus linear relationships. Fit for weekly versus daily regression analysis improved by 0·08 for linear and 0·06 for nonlinear regression relationships. To investigate the mechanisms controlling stream temperature sensitivity to environmental change, we define ‘thermal sensitivity’ as the sensitivity of stream temperature of a given site to change in air temperature, quantified as the slope of the regression line between air and stream temperature. Air temperature accounted for 60–95% of the daily variation in stream temperature for sites at or above a Strahler stream order (SO) of 3, with thermal sensitivities ranging from low (0·02) to high (0·93). The sensitivity of stream temperature to air temperature is primarily controlled by stream size (SO) and baseflow contribution. Together, SO and baseflow index explained 43% of the variance in thermal sensitivity across the state, and 59% within the Susquehanna River Basin. In small streams, baseflow contribution was the major determinant of thermal sensitivity, with increasing baseflow contributions resulting in decreasing sensitivity values. In large streams, thermal sensitivity increased with stream size, as a function of accumulated heat throughout the stream network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
利用NCEP/NCAR 1958~1999年月平均再分析数据集,本文分析了7~8月东亚大气环流季节演变异常,包括提前和延迟这两种情形,及其与沿副热带西风急流的内部动力学过程的联系,比较了与气候季节演变进程的差异.结果表明,存在着两个地理位置固定的遥相关型,探讨了二者位相与副热带西风急流的关系,讨论了此类波列的出现与内部动力学过程的可能联系.  相似文献   

17.
一、前言 中纬度地区电离层Es的成因与影响因素是一复杂的问题。远东地区Es既多又强,其它电离层现象也有一些特色,本文在文献[9]的基础上,从分析原始频高图入手,对远东地区夜间f0Es剧增与地磁K指数的关系作了统计研究,发现两者之间关系甚为密切,即地磁K指数的突然变化伴随着夜间Es层临界频率f0Es的剧烈增加。  相似文献   

18.
Summary In connection with an invasion of cold air from the north over the Sudan in April 1973, a major dust storm or rather, a dust storm complex, passed over most of the Sudan.The weather development during this dust storm period is described and illustrated in detail with the aid of synoptic weather and visibility maps, as well as time sections based on SYNOP, METAR, and radiosonde reports from Sudanese meteorological stations.With the aid of the synoptic maps it has been possible to follow the development and movement of the dust storm complex and its relation to the cold fronts preceding the cold air invasion, to the intertropical front (ITF), and to thunderstorm highs which developed within the monsoon air south of the ITF during the initial stage. It was also possible to follow the latitudinal displacements of the ITF, which were caused by the weather systems and associated pressure changes in the harmattan and the monsoon air masses on both sides of it.At the beginning of the dust storm the cold fronts from the north were fairly distinct, but they gradually lost their frontal character. The cold air advection, however, gave rise to increased instability in the lower atmospheric layers, which facilitated the development of dust storms. Eventually the cold fronts merged with the ITF, which, on the other hand, constituted a sharp demarcation line between the harmattan and the monsoon air masses during the whole period, particularly with regard to the air borne dust. From the time sections and the synoptic maps it is evident that the discrepancy in concentration of air borne dust was very sharp along the ITF, particularly during the latter part of the dust storm period. When the ITF slowed down and eventually approached its southernmost position and, simultaneously, the cold air invasion ceased, the dust accumulated in part in the southeastern areas and was in part drained out of the Sudan to the southwest, passing the Central African Republic.  相似文献   

19.
Mani  A.  Sreedharan  C. R. 《Pure and Applied Geophysics》1973,106(1):1180-1191
The latitudinal and temporal variations in the vertical profiles of ozone over the Indian subcontinent are discussed. In the equatorial atmosphere represented by Trivandrum (8°N) and Poona (18°N), while tropospheric ozone shows marked seasonal variations, the basic pattern of the vertical distribution of ozone in the stratosphere remains practically unchanged throughout the year, with a maximum at about 28 to 26 km and a minimum just below the tropopause. The maximum total ozone occurs over Trivandrum in the summer monsoon season and the latitudinal anomaly observed over the Indian monsoon area at this time is explained as arising from the horizontal transport of ozone-rich stratospheric air from over the thermal equator to the southern regions.In the higher latitudes represented by New Delhi (28°N), the maximum occurs at 23 km. Delhi, which lies in the temperate regime in winter, shows marked day-to-day variations in association with western disturbances and the strong westerly jet stream that lies over north and central India at this time.Although the basic pattern of the vertical distribution of ozone in the equatorial atmosphere is generally the same in all seasons, significant though small changes occur in the lower stratosphere and in the troposphere. There are small perturbations in the ozone and temperature structures, distinct ozone maxima being always associated with temperature inversions. There are also large perturbances not related to temperature, ozone-depleted regions normally reflecting a stratification of either destructive processes or materials such as dust layers or clouds at these levels. Particularly interesting are the upper tropospheric levels just below the tropopause where the ozone concentration is consistently the smallest, in all seasons and at all places where soundings have been made in India.  相似文献   

20.
Summary The correlation between the sunspot cycle and the sporadicE-layer ionization is investigated at middle latitudes. Higher mean values off 0Es occur generally with higher sunspot numbers. Some evidence for a phase-shift between long term time-variation in sunspot numbers andf 0Es is obtained. The solar cycle variation ofEs is somewhat larger over the Far East. Regarding the behaviour of the time-development ofEs events in diurnal variation, an interpretation is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号