首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The normal moveout correction is important to long-offset observations, especially deep layers. For isotropic media, the conventional two-term approximation of the normal moveout function assumes a small offset-to-depth ratio and thus fails at large offset-to-depth ratios. We approximate the long-offset moveout using the Padé approximation. This method is superior to typical methods and flattens the seismic gathers over a wide range of offsets in multilayered media. For a four-layer model, traditional methods show traveltime errors of about 5 ms for offset-to-depth ratio of 2 and greater than 10 ms for offset-to-depth ratio of 3; in contrast, the maximum traveltime error for the [3, 3]-order Padé approximation is no more than 5 ms at offset-to-depth ratio of 3. For the Cooper Basin model, the maximum offset-to-depth ratio for the [3, 3]-order Padé approximation is typically double of those in typical methods. The [7, 7]-order Padé approximation performs better than the [3, 3]-order Padé approximation.  相似文献   

2.
近年来,长偏移距排列逐渐被大量应用到海上勘探。传统AVO分析都是小入射角,对于长偏移距数据来说有很大不足。为了探讨拓宽AVO分析的研究范围,本文推导了长偏移距时P波反射系数的一种近似公式,并讨论了其精确性。本文的结果和广泛应用的Shuey公式相类似,Shuey公式可以看作本文结果在小入射角情况的简化。  相似文献   

3.
近年来,长偏移距排列逐渐被大量应用到海上勘探。传统AVO分析都是小入射角,对于长偏移距数据来说有很大不足。为了探讨拓宽AVO分析的研究范围,本文推导了长偏移距时P波反射系数的一种近似公式,并讨论了其精确性。本文的结果和广泛应用的Shuey公式相类似,Shuey公式可以看作本文结果在小入射角情况的简化。  相似文献   

4.
The method of common reflection surface (CRS) extends conventional stacking of seismic traces over offset to multidimensional stacking over offset‐midpoint surfaces. We propose a new form of the stacking surface, derived from the analytical solution for reflection traveltime from a hyperbolic reflector. Both analytical comparisons and numerical tests show that the new approximation can be significantly more accurate than the conventional CRS approximation at large offsets or at large midpoint separations while using essentially the same parameters.  相似文献   

5.
6.
For converted waves, stacking as well as AVO analysis requires a true common reflection point gather which, in this case, is also a common conversion point (CCP) gather. The coordinates of the conversion points for PS or SP waves, in a single homogeneous layer can be calculated exactly as a function of the offset, the reflector depth and the ratio vp/vs. An approximation of the conversion point on a dipping interface as well as for a stack of parallel dipping layers is given. Numerical tests show that the approximation can be used for offsets smaller than the depth of the reflector under consideration. The traveltime of converted waves in horizontal layers can be expanded into a power series. For small offsets a two-term truncation of the series yields a good approximation. This approximation can also be used in the case of dipping reflectors if a correction is applied to the traveltimes. This correction can be calculated from the approximated conversion point coordinates.  相似文献   

7.
A simple and accurate traveltime approximation is important in many applications in seismic data processing, inversion and modelling stages. Generalized moveout approximation is an explicit equation that approximates reflection traveltimes in general two-dimensional models. Definition of its five parameters can be done from properties of finite offset rays, for general models, or by explicit calculation from model properties, for specific models. Two versions of classical finite-offset parameterization for this approximation use traveltime and traveltime derivatives of two rays to define five parameters, which makes them asymmetrical. Using a third ray, we propose a balance between the number of rays and the order of traveltime derivatives. Our tests using different models also show the higher accuracy of the proposed method. For acoustic transversely isotropic media with a vertical symmetry axis, we calculate a new moveout approximation in the generalized moveout approximation functional form, which is explicitly defined by three independent parameters of zero-offset two-way time, normal moveout velocity and anellipticity parameter. Our test shows that the maximum error of the proposed transversely isotropic moveout approximation is about 1/6 to 1/8 of that of the moveout approximation that had been reported as the most accurate approximation in these media. The higher accuracy is the result of a novel parameterization that do not add any computational complexity. We show a simple example of its application on synthetic seismic data.  相似文献   

8.
零炮检距数据在海洋地震资料处理中有很多优势和用途,然而,受海洋水平拖缆地震采集作业方式的限制,接收数据的最小炮检距一般在200 m左右,小于该炮检距的数据是无法直接获得的.通常的做法是通过对较大炮检距数据进行动校,通过外推来变相获得零炮检距(包括小炮检距)数据,其外推的精度会受到地震资料信噪比、动校正速度的精度等因素影响,并且保幅性较差.本文通过一种基于Kirchhoff真振幅偏移和反偏移串联的技术,在反偏移过程中改变观测系统,有效实现了大炮检距反射地震数据向零炮检距(包括小炮检距)数据之间的转换,且很好地保持了零炮检距(包括小炮检距)数据的振幅特性.同时,经偏移-反偏移串联处理后,有效压制了地震数据中的随机噪声,地震资料信噪比和成像精度均得到显著提高.  相似文献   

9.
一种改进的地震反射层析成像方法   总被引:8,自引:4,他引:4       下载免费PDF全文
针对复杂介质的地震反射走时层析成像存在数据拾取困难问题,本文提出了一种新的地震反射层析成像速度模型建立方法,该方法用速度和地震射线走时描述模型,用地震反射波走时、地震波在源点和接收点处的传播方向信息反演模型.为提高反演的稳定性和计算效率,引入了Hamilton函数描述射线,在相空间计算反演所需的射线路径和目标函数对模型参数的导数,对理论模型和实际地震资料进行了试算,试算表明该方法对复杂介质具有较强的适应能力.  相似文献   

10.
TI介质局部角度域射线追踪与叠前深度偏移成像   总被引:1,自引:1,他引:0       下载免费PDF全文
研究与实践表明,对于长偏移距、宽方位地震数据,忽略各向异性会明显降低成像质量,影响储层预测与描述的精度.针对典型的横向各向同性(TI)介质,本文面向深度域构造成像与偏移速度分析的需要,研究基于射线理论的局部角度域叠前深度偏移成像方法.它除了像传统Kirchhoff叠前深度偏移那样输出成像剖面和炮检距域的共成像点道集,还遵循地震波在成像点处的局部方向特征、基于扩展的脉冲响应叠加原理获得入射角度域和照明角度域的成像结果.为了方便快捷地实现TI介质射线走时与局部角度信息的计算,文中讨论和对比了两种改进的射线追踪方法:一种采用从经典各向异性介质射线方程演变而来的由相速度表征的简便形式;另一种采用由对称轴垂直的TI(即VTI)介质声学近似qP波波动方程推导出来的射线方程.文中通过坐标旋转将其扩展到了对称轴倾斜的TI(即TTI)介质.国际上通用的理论模型合成数据偏移试验表明,本文方法既适用于复杂构造成像,又可为TI介质深度域偏移速度分析与模型建立提供高效的偏移引擎.  相似文献   

11.
VTI介质长偏移距非双曲动校正公式优化   总被引:21,自引:7,他引:14       下载免费PDF全文
常规Alkhalifah动校正公式精度低,不能精确描述各向异性介质长偏移距地震反射同相轴的时距关系.本文以提高VTI介质长偏移距地震资料动校正公式的精度为目标,在分析VTI介质常规动校正方程的基础上,根据误差最小原理建立优化校正系数图版,实现对常规动校正公式大偏移距误差的修正,建立最优化校正Alkhalifah动校正方程,实现了对VTI介质长偏移距地震资料常规动校正方程的改进.之后由Fomel群速度公式导出高精度VTI模型长偏移距时距函数,提出了高精度VTI介质长偏移距地震资料动校正方程.将以上的动校正方程用于各向异性参数反演,模型计算表明最优化校正Alkhalifah动校正方程的反演精度是常规长偏移距动校正方程反演精度的2~4倍,高精度动校正方程的反演精度是常规动校正方程反演精度的2~8倍.  相似文献   

12.
The well‐known asymptotic fractional four‐parameter traveltime approximation and the five‐parameter generalised traveltime approximation in stratified multi‐layer transversely isotropic elastic media with a vertical axis of symmetry have been widely used for pure‐mode and converted waves. The first three parameters of these traveltime expansions are zero‐offset traveltime, normal moveout velocity, and quartic coefficient, ensuring high accuracy of traveltimes at short offsets. The additional parameter within the four‐parameter approximation is an effective horizontal velocity accounting for large offsets, which is important to avoid traveltime divergence at large offsets. The two additional parameters in the above‐mentioned five‐parameter approximation ensure higher accuracy up to a given large finite offset with an exact match at this offset. In this paper, we propose two alternative five‐parameter traveltime approximations, which can be considered extensions of the four‐parameter approximation and an alternative to the five‐parameter approximation previously mentioned. The first three short‐offset parameters are the same as before, but the two additional long‐offset parameters are different and have specific physical meaning. One of them describes the propagation in the high‐velocity layer of the overburden (nearly horizontal propagation in the case of very large offsets), and the other characterises the intercept time corresponding to the critical slowness that includes contributions of the lower velocity layers only. Unlike the above‐mentioned approximations, both of the proposed traveltime approximations converge to the theoretical (asymptotic) linear traveltime at the limit case of very large (“infinite”) offsets. Their accuracy for moderate to very large offsets, for quasi‐compressional waves, converted waves, and shear waves polarised in the horizontal plane, is extremely high in cases where the overburden model contains at least one layer with a dominant higher velocity compared with the other layers. We consider the implementation of the proposed traveltime approximations in all classes of problems in which the above‐mentioned approximations are used, such as reflection and diffraction analysis and imaging.  相似文献   

13.
The design of reflection traveltime approximations for optimal stacking and inversion has always been a subject of much interest in seismic processing. A most prominent role is played by quadratic normal moveouts, namely reflection traveltimes around zero-offset computed as second-order Taylor expansions in midpoint and offset coordinates. Quadratic normal moveouts are best employed to model symmetric reflections, for which the ray code in the downgoing direction coincides with the ray code in the upgoing direction in reverse order. Besides pure (non-converted) primaries, many multiply reflected and converted waves give rise to symmetric reflections. We show that the quadratic normal moveout of a symmetric reflection admits a natural decomposition into a midpoint term and an offset term. These, in turn, can be be formulated as the traveltimes of the one-way normal (N) and normal-incidence-point (NIP) waves, respectively. With the help of this decomposition, which is valid for propagation in isotropic and anisotropic elastic media, we are able to derive, in a simple and didactic way, a unified expression for the quadratic normal moveout of a symmetric reflection in its most general form in 3D. The obtained expression allows for a direct interpretation of its various terms and fully encompasses the effects of velocity gradients and Earth surface topography.  相似文献   

14.
I introduce a new explicit form of vertical seismic profile (VSP) traveltime approximation for a 2D model with non‐horizontal boundaries and anisotropic layers. The goal of the new approximation is to dramatically decrease the cost of time calculations by reducing the number of calculated rays in a complex multi‐layered anisotropic model for VSP walkaway data with many sources. This traveltime approximation extends the generalized moveout approximation proposed by Fomel and Stovas. The new equation is designed for borehole seismic geometry where the receivers are placed in a well while the sources are on the surface. For this, the time‐offset function is presented as a sum of odd and even functions. Coefficients in this approximation are determined by calculating the traveltime and its first‐ and second‐order derivatives at five specific rays. Once these coefficients are determined, the traveltimes at other rays are calculated by this approximation. Testing this new approximation on a 2D anisotropic model with dipping boundaries shows its very high accuracy for offsets three times the reflector depths. The new approximation can be used for 2D anisotropic models with tilted symmetry axes for practical VSP geometry calculations. The new explicit approximation eliminates the need of massive ray tracing in a complicated velocity model for multi‐source VSP surveys. This method is designed not for NMO correction but for replacing conventional ray tracing for time calculations.  相似文献   

15.
VTI介质P波非双曲时差分析   总被引:5,自引:3,他引:5       下载免费PDF全文
具有垂直对称轴的横向各向同性介质模型(VTI)是目前各向异性理论研究和多波多分量地震资料叠前成像处理中最常用的一种各向异性模型.VTI介质中反射 P波时距曲线一般不再是双曲线.基于不同的相速度近似公式会得到不同的时距关系式.文中对几种典型的非双曲时距曲线与射线追踪得到的准确时距曲线在不同各向异性强度下进行了对比,结果表明Muir等和Stovas等提出的非双曲时距公式由于过高地考虑了横波垂直速度的影响与精确的时距曲线有很大偏差;Tsvankin等提出的弱各向异性非双曲时距公式在ε-δ<0时误差增大;Alkhalifah等提出的非双曲时距公式在大炮检距任意各向异性强度下都具有较高的精度,适于在实际资料处理中应用.  相似文献   

16.
起伏地形下的高精度反射波走时层析成像方法   总被引:1,自引:1,他引:0       下载免费PDF全文
全球造山带及中国大陆中西部普遍具有强烈起伏的地形条件.复杂地形条件下的地壳结构成像问题像一面旗帜引领了当前矿产资源勘探和地球动力学研究的一个重要方向.深地震测深记录中反射波的有效探测深度可达全地壳乃至上地幔顶部,而初至波通常仅能探测上地壳浅部.为克服和弥补初至波探测深度的不足,本文基于前人对复杂地形条件下初至波成像的已有研究成果,采用数学变换手段将笛卡尔坐标系的不规则模型映射到曲线坐标系的规则模型,并将快速扫描方法与分区多步技术相结合,发展了反射波走时计算和射线追踪的方法.进而利用反射波走时反演,实现起伏地形下高精度的速度结构成像,从而为起伏地形下利用反射波数据高精度重建全地壳速度结构提供了一种全新方案.数值算例从正演计算精度、反演中初始模型依赖性、反演精度、纵横向分辨率以及抗噪性等方面验证了算法的正确性和可靠性.  相似文献   

17.
The generalized Radon transform (GRT) inversion contains an explicit relationship between seismic amplitude variations, the reflection angle and the physical parameters which can be used to describe the earth efficiently for inversion purposes. Using this relationship, we have derived parametrizations for acoustic and P–P scattering so that the variations in seismic amplitude with reflection angle for each parameter are sufficiently independent. These parametrizations show that small offset and large offset amplitudes are related to different physical parameters. In the case of acoustic scattering, the small-offset amplitudes are related to impedance variations while large-offset amplitudes are related to velocity variations. A similar result has been established for P–P scattering. The Born approximation (which is used to derive the GRT inversion) does not correctly predict the amplitude due to velocity variations at large offsets, and thus the inversion of velocity is not as satisfactory as the inversion of impedance.  相似文献   

18.
Seismic amplitude variations with offset contain information about the elastic parameters. Prestack amplitude analysis seeks to extract this information by using the variations of the reflection coefficients as functions of angle of incidence. Normally, an approximate formula is used for the reflection coefficients, and variations with offset of the geometrical spreading and the anelastic attenuation are often ignored. Using angle of incidence as the dependent variable is also computationally inefficient since the data are recorded as a function of offset. Improved approximations have been derived for the elastic reflection and transmission coefficients, the geometrical spreading and the complex travel-time (including anelastic attenuation). For a 1 D medium, these approximations are combined to produce seismic reflection amplitudes (P-wave, S-wave or converted wave) as a Taylor series in the offset coordinate. The coefficients of the Taylor series are computed directly from the parameters of the medium, without using the ray parameter. For primary reflected P-waves, dynamic ray tracing has been used to compute the offset variations of the transmission coefficients, the reflection coefficient, the geometrical spreading and the anelastic attenuation. The offset variation of the transmission factor is small, while the variations in the geometrical spreading, absorption and reflection coefficient are all significant. The new approximations have been used for seismic modelling without ray tracing. The amplitude was approximated by a fourth-order polynomial in offset, the traveltime by the normal square-root approximation and the absorption factor by a similar expression. This approximate modelling was compared to dynamic ray tracing, and the results are the same for zero offset and very close for offsets less than the reflector depth.  相似文献   

19.
基于地震波反射系数近似公式的叠前反演是油气勘探的重要工具.本文在已有研究的基础上,推导了一个改进的射线参数域地震纵波反射系数近似方程.该方程建立了地震纵波反射系数与纵波阻抗和横波阻抗的非线性关系,在中、小角度的范围内较现有的反射系数线性近似公式精度更高.另外,由于该方程仅包含纵波和横波阻抗反射系数项,因此基于新方程的反演能够有效地降低同步反演纵波速度、横波速度、密度三个参数的不适定性.在此基础上,结合广义线性反演法(GLI)理论和贝叶斯理论,相应地发展了一种叠前地震同步反演方法.模型测试和实际资料的应用表明,基于新方程的反演方法能够利用有限角度(偏移距)的数据稳定地反演纵波和横波阻抗,由于在反演过程中,不需要假设纵横波速度为常数,因此该方法还能有效地提高反演结果的精度.  相似文献   

20.
The refraction convolution section (RCS) is a new method for imaging shallow seismic refraction data. It is a simple and efficient approach to full‐trace processing which generates a time cross‐section similar to the familiar reflection cross‐section. The RCS advances the interpretation of shallow seismic refraction data through the inclusion of time structure and amplitudes within a single presentation. The RCS is generated by the convolution of forward and reverse shot records. The convolution operation effectively adds the first‐arrival traveltimes of each pair of forward and reverse traces and produces a measure of the depth to the refracting interface in units of time which is equivalent to the time‐depth function of the generalized reciprocal method (GRM). Convolution also multiplies the amplitudes of first‐arrival signals. To a good approximation, this operation compensates for the large effects of geometrical spreading, with the result that the convolved amplitude is essentially proportional to the square of the head coefficient. The signal‐to‐noise (S/N) ratios of the RCS show much less variation than those on the original shot records. The head coefficient is approximately proportional to the ratio of the specific acoustic impedances in the upper layer and in the refractor. The convolved amplitudes or the equivalent shot amplitude products can be useful in resolving ambiguities in the determination of wave speeds. The RCS can also include a separation between each pair of forward and reverse traces in order to accommodate the offset distance in a manner similar to the XY spacing of the GRM. The use of finite XY values improves the resolution of lateral variations in both amplitudes and time‐depths. The use of amplitudes with 3D data effectively improves the spatial resolution of wave speeds by almost an order of magnitude. Amplitudes provide a measure of refractor wave speeds at each detector, whereas the analysis of traveltimes provides a measure over several detectors, commonly a minimum of six. The ratio of amplitudes obtained with different shot azimuths provides a detailed qualitative measure of azimuthal anisotropy and, in turn, of rock fabric. The RCS facilitates the stacking of refraction data in a manner similar to the common‐midpoint methods of reflection seismology. It can significantly improve S/N ratios.Most of the data processing with the RCS, as with the GRM, is carried out in the time domain, rather than in the depth domain. This is a significant advantage because the realities of undetected layers, incomplete sampling of the detected layers and inappropriate sampling in the horizontal rather than the vertical direction result in traveltime data that are neither a complete, an accurate nor a representative portrayal of the wave‐speed stratification. The RCS facilitates the advancement of shallow refraction seismology through the application of current seismic reflection acquisition, processing and interpretation technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号