首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative analysis of coseismic and postseismic variations of the Earth’s gravity field is carried for the regions of three giant earthquakes (Andaman-Sumatra, December 26, 2004, magnitude M w = 9.1; Maule-Chile, February 27, 2010, M w = 8.8, and Tohoku-Oki, March 11, 2011, M w = 9.0) with the use of GRACE satellite data. Within the resolution of GRACE models, the coseismic changes of gravity caused by these seismic events manifest themselves by large negative anomalies located in the rear of the subduction zone. The real data are compared with the synthetic anomalies calculated from the rupture surface models based on different kinds of ground measurements. It is shown that the difference between the gravity anomalies corresponding to different rupture surface models exceeds the uncertainties of the GRACE data. There-fore, the coseismic gravity anomalies are at least suitable for rejecting part of the models that are equivalent in the ground data. Within the first few months after the Andaman-Sumatra earthquake, a positive gravity anomaly started to grow above the deep trench. This anomaly rapidly captured the area of the back-arc basin and largely compensated the negative coseismic anomaly. The processes of viscoelastic stress relaxation do not fully allow for these rapid changes of gravity. According to the calculations, even with a sufficiently low viscosity of the upper mantle, relaxation only covers about a half of the observed change of the field. In order to explain the remaining temporal variations, we suggested the process of downdip propagation of the coseismic rupture surface. The feasibility of such a process was supported by numerical simulations. The sum of the gravity anomalies caused by this process and the anomaly generated by the processes of viscoelastic relaxation accounts well for the observed changes of the gravity field in the region of the earthquake. The similar postseismic changes of gravity were also detected for the region of the Tohoku-Oki earthquake. Just as in the case discussed above, this earthquake was also followed by a rapid growth of a positive postseismic anomaly, which partially counterbalanced the negative coseismic anomaly. The time variations of the gravity field in the region of the Maule-Chile earthquake differ from the pattern of changes observed in the island arcs described above. The postseismic gravity variations are in this case concentrated in a narrower band above the deep trench and shelf, and they do not spread over the continental territory, where the negative coseismic anomaly is located. These discrepancies reflect the difference in the geodynamical settings of the studied earthquakes.  相似文献   

2.
The spatial-temporal variations in localization of the sources of earthquakes with H ≥ 14 km are reviewed for the Garm region. The uneven distribution of such earthquakes is related to the block structure: their amount is higher in the weakened zones rather than in blocks. Three weakened zones are characterized by higher activity of deepened seismicity, which varies in time and increases before the earthquakes with K ≥ 12.5. The temporal variations in distribution of earthquake sources with depth allow a suggestion of the relation of the velocity of the Earth’s rotation and activity of deepened seismicity.  相似文献   

3.
The effect of ionospheric wind on the gravity wave propagation is studied. These waves arise in the ionosphere due to intensification of their sources near the Earth’s surface during enhanced seismic activity. The influence of the wind on these waves is connected with the Ampere’s force that produces the ion-drag force acting on the atmosphere. This results in the occurrence of the discrete wave spectrum the maximum of which increases in proportion to the numbers of the natural scale. Furthermore, these waves are amplified during propagation from the source region in the direction perpendicular to the wind direction. These peculiarities of the gravity waves can be used for monitoring of seismic activity based on the ionosphere sounding.  相似文献   

4.
This work describes the different sets of instruments and methodic approaches for testing the models of gravity anomalies by repeated airborne gravimetric surveys in the polar cap regions of the Earth. The survey design including the specifications for flying the survey profiles and the arrangement of the base stations in polar areas is described, and the necessary modifications of the airborne gravity metering complexes for high-latitude measurements are suggested.  相似文献   

5.
This article studies long-period variations in the Earth’s upper atmosphere density over several solar activity cycles, using long-term data on the evolution of motion of three artificial satellites (Intercosmos-19, Meteor-1-2, and Cosmos-1154) in orbits at heights of 400–1000 km. The time interval when the satellites were in the orbits covered three solar activity cycles (partly the 21st, completely the 22nd, and partly the 23rd). It is found that the variations in the average density of the upper atmosphere at heights of 400–600 km in the 1980–2000 period were governed by the changes in the solar activity level.  相似文献   

6.
The possibility of contactless remote estimation of the temperature in the Earth’s interior from surface magnetotelluric (MT) measurements is examined. The neuronet analysis of MT and temperature measurements in the Bishkek geodynamic research area (the Northern Tien Shan) showed that a contactless electromagnetic geothermometer can in principle be realized. An optimal method including MT measurements and treatment of available thermograms is developed. The method minimizes uncertainties of the remote temperature estimation. The use of six to eight thermograms for calibration of electromagnetic data is shown to provide a 12% relative error of prediction, and a priori geological information available for the region under study can reduce this error. Areas of practical application of a contactless electromagnetic geothermometer are outlined.  相似文献   

7.
Nonlinear effects in seismic wave propagation are analyzed to determine the mechanical rigidity of different-order faults that thread the tectonic structures in the central part of the East European platform (Moscow syneclise and Voronezh Crystalline Massif) and the fault zones of the Balapan and Degelen mountain regions in Kazakhstan (the Degelen magmatic node in the Central Chingiz zone). The dependency of the rigidity of the fault zone on the fault’s length is obtained. The rigidity of the tectonic structures is found to experience well-expressed temporal variations with periods of 13–15 days, 27–32 days, and about one year. In the different-order fault zones, the amplitudes of both normal k n and the shear k s rigidity for semimonthly, monthly, and annual variations can span a factor of 1.3, 1.5, and 2.5, respectively.  相似文献   

8.
The modeling results are presented on the annual dynamics of seismicity in the northeastern segment of the Amur plate, which are obtained from statistical studies of the number of earthquakes with magnitudes 2 ≤ М ≤ 6 in different phases of variations in the Earth’s rotation rate. We have calculated a degree of relationship between the observed seismicity variations and phases of decrease and increase in the Earth’s rotation rate for the magnitude ranges between 2 ≤ М < 4 and 4 ≤ М < 5 using rank correlation methods. It has been established that epicenters of earthquakes with magnitudes 5 ≤ М ≤ 6 are spatially grouped into a sequence of homogeneous equally spaced, 3.5°–4°, on average, east-westerly oriented clusters.  相似文献   

9.
We performed an analysis of mean daily variations in the ΔEz atmospheric electric field at the Hornsund (located near the polar cap boundary) and Kakioka (located at near-equatorial latitudes) observatories under magnetically quiet and weakly disturbed conditions. At both observatories, the mean daily variations in ΔEz were found to be mainly controlled by the location of the observation point with respect to the focuses of the convective vortices of the DP 0 system. The substorm evolution in the nightside of the magnetosphere (a sharp burst in the AE index) was shown to lead to negative variations in ΔEz in the dayside sector at polar latitudes (the Hornsund observatory) and positive deviations in ΔEz at premidnight time at equatorial latitudes (the Kakioka observatory). It is concluded that variations in ΔEz at the Kakioka observatory are largely controlled by the equatorial electrojet, which is maximal during day-time hours, and at the Hornsund observatory these variations are controlled by the auroral electrojet, which is maximal at night-time and early morning hours of local time.  相似文献   

10.
Holocene records documenting variations in direction and intensity of the geomagnetic field during the last about seven and a half millennia are presented for Northwest Africa. High resolution paleomagnetic analyses of two marine sediment sequences recovered from around 900 meter water depth on the upper continental slope off Cape Ghir (30°51′N, 10°16′W) were supplemented by magnetic measurements characterizing composition, concentration, grain size and coercivity of the magnetic mineral assemblage. Age control for the high sedimentation rate deposits (∼60 cm/kyr) was established by AMS radiocarbon dates. The natural remanent magnetization (NRM) is very predominantly carried by a fine grained, mostly single domain (titano-)magnetite fraction allowing the reliable definition of stable NRM inclinations and declinations from alternating field demagnetization and principal component analysis. Predictions of the Korte and Constable (2005) geomagnetic field model CALS7K.2 for the study area are in fair agreement with the Holocene directional records for the most parts, yet noticeable differences exist in some intervals. The magnetic mineral inventory of the sediments reveals various climate controlled variations, specifically in concentration and grain size. A very strong impact had the mid-Holocene environmental change from humid to arid conditions on the African continent which also clearly affects relative paleointensity (RPI) estimates based on different remanence normalizers. To overcome this problem the pseudo-Thellier RPI technique has been applied. The results represent the first Holocene record of Earth’s magnetic field intensity variations in the NW Africa region. It displays long term trends similar to those of model predictions, but also conspicuous millennium scale differences.  相似文献   

11.
For more than a decade, the global network of GPS stations whose measurements are part of the International GPS Service (IGS) have been recording cyclic variations in the radius vector of the geodetic ellipsoid with a period of one year and amplitude of ~10 mm. The analysis of the figure of the Earth carried out by us shows that the observed variations in the vertical component of the Earth’s surface displacements can induce small changes in the flattening of the Earth’s figure which are, in turn, caused by the instability of the Earth’s rotation. The variations in the angular velocity and flattening of the Earth change the kinetic energy of the Earth’s rotation. The additional energy is ~1021 J. The emerging variations in the flattening of the Earth’s ellipsoid lead to changes in the surface area of the Earth’s figure, cause the development of deformations in rocks, accumulation of damage, activation of seismotectonic processes, and preparation of earthquakes. It is shown that earthquakes can be caused by the instability of the Earth’s rotation which induces pulsations in the shape of the Earth and leads to the development of alternating-sign deformations in the Earth’s solid shell.  相似文献   

12.
The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth??s atmosphere using piecewise reflectionless profiles. The Earth??s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth??s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations.  相似文献   

13.
The Earth’s free core nutation (FCN) is a retrograde eigenmode which is attributed to the interaction between the solid mantle and the liquid core of the rotational elliptical Earth.  相似文献   

14.
The large-scale harmonic magnetic-convective sources of the main geomagnetic field in the Earth’s core have been determined for the first time. The determination is based on a complete system of eigenfunctions of the magnetic diffusion equation in a homogeneously conducting sphere, which is surrounded by an insulator. The sources of the main geomagnetic field observed, which is responsible for the distribution of the electric currents generating this field in the core, are expressed in terms of large-scale eigenfunctions. In this case, the dipole sources are directly related to the observed geomagnetic dipole, whereas the quadrupole sources are related to the quadrupole, etc. The time variations in the obtained sources are responsible for individual spatiotemporal features in the generation or suppression of each Gaussian component of the observed geomagnetic field. When the commonly accepted observational international geomagnetic reference field (IGRF) models were used to partially reveal these time variations, it became possible to specify the estimate of the Earth’s core conductivity and determine the minimum period that can separate us from the commencement of further inversion or excursion.  相似文献   

15.
This paper presents an approach to determine the gradient of curvature of the normal plumblines at a point P above the ellipsoid and introduces a new geometrical object which is the isocurvature line. The assumed facts are the coordinates of the point P and the formula for the normal gravity potential U. For the determination of the gradient of the normal plumbline curvature k at the point P we define a small circle on the meridian plane of P whose center is at the point P. The circle has the radius of one meter and interior D. In this circle we construct a curvature replacement function to approximate the curvature function k. This replacement function is a quotient of polynomials hence it is easy to find its partial derivatives at the point P. For the construction of replacement function we make the assumption that in the interior of the circle D the first order partial derivatives of U behave linearly and the second order partial derivatives have constant values which equal their value at the point P. Then we set the gradient of the curvature function to be equal with the gradient of the aforementioned replacement function at P. An isocurvature line of the normal gravity field passing through a point P is a curve such that the value of the function of the plumblines’ curvature k is constant and equals k(P). We give a formula to find the direction of the isocurvature line on the meridian plane and we prove that there are infinitely many isocurvature lines passing through the point P and they all lie on a special surface, the isocurvature surface.  相似文献   

16.
Experimental data on the differential travel time t BCt DF of seismic waves PKPDF and PKPBC in the Earth’s core under Africa and Australia are analyzed. The differential travel-time residuals beneath Africa in a narrow range of angles from 21° to 25° between the direction of the seismic ray in the core and the Earth’s rotation axis exhibit a scoop-shaped peculiarity not accounted for by cylindrical anisotropy in the inner core. A model with a 0.2–0.8% P-wave velocity anomaly with a radius of 1375 km in the cylindrical region in the outer core is proposed, which closely fits the experimental data. We suggest that the velocity anomaly is generated by the dynamical processes occurring in the outer core, namely, the growth of the inner core and the convection in the outer core, both leading to the formation of a low-density anomaly in the outer core.  相似文献   

17.
The results of the long-term recording of thermal neutron flux near the Earth’s surface with the use of an unshielded scintillation thermal-neutron detector are presented. The data obtained indicate the presence of periodic variations in the thermal neutron flux with the lunar diurnal and the lunar monthly periods. A hypothesis about the existence in the Earth’s crust of radon-neutron tidal variations in the concentration of thermal neutrons, correlated with the Moon’s phases and which have the gravitational origin, is formulated and confirmed experimentally. A simple mathematical model is proposed, which satisfactorily describes the observed variations. The case of the anomalous behavior of thermal neutrons is presented, which correlates with the high local seismic activity.  相似文献   

18.
The dependence of the intensity of geomagnetic field on the intensity of thermal convection in the liquid core of the Earth, which has been empirically derived by a number of the authors from the results of numerical modeling of convective dynamo, is substantiated theoretically. This dependence is used for estimating the characteristic time scale of jerk evolution.  相似文献   

19.
Variations of Earth’s oblateness (J 2) reflect a large scale mass redistribution within the Earth system. The climate effect causing J 2 interannual variations is still not clear, though previous studies indicated it may be related to EI Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). However, we have a new discovery of the significant Antarctic oscillation (AAO) signals in J 2 interannual variations, especially on 4–6 year scales based on cross wavelet and wavelet coherence analysis with 95% confidence test during 1979–2012. The results additionally indicate that the close phase relationship between J 2 and AAO (AAO leading J 2 variations by 3 ± 2 months in phase) is far superior to that between J 2 and ENSO/PDO on 4–6 year scales. In this work, we discuss, for the first time, a possible geophysical mechanism of AAO effecting J 2 variations. The investigations are based on the definition of AAO and its spatial–temporal behavior influencing the large-scale mass movement. Finally, an approximate quantitative estimate of the AAO imprint on J 2 with an emphasis on the atmospheric contribution is made.  相似文献   

20.
Reliable data on the paleointensity of the geomagnetic field can become an important source of information both about the mechanisms of generation of the field at present and in the past, and about the internal structure of the Earth, especially the structure and evolution of its core. Unfortunately, the reliability of these data remains a serious problem of paleomagnetic research because of the limitations of experimental methods, and the complexity and diversity of rocks and their magnetic carriers. This is true even for relatively “young” Phanerozoic rocks, but investigation of Precambrian rocks is associated with many additional difficulties. As a consequence, our current knowledge of paleointensity, especially in the Precambrian period, is still very limited. The data limitations do not preclude attempts to use the currently available paleointensity results to analyze the evolution and characteristics of the Earth’s internal structure, such as the age of the Earth’s solid inner core or thermal conductivity in the liquid core. However, such attempts require considerable caution in handling data. In particular, it has now been reliably established that some results on the Precambrian paleointensity overestimate the true paleofield strength. When the paleointensity overestimates are excluded from consideration, the range of the field strength changes in the Precambrian does not exceed the range of its variation in the Phanerozoic. This result calls into question recent assertions that the Earth’s inner core formed in the Mesoproterozoic, about 1.3 billion years ago, triggering a statistically significant increase in the long-term average field strength. Instead, our analysis has shown that the quantity and quality of the currently available data on the Precambrian paleointensity are insufficient to estimate the age of the solid inner core and, therefore, cannot be useful for solving the problem of the thermal conductivity of the Earth’s core. The data are consistent with very young or very “old” inner core ages and, correspondingly, with high or low values of core thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号