首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

2.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

3.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   

4.
The Aki-Utsu method of Gutenberg-Richter (G-R) b value estimation is often misapplied so that estimations not using the G-R histogram are often meaningless because they are not based on adequate samples. We propose a method to estimate the likelihood Pr(b?b m , N, M 1, M 2) that an observed b m estimate, based on a sample of N magnitudes within an [M 1????≤?ΔM/2,?M 2?+?ΔM/2) range, where ΔM?=?0.1 is the usual rounding applied to magnitudes, is due to a “true” source b value, b, and use these likelihoods to estimate source b ranges corresponding to various confidence levels. As an example of application of the method, we estimate the b values before and after the occurrence of a 7.4-magnitude earthquake in the Mexican subduction zone, and find a difference of 0.82 between them with 100% confidence that the b values are different.  相似文献   

5.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

6.
A multi-event and multi-station inverse method is presented in the paper to simultaneously estimate the seismic moments (M 0) and source corner frequencies (f c) of several Jiashi (Xinjiang, China) earthquakes, as well as the apparent Lg Q models for the paths from Jiashi to eight seismic stations (WMQ, AAK, TLG, MAKZ, KUR, VOS, ZRN and CHK) in Central Asia. The resultant seismic moments correlate well with the M 0 values obtained by Harvard University using the centroid moment tensor (CMT) inversion and the surface-wave magnitudes as well. After the correction by a typical value of average radiation coefficient for regional SV waves, the M 0 values from Lg spectral inversion are still close to the corresponding values obtained from CMT inversion. The obtained apparent Q 0Lg values (Lg Q at 1 Hz) are consistent with the tectonic features of corresponding propagation paths. The Q 0Lg values are 351±87, 349±86 and 300±27 for the paths from Jiashi to AAK, TLG and MAKZ, respectively. They are smaller than Q 0Lg values for the paths to KUR, VOS, ZRN and CHK, which are 553±72, 569±58, 550±57 and 603±65, respectively. These results agree with the condition that the paths to AAK, TLG and MAKZ mainly propagate through the mountainous Tianshan area where relatively strong seismic activities and large variations of topography are exhibited, while the paths to KUR, VOS, ZRN and CHK mainly propagate through the stable area of Kazak platform. The Q 0Lg value for the path to WMQ is 462±56. This is also in agreement with the condition that the path to WMQ is basically along the border area between Tianshan Mountain and Tarim Basin, and along this path the variations of topography and crustal thickness are moderate in comparison with that along the path to MAKZ.  相似文献   

7.
The seasonal cycle of the main lunar tidal constituent M 2 is studied globally by an analysis of a high-resolution ocean circulation and tide model (STORMTIDE) simulation, of 19 years of satellite altimeter data, and of multiyear tide-gauge records. The barotropic seasonal tidal variability is dominant in coastal and polar regions with relative changes of the tidal amplitude of 5–10 %. A comparison with the observations shows that the ocean circulation and tide model captures the seasonal pattern of the M 2 tide reasonably well. There are two main processes leading to the seasonal variability in the barotropic tide: First, seasonal changes in stratification on the continental shelf affect the vertical profile of eddy viscosity and, in turn, the vertical current profile. Second, the frictional effect between sea-ice and the surface ocean layer leads to seasonally varying tidal transport. We estimate from the model simulation that the M 2 tidal energy dissipation at the sea surface varies seasonally in the Arctic (ocean regions north of 60°N) between 2 and 34 GW, whereas in the Southern Ocean, it varies between 0.5 and 2 GW. The M 2 internal tide is mainly affected by stratification, and the induced modified phase speed of the internal waves leads to amplitude differences in the surface tide signal of 0.005–0.0150 m. The seasonal signals of the M 2 surface tide are large compared to the accuracy demands of satellite altimetry and gravity observations and emphasize the importance to consider seasonal tidal variability in the correction processes of satellite data.  相似文献   

8.
The relation between the gravity variation features and M S=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily, by using spatial dynamic variation results of regional gravity field from absolute gravity and relative gravity observation in 1998 and 2000. The results show that: 1) M S=8.1 earthquake in Kulun mountain pass western occurred in the gravity variation high gradient near gravity’s high negative variation; 2) The main tectonic deformation and energy accumulation before M S=8.1 earthquake are distributed at south side of the epicenter; 3) The range of gravity’s high negative variation at east of the M S=8.1 earthquake epicenter relatively coincides with that rupture region according to field geology investigation; 4) Gravity variation distribution in high negative value region is just consistent with the second shear strain’s high value region of strain field obtained from GPS observation.  相似文献   

9.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

10.
Analysis of the frequency dependence of the attenuation coefficient leads to significant changes in interpretation of seismic attenuation data. Here, several published surface-wave attenuation studies are revisited from a uniform viewpoint of the temporal attenuation coefficient, denoted by χ. Theoretically, χ( f) is expected to be linear in frequency, with a generally non-zero intercept γ?=?χ(0) related to the variations of geometrical spreading, and slope dχ/df = π/Q e caused by the effective attenuation of the medium. This phenomenological model allows a simple classification of χ( f) dependences as combinations of linear segments within several frequency bands. Such linear patterns are indeed observed for Rayleigh waves at 500–100-s and 100–10-s periods, and also for Lg from ~2 s to ~1.5 Hz. The Lg χ( f) branch overlaps with similar linear branches of body, Pn, and coda waves, which were described earlier and extend to ~100 Hz. For surface waves shorter than ~100 s, γ values recorded in areas of stable and active tectonics are separated by the levels of \(\gamma _{D} \approx 0.2 \times 10^{-3}\) s???1 (for Rayleigh waves) and 8 ×10???3 s???1 (for Lg). The recently recognized discrepancy between the values of Q measured from long-period surface waves and normal-mode oscillations could also be explained by a slight positive bias in the geometrical spreading of surface waves. Similarly to the apparent χ, the corresponding linear variation with frequency is inferred for the intrinsic attenuation coefficient, χ i , which combines the effects of geometrical spreading and dissipation within the medium. Frequency-dependent rheological or scattering Q is not required for explaining any of the attenuation observations considered in this study. The often-interpreted increase of Q with frequency may be apparent and caused by using the Q-based model of attenuation and following preferred Q( f) dependences while ignoring the true χ( f) trends within the individual frequency bands.  相似文献   

11.
A method for determining medium quality factor is developed on the basis of analyzing the attenuation dispersion of the arrived first period P wave. In order to enhance signal to noise ratio, improve the resolution in measurement and reduce systematic error we applied the data resampling technique. The group velocity delay of P wave was derived by using an improved multi-filtering method. Based on a linear viscoelastic relaxation model we deduced the medium quality factor Q m, and associated error with 95% confidence level. Applying the method to the seismic record of the Xiuyan M=5.4 earthquake sequences we obtained the following result: (1) High Q m started to appear from Nov. 9, 1999. The events giving the deduced high Q m value clustered in a region with their epicenter distances being between 32 and 46 km to the Yingkou station. This Q m versus distance observation obviously deviates from the normal trend of Q m linearly increasing with distance. (2) The average Q m before the 29 Dec. 1999 M=5.4 earthquake is 460, while the average Q m between the M=5.4 event and the 12 Jan. 2000 M=5.1 earthquake is 391, and the average Q m after the M=5.1 event is 204.  相似文献   

12.
The dependence of the zonal geomagnetic indices (AE, Ap, Kp, Kn, and Dst) on the solar wind parameters (the electric field E y component, dynamic pressure P d and IMF irregularity σB) has been studied for two types of events: magnetic clouds and high-speed streams. Based on the empirical relationships, it has been established that the AE, Ap, Kp, and Kn indices are directly proportional to the E y value at E y < 12 mV m?1 and are inversely proportional to this value at E y > 12 mV m?1 for the first-type events. On the contrary, the dependence of Dst on E y is monotonous nonlinear. A linear dependence of all geomagnetic indices on E y is typical of the second-type events. It has been indicated that the specific features of geoeffectiveness of magnetic clouds and high-speed solar wind streams are caused by the dependence of the electric field potential across the polar cap on the electric field, solar wind dynamic pressure, and IMF fluctuations.  相似文献   

13.
Using model simulations, the morphological picture (revealed earlier) of the disturbances in the F 2 region of the equatorial ionosphere under quiet geomagnetic conditions (Q-disturbances) is interpreted. It is shown that the observed variations in the velocity of the vertical E × B plasma drift, related to the zonal E y component of the electric field, are responsible for the formation of Q-disturbances. The plasma recombination at altitudes of the lower part of the F 2 region and the dependence of the rate of this process on heliogeophysical conditions compose the mechanism of Q-disturbance formation at night. The daytime positive Q-disturbances are caused exclusively by a decrease in the upward E × B drift, and this type of disturbances could be related to the known phenomenon of counter electrojet. Possible causes of formation of the daytime negative Q-disturbances are discussed.  相似文献   

14.
At GMT time 13:19, August 8, 2017, an Ms7.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5–20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152°, 74° and 8°, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 km. The co-seismic rupture mainly concentrates at depths of 3–13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 66°–89° from northwest to southeast and the average dip angle measures ~84°. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.  相似文献   

15.
Seismic observations exhibit the presence of abnormal b-values prior to numerous earthquakes. The time interval from the appearance of abnormal b-values to the occurrence of mainshock is called the precursor time. There are two kinds of precursor times in use: the first one denoted by T is the time interval from the moment when the b-value starts to increase from the normal one to the abnormal one to the occurrence time of the forthcoming mainshock, and the second one denoted by T p is the time interval from the moment when the abnormal b-value reaches the peak one to the occurrence time of the forthcoming mainshock. Let T* be the waiting time from the moment when the abnormal b-value returned to the normal one to the occurrence time of the forthcoming mainshock. The precursor time, T (usually in days), has been found to be related to the magnitude, M, of the mainshock expected in a linear form as log(T)?=?q?+?rM where q and r are the coefficient and slope, respectively. In this study, the values of T, T p , and T* of 45 earthquakes with 3?≤?M?≤?9 occurred in various tectonic regions are compiled from or measured from the temporal variations in b-values given in numerous source materials. The relationships of T and T p , respectively, versus M are inferred from compiled data. The difference between the values of T and T p decreases with increasing M. In addition, the plots of T*/T versus M, T* versus T, and T* versus T-T* will be made and related equations between two quantities will be inferred from given data.  相似文献   

16.
We try to give a quantitative and global discrimination function by studying m b/M S data using Fisher method that is a kind of pattern recognition methods. The reliability of the function is also analyzed. The results show that this criterion works well and has a global feature, which can be used as first-level filtering criterions in event identification. The quantitative and linear discrimination function makes it possible to identify events automatically and achieve the goal to react the events quickly and effectively.  相似文献   

17.
The change in the dependence of the F2-layer critical frequency on its height hmF2 is considered based on two sources of initial data used earlier by the authors. It is found that the slope k of the foF2 dependence on hmF2 systematically decreases from the earlier (“etalon”) period, 1958–1980, to the later periods of 1988–2010, 1998–2010, and 1998–2014. Since the foF2 value depends on the atomic oxygen concentration in the F region much more strongly than hmF2, the found decrease in k confirms the concept of a decrease in the atomic oxygen concentration in the thermosphere with time previously formulated by the authors.  相似文献   

18.
The paper considers the Argun earthquake of July 22, 2011 (M w = 4.5), which occurred in the Argun River valley in a low-seismicity territory in China. The focal parameters of the earthquake (depth of the hypocenter, moment magnitude, scalar seismic moment, and focal mechanism) were determined by calculating the seismic moment tensor from the amplitude spectra of surface waves and the data on the signs of the first arrivals of body waves at regional stations. The solution of the focal mechanism makes it possible to assume a relationship between the earthquake focus and a fault with a northeastern strike bordering the southeastern side of the Argun Basin (in Chinese territory). The Argun earthquake was felt in Russia with an intensity of II–III to V at the epicentral distances up to 255 km. The intensity of shaking did not exceed values suggested by new GSZ-2012 and GSZ-2014 seismic zoning maps of Russian territory. Nevertheless, the question on the possible occurrence of stronger earthquakes in the studied region remains open.  相似文献   

19.
Analysis of the annual variation of the E-layer critical frequency median foE in the nighttime (22?02 LT) auroral zone by the data of several stations of the Northern Hemisphere has shown the median maximum in winter and minimum in summer, even though the summer contribution of solar radiation to foE is greater. Thus, a new phenomenon was discovered—an foE median winter anomaly in the nighttime auroral zone. Its amplitude (ratio of winter to summer foE figures) can reach 10–15%; however, this anomaly was weakly expressed and statistically insignificant at particular stations located in the auroral zone. The winter anomaly is more distinct for foE avr, the median of the E-layer critical frequency foE caused by the auroral source of atmospheric ionization, i.e., excluding the solar radiation contribution to foE. For foE avr, the amplitude of the winter anomaly can reach 15–20%. Based on the qualitative analysis, it has been found that foE winter anomaly is stipulated by the winter/summer asymmetry of energy flow of accelerated electrons, which induce discrete aurorae in the nighttime auroral zone.  相似文献   

20.
We studied the effects of expected end-of-the-century pCO2 (1000 ppm) on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp. PCC7002 during the lag, exponential, and stationary growth phases. Elevated pCO2 significantly stimulated growth, and enhanced the maximum cell density during the stationary phase. Under ambient pCO2 conditions, the lag phase lasted for 6 days, while elevated pCO2 shortened the lag phase to two days and extended the exponential phase by four days. The elevated pCO2 increased photosynthesis levels during the lag and exponential phases, but reduced them during the stationary phase. Moreover, the elevated pCO2 reduced the saturated growth light (Ik) and increased the light utilization efficiency (α) during the exponential and stationary phases, and elevated the phycobilisome:chlorophyll a (Chl a) ratio. Furthermore, the elevated pCO2 reduced the particulate organic carbon (POC):Chl a and particulate organic nitrogen (PON):Chl a ratios during the lag and stationary phases, but enhanced them during the exponential phase. Overall, Synechococcus showed differential physiological responses to elevated pCO2 during different growth phases, thus providing insight into previous studies that focused on only the exponential phase, which may have biased the results relative to the effects of elevated pCO2 in ecology or aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号