首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This study explores the decadal potential predictability of the Atlantic Meridional Overturning Circulation (AMOC) as represented in the IPSL-CM5A-LR model, along with the predictability of associated oceanic and atmospheric fields. Using a 1000-year control run, we analyze the prognostic potential predictability (PPP) of the AMOC through ensembles of simulations with perturbed initial conditions. Based on a measure of the ensemble spread, the modelled AMOC has an average predictive skill of 8 years, with some degree of dependence on the AMOC initial state. Diagnostic potential predictability of surface temperature and precipitation is also identified in the control run and compared to the PPP. Both approaches clearly bring out the same regions exhibiting the highest predictive skill. Generally, surface temperature has the highest skill up to 2 decades in the far North Atlantic ocean. There are also weak signals over a few oceanic areas in the tropics and subtropics. Predictability over land is restricted to the coastal areas bordering oceanic predictable regions. Potential predictability at interannual and longer timescales is largely absent for precipitation in spite of weak signals identified mainly in the Nordic Seas. Regions of weak signals show some dependence on AMOC initial state. All the identified regions are closely linked to decadal AMOC fluctuations suggesting that the potential predictability of climate arises from the mechanisms controlling these fluctuations. Evidence for dependence on AMOC initial state also suggests that studying skills from case studies may prove more useful to understand predictability mechanisms than computing average skill from numerous start dates.  相似文献   

2.
3.
A 1000 year integration of the CSIRO coupled ocean-atmosphere general circulation model is used to study low frequency (decadal to centennial) climate variability in precipitation and temperature. The model is shown to exhibit sizeable decadal variability for these fields, generally accounting for approximately 20 to 40% of the variability (greater than one year) in precipitation and up to 80% for temperature. An empirical orthogonal function (EOF) analysis is applied to the model output to show some of the major statistical modes of low frequency variability. The first EOF spatial pattern looks very much like that of the interannual ENSO pattern. It bears considerable resemblance to observational estimates and is centred in the Pacific extending into both hemispheres. It modulates both precipitation and temperature globally. The EOF has a time evolution that appears to be more than just red noise. Finally, the link between SST in the Pacific with Australian rainfall variability seen in observations is also evident in the model. Received: 29 August 1998 / Accepted: 31 July 1999  相似文献   

4.
Variations in the Atlantic meridional overturning circulation (MOC) exert an important influence on climate, particularly on decadal time scales. Simulation of the MOC in coupled climate models is compromised, to a degree that is unknown, by their lack of fidelity in resolving some of the key processes involved. There is an overarching need to increase the resolution and fidelity of climate models, but also to assess how increases in resolution influence the simulation of key phenomena such as the MOC. In this study we investigate the impact of significantly increasing the (ocean and atmosphere) resolution of a coupled climate model on the simulation of MOC variability by comparing high and low resolution versions of the same model. In both versions, decadal variability of the MOC is closely linked to density anomalies that propagate from the Labrador Sea southward along the deep western boundary. We demonstrate that the MOC adjustment proceeds more rapidly in the higher resolution model due the increased speed of western boundary waves. However, the response of the Atlantic sea surface temperatures to MOC variations is relatively robust—in pattern if not in magnitude—across the two resolutions. The MOC also excites a coupled ocean-atmosphere response in the tropical Atlantic in both model versions. In the higher resolution model, but not the lower resolution model, there is evidence of a significant response in the extratropical atmosphere over the North Atlantic 6?years after a maximum in the MOC. In both models there is evidence of a weak negative feedback on deep density anomalies in the Labrador Sea, and hence on the MOC (with a time scale of approximately ten years). Our results highlight the need for further work to understand the decadal variability of the MOC and its simulation in climate models.  相似文献   

5.
The horizontal coordinate systems commonly used in most global ocean models are the spherical latitude–longitude grid and displaced poles, such as a tripolar grid. The effect of the horizontal coordinate system on Atlantic meridional overturning circulation (AMOC) is evaluated by using an OGCM (ocean general circulation model). Two experiments are conducted with the model—one using a latitude–longitude grid (referred to as Lat_1) and the other using a tripolar grid (referred to as Tri). The results show that Tri simulates a stronger North Atlantic deep water (NADW) than Lat_1, as more saline water masses enter the Greenland–Iceland–Norwegian (GIN) seas in Tri. The stronger NADW can be attributed to two factors. One is the removal of the zonal filter in Tri, which leads to an increasing of the zonal gradient of temperature and salinity, thus strengthening the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because realistic topography is applied in the tripolar grid while the latitude–longitude grid employs an artificial island around the North Pole. In order to evaluate the effect of the filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, an enhanced filter can also augment NADW formation, since more saline water is suppressed in the GIN seas, but accumulated in the Labrador Sea, especially in experiment Lat_2_S, which is the experiment with an enhanced filter on salinity.  相似文献   

6.
A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15–30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.  相似文献   

7.
The processes that govern the predictability of decadal variations in the North Atlantic meridional overturning circulation (MOC) are investigated in a long control simulation of the ECHO-G coupled atmosphere?Cocean model. We elucidate the roles of local stochastic forcing by the atmosphere, and other potential ocean processes, and use our results to build a predictive regression model. The primary influence on MOC variability is found to come from air?Csea heat fluxes over the Eastern Labrador Sea. The maximum correlation between such anomalies and the variations in the MOC occurs at a lead time of 2?years, but we demonstrate that the MOC integrates the heat flux variations over a period of 10?years. The corresponding univariate regression model accounts for 74.5% of the interannual variability in the MOC (after the Ekman component has been removed). Dense anomalies to the south of the Greenland-Scotland ridge are also shown to precede the overturning variations by 4?C6?years, and provide a second predictor. With the inclusion of this second predictor the resulting regression model explains 82.8% of the total variance of the MOC. This final bivariate model is also tested during large rapid decadal overturning events. The sign of the rapid change is always well represented by the bivariate model, but the magnitude is usually underestimated, suggesting that other processes are also important for these large rapid decadal changes in the MOC.  相似文献   

8.
The significance of the Atlantic meridional overturning circulation (MOC) for regional and hemispheric climate change requires a complete understanding using fully coupled climate models. Here we present a persistent, decadal oscillation in a coupled atmosphere–ocean general circulation model. While the present study is limited by the lack of comparisons with paleo-proxy records, the purpose is to reveal a new theoretically interesting solution found in the fully-coupled climate model. The model exhibits two multi-century-long stable states with one dominated by decadal MOC oscillations. The oscillations involve an interaction between anomalous advective transport of salt and surface density in the North Atlantic subpolar gyre. Their time scale is fundamentally determined by the advection. In addition, there is a link between the MOC oscillations and North Atlantic Oscillation (NAO)-like sea level pressure anomalies. The analysis suggests an interaction between the NAO and an anomalous subpolar gyre circulation in which sea ice near and south of the Labrador Sea plays an important role in generating a large local thermal anomaly and a meridional temperature gradient. The latter induces a positive feedback via synoptic eddy activity in the atmosphere. In addition, the oscillation only appears when the Nordic Sea is completely covered by sea ice in winter, and deep convection is active only near the Irminger Sea. Such conditions are provided by a substantially colder North Atlantic climate than today.  相似文献   

9.
We present results from detailed interviews with 12 leading climate scientists about the possible effects of global climate change on the Atlantic Meridional Overturning Circulation (AMOC). The elicitation sought to examine the range of opinions within the climatic research community about the physical processes that determine the current strength of the AMOC, its future evolution in a changing climate and the consequences of potential AMOC changes. Experts assign different relative importance to physical processes which determine the present-day strength of the AMOC as well as to forcing factors which determine its future evolution under climate change. Many processes and factors deemed important are assessed as poorly known and insufficiently represented in state-of-the-art climate models. All experts anticipate a weakening of the AMOC under scenarios of increase of greenhouse gas concentrations. Two experts expect a permanent collapse of the AMOC as the most likely response under a 4×CO2 scenario. Assuming a global mean temperature increase in the year 2100 of 4 K, eight experts assess the probability of triggering an AMOC collapse as significantly different from zero, three of them as larger than 40%. Elicited consequences of AMOC reduction include strong changes in temperature, precipitation distribution and sea level in the North Atlantic area. It is expected that an appropriately designed research program, with emphasis on long-term observations and coupled climate modeling, would contribute to substantially reduce uncertainty about the future evolution of the AMOC.  相似文献   

10.
Most state-of-the art global coupled models simulate a weakening of the Atlantic meridional overturning circulation (MOC) in climate change scenarios but the mechanisms leading to this weakening are still being debated. The third version of the CNRM (Centre National de Recherches Météorologiques) global atmosphere-ocean-sea ice coupled model (CNRM-CM3) was used to conduct climate change experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). The analysis of the A1B scenario experiment shows that global warming leads to a slowdown of North Atlantic deep ocean convection and thermohaline circulation south of Iceland. This slowdown is triggered by a freshening of the Arctic Ocean and an increase in freshwater outflow through Fram Strait. Sea ice melting in the Barents Sea induces a local amplification of the surface warming, which enhances the cyclonic atmospheric circulation around Spitzberg. This anti-clockwise circulation forces an increase in Fram Strait outflow and a simultaneous increase in ocean transport of warm waters toward the Barents Sea, favouring further sea ice melting and surface warming in the Barents Sea. Additionally, the retreat of sea ice allows more deep water formation north of Iceland and the thermohaline circulation strengthens there. The transport of warm and saline waters toward the Barents Sea is further enhanced, which constitutes a second positive feedback.  相似文献   

11.
Sandeep  N.  Swapna  P.  Krishnan  R.  Farneti  R.  Prajeesh  A. G.  Ayantika  D. C.  Manmeet  S. 《Climate Dynamics》2020,54(7):3507-3524
Climate Dynamics - Observational records and climate model projections reveal a considerable decline in the Atlantic Meridional Overturning Circulation (AMOC). Changes in the AMOC can have a...  相似文献   

12.
Ocean dynamics play a key role in the climate system, by redistributing heat and freshwater. The uncertainty of how these processes are represented in climate models, and how this uncertainty affects future climate projections can be investigated using perturbed physics ensembles of global circulation models (GCMs). Techniques such as flux adjustments should be avoided since they can impact the sensitivity of the ensemble to the imposed forcing. In this study a method for developing an coupled ensemble with a GCM that does not use flux adjustment is presented. The ensemble is constrained by using information from a prior ensemble with a mixed layer ocean coupled to an atmosphere GCM, to reduce drifts in the coupled ensemble. Constraints on parameter perturbations are derived by using observational constraints on surface temperature, and top of the atmosphere radiative fluxes. As an example of such an ensemble developed with this methodology, uncertainty in response of the meridional overturning circulation (MOC) to increased CO2 concentrations is investigated. The ensemble mean MOC strength is 17.1?Sv and decreases by 2.1?Sv when greenhouse gas concentrations are doubled. No rapid changes or shutdown of the MOC are seen in any of the ensemble members. There is a strong negative relationship between global mean temperature and MOC strength across the ensemble which is not seen in a multimodel ensemble. A positive relationship between climate sensitivity and the decrease of MOC strength is also seen.  相似文献   

13.
Seawater property changes in the North Atlantic Ocean affect the Atlantic meridional overturning circulation (AMOC), which transports warm water northward from the upper ocean and contributes to the temperate climate of Europe, as well as influences climate globally. Previous observational studies have focused on salinity and freshwater variability in the sinking region of the North Atlantic, since it is believed that a freshening North Atlantic basin can slow down or halt the flow of the AMOC. Here we use available data to show the importance of how density patterns over the upper ocean of the North Atlantic affect the strength of the AMOC. For the long-term trend, the upper ocean of the subpolar North Atlantic is becoming cooler and fresher, whereas the subtropical North Atlantic is becoming warmer and saltier. On a multidecadal timescale, the upper ocean of the North Atlantic has generally been warmer and saltier since 1995. The heat and salt content in the subpolar North Atlantic lags that in the subtropical North Atlantic by about 8–9 years, suggesting a lower latitude origin for the temperature and salinity anomalies. Because of the opposite effects of temperature and salinity on density for both long-term trend and multidecadal timescales, these variations do not result in a density reduction in the subpolar North Atlantic for slowing down the AMOC. Indeed, the variations in the meridional density gradient between the subpolar and subtropical North Atlantic Ocean suggest that the AMOC has become stronger over the past five decades. These observed results are supported by and consistent with some oceanic reanalysis products.  相似文献   

14.
The South Atlantic response to a collapse of the North Atlantic meridional overturning circulation (AMOC) is investigated in the ECHAM5/MPI-OM climate model. A reduced Agulhas leakage (about 3.1?Sv; 1?Sv?=?106?m3?s?1) is found to be associated with a weaker Southern Hemisphere (SH) supergyre and Indonesian throughflow. These changes are due to reduced wind stress curl over the SH supergyre, associated with a weaker Hadley circulation and a weaker SH subtropical jet. The northward cross-equatorial transport of thermocline and intermediate waters is much more strongly reduced than Agulhas leakage in relation with an AMOC collapse. A cross-equatorial gyre develops due to an anomalous wind stress curl over the tropics that results from the anomalous sea surface temperature gradient associated with reduced ocean heat transport. This cross-equatorial gyre completely blocks the transport of thermocline waters from the South to the North Atlantic. The waters originating from Agulhas leakage flow somewhat deeper and most of it recirculates in the South Atlantic subtropical gyre, leading to a gyre intensification. This intensification is consistent with the anomalous surface cooling over the South Atlantic. Most changes in South Atlantic circulation due to global warming, featuring a reduced AMOC, are qualitatively similar to the response to an AMOC collapse, but smaller in amplitude. However, the increased northward cross-equatorial transport of intermediate water relative to thermocline water is a strong fingerprint of an AMOC collapse.  相似文献   

15.
It is desirable to design proxy investigations that target regions where properties reconstructed from calibrated parameters potentially carry high-fidelity information concerning changes in large-scale climate systems. Numerical climate models can play an important role in this task, producing simulations that can be analyzed to produce spatial “fingerprints” of the expected response of various properties under a variety of different scenarios. We will introduce a new method of fingerprinting the Atlantic meridional overturning circulation (AMOC) that not only provides information concerning the sensitivity of the response at a given location to changes in the large-scale system, but also quantifies the linearity, monotonicity and symmetry of the response. In this way, locations that show high sensitivities to changes in the AMOC, but that exhibit, for example, strongly nonlinear behavior can be avoided during proxy investigations. To demonstrate the proposed approach we will use the example of the response of seawater temperatures to changes in the strength of the AMOC. We present results from an earth-system climate model which has been perturbed with an idealized freshwater forcing scenario in order to reduce the strength of the AMOC in a systematic manner. The seawater temperature anomalies that result from the freshwater forcing are quantified in terms of their sensitivity to the AMOC strength in addition to the linearity and monotonicity of their response. A first-order reversal curve (FORC) approach is employed to investigate and quantify the irreversibility of the temperature response to a slowing and recovering AMOC. Thus, FORCs allow the identification of areas that are unsuitable for proxy reconstructions because their temperature versus AMOC relationship lacks symmetry.  相似文献   

16.
An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1,500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland–Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification precedes that of the MOC by several years.  相似文献   

17.
Atmosphere?Cocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50?C70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.  相似文献   

18.
Assessing the skill of the Atlantic meridional overturning circulation (AMOC) in decadal hindcasts (i.e. retrospective predictions) is hampered by a lack of observations for verification. Models are therefore needed to reconstruct the historical AMOC variability. Here we show that ten recent oceanic syntheses provide a common signal of AMOC variability at 45°N, with an increase from the 1960s to the mid-1990s and a decrease thereafter although they disagree on the exact magnitude. This signal correlates with observed key processes such as the North Atlantic Oscillation, sub-polar gyre strength, Atlantic sea surface temperature dipole, and Labrador Sea convection that are thought to be related to the AMOC. Furthermore, we find potential predictability of the mid-latitude AMOC for the first 3–6 year means when we validate decadal hindcasts for the past 50 years against the multi-model signal. However, this predictability is not found in models driven only by external radiative changes, demonstrating the need for initialization of decadal climate predictions.  相似文献   

19.
The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987-1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately r  相似文献   

20.
The reversibility of the Atlantic meridional overturning circulation (AMOC) is investigated in multi-model experiments using global climate models (GCMs) where CO2 concentrations are increased by 1 or 2 % per annum to 2× or 4× preindustrial conditions. After a period of stabilisation the CO2 is decreased back to preindustrial conditions. In most experiments when the CO2 decreases, the AMOC recovers before becoming anomalously strong. This "overshoot" is up to an extra 18.2Sv or 104 % of its preindustrial strength, and the period with an anomalously strong AMOC can last for several hundred years. The magnitude of this overshoot is shown to be related to the build up of salinity in the subtropical Atlantic during the previous period of high CO2 levels. The magnitude of this build up is partly related to anthropogenic changes in the hydrological cycle. The mechanisms linking the subtropical salinity increase to the subsequent overshoot are analysed, supporting the relationship found. This understanding is used to explain differences seen in some models and scenarios. In one experiment there is no overshoot because there is little salinity build up, partly as a result of model differences in the hydrological cycle response to increased CO2 levels and partly because of a less aggressive scenario. Another experiment has a delayed overshoot, possibly as a result of a very weak AMOC in that GCM when CO2 is high. This study identifies aspects of overshoot behaviour that are robust across a multi-model and multi-scenario ensemble, and those that differ between experiments. These results could inform an assessment of the real-world AMOC response to decreasing CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号