首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of hydrocarbons from shale formations has been made possible mainly due to hydraulic fracture (HF) technology. It increases the permeability of reservoir rocks around a well by connecting fractures and improving conductivity. HF behavior especially in presence of natural fractures have recently given much attention in studies. This paper investigates HF propagation and its associated parameters in various conditions. A higher order displacement discontinuity method is used to achieve higher accuracy in the results. First, behavior of crack opening displacement (COD) of an HF i.e. HF width in various conditions is studied. COD is a key parameter in determination of an HF operation success. It is proportional to production rate of oil and gas wells and provides a path for proppant entrance into the fractures. An equation considering many important parameters, based on numerous numerical modellings of various mechanical and geometrical effects on COD is proposed with coefficient of determination and standard error of 94.35% and 4.37 × 10?4 respectively. The next part of the paper studies the HF propagation in a naturally fractured reservoir. These natural fractures alter the stress fields and hence affect the propagation of a hydraulic fracture. In fact, it is shown that in certain orientations of hydraulic fractures and natural fractures, the effect of natural fractures disappear or completely changes propagation path. Using a combination of several interaction criteria, a new modeling of HFs and NFs interaction is presented. The modellings showed that spacing and angle of intersection can significantly affect HFs propagation. The results of COD and HF propagation in presence of natural fractures may be considered in HG design and primary orientation of perforated fractures.  相似文献   

2.
郭静芸  王宇 《工程地质学报》2018,26(6):1523-1533
页岩储层中天然节理、裂缝极为发育,水力压裂产生的水力裂缝可激活天然裂缝,形成复杂的弥散性裂缝缝网,起到增渗、增产的效果;另外,天然裂缝也是页岩气储存的介质,一部分气体以游离态的形式存在于天然裂缝当中。采用数值计算方法研究水力裂缝与天然裂缝的相互作用机理,重点探讨水力裂缝沟通天然裂缝活化延伸形成缝网的机制。计算模型包括单一天然裂缝和3条天然裂缝两种情况,计算变量考虑天然裂缝与水力裂缝的逼近角、主应力差和地层的弹性参数。研究表明:(1)随着逼近角的不同,地层的破裂应力存在一定的差异,逼近角为90°时,地层破裂所需要的临界水压最大,且地层的破裂应力随着主应力差的增大而减小;(2)无论是单一或3条天然裂缝,水力裂缝沟通天然裂缝活化后,分支裂缝的延伸方向基本恢复至与最大水平主应力平行的方向,当逼近角为90°时,裂缝的滑移量最大,激活效果最佳;(3)逼近角为90°时,天然裂缝尖端处容易出现水力裂缝双转向现象,更有利于形成复杂的裂缝网络,并且此时单元破裂数量最大,压裂效果最好;(4)随地层弹性模量的增大或泊松比的减小,激活天然裂缝的临界水压减小,说明储层的弹性属性会影响缝网的形成,在高弹性模量、低泊松比的脆性地层中射孔时会收到较理想的压裂效果。  相似文献   

3.
Hydraulic fracturing involves the initiation and propagation of fractures in rock formations by the injection of pressurized fluid. The largest use of hydraulic fracturing is in enhancing oil and gas production. Tiltmeters are sometimes used in the process to monitor the generated fracture geometry by measuring the fracture‐induced deformations. Fracture growth parameters obtained from tiltmeter mapping can be used to study the effectiveness of such stimulations. In this work, we present a novel scheme that uses the ensemble Kalman Filter (EnKF) to assimilate tiltmeter data using a simple process model to describe the evolution of fracture growth parameters, and an observation model that maps the fracture geometry with the observed tilt. The forward observation model is based on the analytical solution for computing the displacements and tilts due to a point source displacement discontinuity in an elastic half‐space developed by Okada 1 . The displacement and tilts for any given fracture geometry are then obtained by numerical integration of this solution, by considering multiple point sources to be located at the quadrature points. The proposed method is validated using synthetic data sets generated from polygon and elliptical shaped fracture geometries. Finally, real data from a field site, where asymmetry was measured from the intersections of the hydraulic fracture with offset boreholes, have been analyzed. Preliminary results show that, in addition to extracting the fracture dip, orientation, and volume, the procedure is able to satisfactorily predict fracture growth parameters when the fracture is relatively close to the tiltmeter array and provides some insight into the development of asymmetry when the measurements are relatively far from the fracture plane. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern–Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.  相似文献   

5.
The ultra-low-permeability shale gas reservoir has a lot of well-developed natural fractures. It has been proven that hydraulic fracture growth pattern is usually a complex network fracture rather than conventional single planar fractures by micro-seismic monitoring, which can be explained as the shear and tensile failure of natural fractures or creation of new cracks due to the increase in reservoir pore pressure caused by fluid injection during the process of hydraulic fracturing. In order to simulate the network fracture growth, a mathematical model was established based on full tensor permeability, continuum method and fluid mass conservation equation. Firstly, the governing equation of fluid diffusivity based on permeability tensor was solved to obtain the reservoir pressure distribution. Then Mohr–Coulomb shear failure criterion and tensile failure criterion were used to decide whether the rock failed or not in any block on the basis of the calculated reservoir pressure. The grid-block permeability was modified according to the change of fracture aperture once any type of rock failure criterion was met within a grid block. Finally, the stimulated reservoir volume (SRV) zone was represented by an enhancement permeability zone. After calibrating the numerical solution of the model with the field micro-seismic information, a sensitivity study was performed to analyze the effects of some factors including initial reservoir pressure, injection fluid volume, natural fracture azimuth angle and horizontal stress difference on the SRV (shape, size, bandwidth and length). The results show that the SRV size increases with the increasing initial pore reservoir and injection fluid volume, but decreases with the increase in the horizontal principal stress difference and natural fracture azimuth angle. The SRV shape is always similar for different initial pore reservoir and injection fluid volume. The SRV is observed to become shorter in length and wider in bandwidth with the decrease in natural fracture azimuth angle and horizontal principal stress difference.  相似文献   

6.
Hydraulic fracture (HF) propagation behavior is signi?cant when building enhanced geothermal systems (EGS). HF geometry is closely related to the structural planes (SPs) in hot dry rock (HDR), such as natural fractures (NFs), quartz veins (QVs) and lithologic interfaces (LIs). However, the HF behaviors in HDR have not been well understood, especially the influence of multiple SPs on the HF geometry. To clarify this mechanism, several groups of physical simulation experiments of hydraulic fracturing were conducted to investigate the intersection relationship between the HFs and the SPs. Results show that the HF geometry shows great differences when intersecting with different SPs. In summary, the HF geometry displays four basic patterns, namely, propagation along the SPs, branching, capture, penetration/non-dilation. The fluctuation degree of the pressure-time curve and the HF complexity show a positive correlation. The cementing strength of the SP and their different mechanical properties from rock matrix influence the HF behaviors significantly. Therefore, the HF shows diverse geometries when intersecting with the NFs and LIs, while propagating along the QV when intersecting with it. For the complex networks, it is favorable for the HF to penetrate through and dilate several SPs, rather than simply cross or propagate along the SP.  相似文献   

7.
Hydraulic fracturing (HF) of underground formations has widely been used in different fields of engineering. Despite the technological advances in techniques of in situ HF, the industry uses semi‐analytical tools to design HF treatment. This is due to the complex interaction among various mechanisms involved in this process, so that for thorough simulations of HF operations a fully coupled numerical model is required. In this study, using element‐free Galerkin (EFG) mesh‐less method, a new formulation for numerical modeling of hydraulic fracture propagation in porous media is developed. This numerical approach, which is based on the simultaneous solution of equilibrium and continuity equations, considers the hydro‐mechanical coupling between the crack and its surrounding porous medium. Therefore, the developed EFG model is capable of simulating fluid leak‐off and fluid lag phenomena. To create the discrete equation system, the Galerkin technique is applied, and the essential boundary conditions are imposed via penalty method. Then, the resultant constrained integral equations are discretized in space using EFG shape functions. For temporal discretization, a fully implicit scheme is employed. The final set of algebraic equations that forms a non‐linear equation system is solved using the direct iterative procedure. Modeling of cracks is performed on the basis of linear elastic fracture mechanics, and for this purpose, the so‐called diffraction method is employed. For verification of the model, a number of problems are solved. According to the obtained results, the developed EFG computer program can successfully be applied for simulating the complex process of hydraulic fracture propagation in porous media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A hybrid discrete‐continuum numerical scheme is developed to study the behavior of a hydraulic fracture crossing natural fractures. The fully coupled hybrid scheme utilizes a discrete element model for an inner domain, within which the hydraulic fracture propagates and interacts with natural fractures. The inner domain is embedded in an outer continuum domain that is implemented to extend the length of the hydraulic fracture and to better approximate the boundary effects. The fracture is identified to propagate initially in the viscosity‐dominated regime, and the numerical scheme is calibrated by using the theoretical plane strain hydraulic fracture solution. The simulation results for orthogonal crossing indicate three fundamental crossing scenarios, which occur for various stress ratios and friction coefficients of the natural fracture: (i) no crossing, that is, the hydraulic fracture is arrested by the natural fracture and makes a T‐shape intersection; (ii) offset crossing, that is, the hydraulic fracture crosses the natural fracture with an offset; and (iii) direct crossing, that is, the hydraulic fracture directly crosses the natural fracture without diversion. Each crossing scenario is associated with a distinct net pressure history. Additionally, the effects of strength contrast and stiffness contrast of rock materials and intersection angle between the hydraulic fracture and the natural fracture are also investigated. The simulations also illustrate that the level of fracturing complexity increases as the number and extent of the natural fractures increase. As a result, we can conclude that complex hydraulic fracture propagation patterns occur because of complicated crossing behavior during the stimulation of naturally fractured reservoirs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Krzaczek  M.  Nitka  M.  Kozicki  J.  Tejchman  J. 《Acta Geotechnica》2020,15(2):297-324

The paper deals with two-dimensional (2D) numerical modelling of hydro-fracking (hydraulic fracturing) in rocks at the meso-scale. A numerical model was developed to characterize the properties of fluid-driven fractures in rocks by combining the discrete element method (DEM) with computational fluid dynamics (CFD). The mechanical behaviour of the rock matrix was simulated with DEM and the behaviour of the fracturing fluid flow in newly developed and pre-existing fractures with CFD. The changes in the void geometry in the rock matrix were taken into account. The initial 2D hydro-fracking simulation tests were carried out for a rock segment under biaxial compression with one injection slot in order to validate the numerical model. The qualitative effect of several parameters on the propagation of a hydraulic fracture was studied: initial porosity of the rock matrix, dynamic viscosity of the fracking fluid, rock strength and pre-existing fracture. The characteristic features of a fractured rock mass due to a high-pressure injection of fluid were realistically modelled by the proposed coupled approach.

  相似文献   

10.
3500 m以深页岩气资源量占整个川南地区总资源量的比例高达86.5%,该区深层页岩气藏构造复杂,压裂形成复杂缝网的难度大,有必要通过数值模拟研究深层页岩气复杂缝网主控因素,对实现川南地区深层页岩气的效益开发具有重要意义。在对川南地区页岩气气田某井的岩芯进行细观尺度下的观察并构建二维裂缝模型的基础上,利用位移间断边界元法(DDM)模拟深层页岩水力压裂过程中水力裂缝与天然裂缝相互作用的物理力学过程,研究主应力、应力差和压裂液排量对裂缝扩展的影响。结果表明:在高应力差条件下缝网的复杂程度和总长度急剧降低,缝网的平均宽度增大,且平均宽度随排量增加而增大的能力变得有限。在高应力差条件下提升压裂液排量,缝网长度的增加以产生新生裂缝为主,同时提升排量对于激活天然裂缝有一定的提升作用,但是效果有限。相比于拉张裂缝,剪切裂缝的形成受主应力和压裂液排量的影响更显著,在高应力差条件下缝网中剪切裂缝的长度急剧降低。随着压裂液的注入,在较低应力差和相同压裂液注入量的情况下,低排量工况下的裂缝长度逐渐大于高排量工况下的裂缝长度。在应力差较高的情况下裂缝扩展的速率较低,同时会使提升排量而形成更多新生裂缝的能力变得...  相似文献   

11.
Hydraulic fracturing (HF) treatment often involves particle migration and is applied for propping or plugging fractures. Particle migration behaviors, e.g., bridging, packing, and plugging, significantly affect the HF process. Hence, it is crucial to effectively simulate particle migration. In this study, a new numerical approach is developed based on a coupled element partition method (EPM). The EPM is used to model natural and hydraulic fractures, in which a fracture is allowed to propagate across an element, thereby avoiding remeshing in fracture simulations. To characterize the water flow process in a fracture, a fully hydromechanical coupled equation is adopted in the EPM. To model particle transportation in fractures with water flow, each particle is treated as a discrete element. The particles move in the fracture as a result of being dragged by fluid. Their movement, contact, and packing behaviors are simulated using the discrete element method. To reflect the plugging effect, an equivalent aperture approach is proposed. Using this method, the particle migration and its effect on water flow are well simulated. The simulation results show that this method can effectively reproduce particle bridging, plugging, and unblocking in a hydraulic fracture. Furthermore, it is demonstrated that particle plugging significantly affects water flow in a fracture and hence the propagation of hydraulic fracture. This method provides a simple and feasible approach for the simulation of particle migration in a hydraulic fracture.  相似文献   

12.
Two-dimensional hydraulic fracturing simulations using the cohesive zone model (CZM) can be readily found in the literature; however, to our knowledge, verified 3D cohesive zone modeling is not available. We present the development of a 3D fully coupled hydro-mechanical finite element method (FEM) model (with parallel computation framework) and its application to hydraulic fracturing. A special zero-thickness interface element based on the CZM is developed for modeling fracture propagation and fluid flow. A local traction-separation law with strain softening is used to capture tensile cracking. The model is verified by considering penny-shaped hydraulic fracture and plain strain Kristianovich‑Geertsma‑de Klerk hydraulic fracture (in 3D) in the viscosity- and toughness-dominated regimes. Good agreement between numerical results and analytical solutions has been achieved. The model is used to investigate the influence of rock and fluid properties on hydraulic fracturing. Lower stiffness tip cohesive elements tend to yield a larger elastic deformation around the fracture tips before the tensile strength is reached, generating a larger fracture length and lower fracture pressure compared with higher stiffness elements. It is found that the energy release rate has almost no influence on hydraulic fracturing in the viscosity-dominated regime because the energy spent in creating new fractures is too small when compared with the total input energy. For the toughness-dominated regime, the released energy during fracturing should be accurately captured; relatively large tensile strength should be used in order to match numerical results to the asymptotic analytical solutions. It requires smaller elements when compared with those used in the viscosity-dominated regime.  相似文献   

13.
王伟  付豪  邢林啸  柴波  刘波  施星宇 《地球科学》2021,46(10):3509-3519
水力压裂作为一种主要的地热能开采手段,其压裂效果除与岩体基本物理力学性质有关外,还与裂隙分布、地应力状态、压裂工程参数等密切相关.为了探究以上因素对水力压裂过程中裂缝扩展行为的影响,以冀中坳陷碳酸盐岩储层岩体为研究对象,基于扩展有限元法,建立裂缝扩展流固耦合模型,分析了水平应力差、射孔方位角、注入液排量和压裂液黏度等参数对裂缝扩展行为的影响.结果表明:单裂缝扩展时,射孔方位角越小、注入量越大、越有利于裂缝扩展;双裂缝扩展时,水平应力差增大,裂缝偏转程度变小;水力裂缝与天然裂缝相交时,较小水平应力差有利于天然裂缝开启.   相似文献   

14.
Zeng  Qingdong  Yao  Jun  Shao  Jianfu 《Acta Geotechnica》2019,14(6):2083-2101

The propagation of hydraulic fracture in elastic rocks has widely been investigated. In the paper, we shall focus on numerical modeling of hydraulic fracturing in a class of porous rocks exhibiting plastic deformation. The plastic strain of porous rocks is described by a non-associated plastic model based on Drucker–Prager criterion. The plastic deformation is coupled with fluid pressure evolution described by the lubrication theory. An extended finite element method is used for modeling the propagation of fracture. The fracture propagation criterion is based on the J-integral. The proposed numerical model is validated by comparisons with numerical and analytical results. The influence of plastic deformation on fracture propagation process is investigated.

  相似文献   

15.

Tight heterogeneous glutenite reservoir is typically not easy to form complex hydraulic fracture (HF) due to its poor physical properties, poor matrix seepage capacity, and small limit discharge radius and undeveloped natural fracture system. To improve the HF complexity and the stimulated reservoir volume (SRV), a novel stimulation technology called CO2 miscible fracturing has been introduced and its fracturing mechanism has been studied. The CO2 miscible fracturing modifies the in situ stress field by injecting low viscosity fluid to increase the HF complexity and SRV. Therefore, a series of numerical simulations based on a hydro-mechanical-damage model were carried out to study the effects of low viscosity fluid pre-injection on pore pressure, stress field, and fracturing effect in tight heterogeneous glutenite reservoirs. The results indicate that the low viscosity fluid injection can effectively increase the pore pressure around the wellbore and reduce the effective stress of the glutenite. The FCI and SRV increase with the increase of the pre-injection amount of the low viscosity fluid. The HF complexity and SRV can be improved by pre-injecting low viscosity fluid to transform the in situ stress field. The field application of this technology in a well of Shengli Oilfield showed that low-viscosity fluid pre-injection can effectively increase the width of the fractured zone, improve the SRV, and optimize the fracturing effect.

  相似文献   

16.
The coupled diffusion and deformation phenomena induced by the opening of a hydraulic fracture in a poroelastic medium are modelled using an extension of the displacement discontinuity method. This method consists in distributing fluid source and poroelastic displacement discontinuity singularities along the locus of the fracture, and over time. As an illustration, the problem of a suddenly pressurized crack in an infinite formation is examined.  相似文献   

17.
This paper analyses the plane strain problem of a fracture, driven by injection of an incompressible viscous Newtonian fluid, which propagates parallel to the free surface of an elastic half‐plane. The problem is governed by a hyper‐singular integral equation, which relates crack opening to net pressure according to elasticity, and by the lubrication equations which describe the laminar fluid flow inside the fracture. The challenge in solving this problem results from the changing nature of the elasticity operator with growth of the fracture, and from the existence of a lag zone of a priori unknown length between the crack tip and the fluid front. Scaling of the governing equations indicates that the evolution problem depends in general on two numbers, one which can be interpreted as a dimensionless toughness and the other as a dimensionless confining stress. The numerical method adopted to solve this non‐linear evolution problem combines the displacement discontinuity method and a finite difference scheme on a fixed grid, together with a technique to track both crack and fluid fronts. It is shown that the solution evolves in time between two asymptotic similarity solutions. The small time asymptotic solution corresponding to the solution of a hydraulic fracture in an infinite medium under zero confining stress, and the large time to a solution where the aperture of the fracture is similar to the transverse deflection of a beam clamped at both ends and subjected to a uniformly distributed load. It is shown that the size of the lag decreases (to eventually vanish) with increasing toughness and compressive confining stress. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a fully coupled thermo-hydro-mechanical model is presented for two-phase fluid flow and heat transfer in fractured/fracturing porous media using the extended finite element method. In the fractured porous medium, the traction, heat, and mass transfer between the fracture space and the surrounding media are coupled. The wetting and nonwetting fluid phases are water and gas, which are assumed to be immiscible, and no phase-change is considered. The system of coupled equations consists of the linear momentum balance of solid phase, wetting and nonwetting fluid continuities, and thermal energy conservation. The main variables used to solve the system of equations are solid phase displacement, wetting fluid pressure, capillary pressure, and temperature. The fracture is assumed to impose the strong discontinuity in the displacement field and weak discontinuities in the fluid pressure, capillary pressure, and temperature fields. The mode I fracture propagation is employed using a cohesive fracture model. Finally, several numerical examples are solved to illustrate the capability of the proposed computational algorithm. It is shown that the effect of thermal expansion on the effective stress can influence the rate of fracture propagation and the injection pressure in hydraulic fracturing process. Moreover, the effect of thermal loading is investigated properly on fracture opening and fluids flow in unsaturated porous media, and the convective heat transfer within the fracture is captured successfully. It is shown how the proposed computational model is capable of modeling the fully coupled thermal fracture propagation in unsaturated porous media.  相似文献   

19.
INTRODUCTIONGroundwaterorfluidflowmodelinginfracturedrocksisacomplicatedtheoreticalandappliedtopic.Boththeoreticallyandoperationally ,itisimportantinmanyfieldssuchasgeologicalandhydrogeologicalengineering ,environmentalengineeringandpetroleumengineerin…  相似文献   

20.
We present a new pore pressure cohesive element for modeling the propagation of hydraulically induced fracture. The Park-Paulino-Roesler cohesive zone model has been employed to characterize the fracturing behavior. Coulomb’s frictional contact model has been incorporated into the element to model the possible shear reactivation of pre-existing natural fractures. The developed element has been validated through a series of single-element tests and an available analytical solution. Furthermore, intersection behaviors between the hydraulic fracture and the natural fracture under various conditions have been predicted using the present element, which shows good agreement with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号